Lustblatt zur Vorlesung Hamiltonsche Dynamische Systeme

35. Sei γ ein periodischer Orbit des Hamiltonschen Systems X_H mit Fluß φ_t und Σ eine zu γ transversale Hyperfläche. Bezeichne den Punkt in $\gamma \cap \Sigma$ mit x, setze $h_0 := H(x)$ und betrachte für h nahe h_0 die isoenergetische Poincaréabbildung $P_h : \Sigma_h \longrightarrow \Sigma_h$ auf $\Sigma_h := \Sigma \cap \{H = h\}$, d.h. $P_h(y) = \varphi_{T(y)}(y)$ wobei T(y) die Wiederkehrzeit von $y \in \Sigma$ ist, also $\varphi_{T(y)}(y) \in \Sigma$ (und T(y) > 0 minimal mit dieser Eigenschaft).

Wie hängen die Eigenwerte von $D\varphi_T(x)$ mit jenen von $DP_{h_0}(x)$ zusammen? Formulieren Sie eine Bedingung, unter welcher P_h für jedes h nahe h_0 einen eindeutig bestimmten Fixpunkt nahe x hat. Was bedeutet das für das Hamiltonsche System X_H ?

36. Das Vektorfeld X auf $T^n \times \mathbb{R}^m$ sei affin in y, d.h.

$$X(x,y) = u(x)\frac{\partial}{\partial x} + (v(x) + w(x) \cdot y)\frac{\partial}{\partial y}.$$

Zeigen Sie, daß dann auch die Zeit-1-Abbildung ψ von X affin in y ist, d.h. $\psi(x,y) = (x + a(x), y + b(x) + c(x) \cdot y)$.

37. Bestimmen Sie das Verzweigungsdiagramm der durch

$$H(x,y) = \frac{1}{2}y^2 - \frac{1}{5!}x^5 - \frac{\lambda}{6}x^3 - \frac{\mu}{2}x^2 - \nu x$$

gegebenen 3-parametrigen Familie von Hamiltonschen Systemen mit einem Freiheitsgrad.

- 38. Benutzen Sie die "rechte S^1 -Wirkung", um den Lagrangeschen Kreisel von drei nach zwei Freiheitsgraden zu reduzieren. Zeigen Sie, daß die so erhaltene 1-Parameterfamilie des (rechts)reduzierten Lagrangeschen Kreisels äquivalent zum magnetischen sphärischen Pendel ist.
- 39. Untersuchen Sie, wie die Hauptträgheitsmomente $I_1 = I_2$ und I_3 in die Dynamik des Lagrangeschen Kreisels eingehen und zeigen Sie, daß der Spezialfall $I_1 = I_2 = I_3$ nicht zu qualitativ neuen Phänomenen führt.
- 40. Bestimmen Sie die Werte der Energie-Impulsabbildung des Lagrangeschen Kreisels, für welche eine Hamiltonsche Hopfverzweigung auftritt (d.h. wo der aufrecht stehende Kreisel gyroskopisch stabilisiert wird).