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Introduction

In this piece we will analyze the following two parameter planar system:{
ξ̇1 = ξ2,

ξ̇2 = β1 + β2ξ1 + ξ21 − ξ1ξ2.
(1)

This is called the Bagdanov-Takens normal form. We will first analyse the bifurcation diagram from
this system. In here we will discover that for certain values of β1 and β2 this system will have a limit
cycle. We will then move on to proving that this limit cycle is unique.

Equilibria and Bifurcation Diagram

When analysing system (1) the first thing to look at will be any present equilibria. Looking at the
first equation we can clearly see that any equilibria must satisfy ξ2 = 0. Using this looking at the
second equation we find that any equilibria must satisfy:

β1 + β2ξ1 + ξ21 = 0. (2)

Since we are only interested in real solutions, this means that depending on the values of β1, β2 we
will have between 0 and 2 equilibria. Looking at the discriminant of equation (2) we can highlight
the following curve:

T = {(β1, β2) ∈ R2 : β2
2 − 4β1 = 0},

which constist of all pairs (β1, β2) for which system (1) only has one equilibrium. Suppose β2 ̸= 0.
We can see when β2

2 > 4β1 then we are on the left side of the curve and system (1) will have two
equilibria. We will call these equilibria E1,2 which are given by:

E1,2 = (ξ01,2, 0) =

(
−β2 ∓

√
β2
2 − 4β1

2
, 0

)
.

If β2
2 < 4β1 then we will be situated on the right side of T and system (1) will have no equilibria. So if

we cross T from right to left system (1) goes from having no equilibria to having two. This indicates
that a fold bifurcation occurs on this curve. For β2 = 0 this fold bifurcation will be degenerate so we
will not consider this case. We are now interested in finding out the stability of these equilibria. From
the fold bifurcation we know we will get a node (which will be E1) and a saddle (which will be E2).
To confirm this we compute the Jacobi-matrix: J :

J(ξ1, ξ2) =

(
0 1

β2 + 2ξ1 + ξ2 ξ1

)
.
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Substituting E1 and computing the eigenvalues we yield:

λ1,2 =
1

4

(√
β2
2 − 4β1 + β2 ±

√
(−
√

β2
2 − 4β1 − β2)2 − 16

√
β2
2 − 4β1

)
.

Since β2
2 > 4β1 we know

√
β2
2 − 4β1 > 0. Also notice that if β2 < 0 then

√
β2
2 − 4β1 + β2 < 0 and if

β2 > 0 then
√
β2
2 − 4β1 + β2 > 0. First suppose (−

√
β2
2 − 4β1 − β2)

2 > 16
√
β2
2 − 4β1, meaning that

our eigenvalues are real-valued. In this case we can see:√
(−
√

β2
2 − 4β1 − β2)2 − 16

√
β2
2 − 4β1 ≤

√
(−
√
β2
2 − 4β1 − β2)2

=

∣∣∣∣−√β2
2 − 4β1 − β2

∣∣∣∣
=

∣∣∣∣√β2
2 − 4β1 + β2

∣∣∣∣ .
This means that if β2 < 0 then λ2 < λ1 < 0 which means E1 will be a stable node. If β2 > 0 then this
gives us 0 < λ2 < λ1 which indicates that E1 will be a unstable node in this case. The origin β = 0
divides our curve T into two separate branches T− and T+ for β2 < 0 and β2 > 0 respectively. When we
cross T−, E1 will be a stable node and when we cross T+ E1 will be an unstable node. This matches
with what we expected to happen from the fold bifurcation. Now we look at what happens when
(−
√
β2
2 − 4β1 − β2)

2 < 16
√
β2
2 − 4β1. This means our eigenvalues will become imaginary indicating

that E1 undergoes a transition from a node to a focus. Looking at the real part
√

β2
2 − 4β1 + β2 we

can see that for β2 < 0 this focus will be stable and for β2 > 0 the focus will be unstable.

If β1 = 0 and β2 < 0 we can see compute that:

λ1,2 = ±1

4

√
−16|β2| = ±i

√
|β2| = ±i

√
−β2.

Since both eigenvalues are purely imaginary (and each others complex conjugate) we can see that
a Hopf bifurcation is occurring giving rise to a limit cycle. We actually computed the lyaponuv l1
coefficient for several values of β2 < 0 using the Matlab code Brusselator. For β2 = −0.01 this gives
l1 ≈ −495.05 and for β2 = 0.1 we get l1 ≈ −14.37. For β2 = −0.5 we yield l1 ≈ −0.94 and lastly for
β2 = −1 we get l1 = − 1

2 . This gives us a pretty good indication (note this is not a rigorous proof)
that we are dealing with a supercritical Hopf bifurcation, which means that this cycle will be stable.

Now we substitute E2 into the Jacobi-matrix and calculate the corresponding eigenvalues:

λ1,2 =
1

4

(
−
√
β2
2 − 4β1 + β2 ±

√
(
√

β2
2 − 4β1 − β2)2 + 16

√
β2
2 − 4β1

)
.

Again notice that since β2
2 > 4β1 we have

√
β2
2 − 4β1 > 0. This means that if β2 < 0 then

−
√
β2
2 − 4β1 + β2 < 0 and if β2 > 0 then −

√
β2
2 − 4β1 + β2 > 0. Now notice that we have:√

(
√
β2
2 − 4β1 − β2)2 + 16

√
β2
2 − 4β1 ≥

√
(
√

β2
2 − 4β1 − β2)2

=

∣∣∣∣√β2
2 − 4β1 − β2

∣∣∣∣
=

∣∣∣∣β2 −
√
β2
2 − 4β1

∣∣∣∣ .
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Figure 1: Bifurcation Diagram of system (1) (Source: [1])

This means that for any (β1, β2) with β2
2 > 4β1, we find λ2 < 0 < λ1. This means that whenever E2

exists, it will be a saddle.

Now if we take a look at the bifurcation diagram we can go round in the bifurcation diagram near
β2. We will start in area 1 and go clockwise. We can see that if we cross T− and go into area 2 then
the system gains 2 equilibria, a saddle and stable. Then as we cross the Hopf bifurcation curve H
into area 3, we can see that our stable equilibrium (which has become a stable focus) bifurcates and
a stable cycle comes into existence. Then as continue rotating clockwise the next thing we encounter
is the fold bifurcation curve T+, where our equilibria get destroyed again and we are back to the
start. There is one problem with this though. We wonder what happened to our cycle. It must
have gotten destroyed somewhere in region 3 because as we cross T+ no cycles must remain. We
only know two codimension 1 bifurcations that can destroy this cycle. This is the saddle homoclinic
bifurcation and the saddle-node homoclinic bifurcation. Since the saddle-node equilibrium at our fold
bifurcation cannot have a homoclinic orbit the only option is that a saddle homoclinic bifurcation
occurs somewhere in region 3. This gives rise to the saddle-homoclinic curve P dividing region 3
into two regions (which we will call 3 and 4). With this knowledge we can now look at the following
theorem:

Theorem 1. There exists a unique smooth curve P in the (β1, β2)-plane which corresponds to the
saddle-homoclinic bifurcation in system (1). It originates at β = 0 and has the representation:

P = {(β1, β2) : β1 = − 6

25
β2
2 + o(β2

2), β2 < 0}.

Furthermore, for small ||β||, system (1) has a unique cycle when β is in the region between the Hopf
bifurcation curve H and the saddle-homoclinic curve P .
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We will prove this theorem in the next section.

Unicity of the cycle

We divide the proof into 7 steps.

Step 1: Translating the system
For this entire proof we are only interested for values of β where β2

2 > 4β1 since our cycle only exists
when the two equilibria E1 and E2 exist. We now translate the system such that our anti-saddle E1

lies at the origin: {
ξ1 = η1 + ξ01 ,

ξ2 = η2.

Here ξ01 =
−β2−

√
β2
2−4β1

2 like it was defined in the previous section. This gives ξ̇1 = η̇1 and ξ̇2 = η̇2.

For the sake of notation we also introduce ν =
√
β2
2 − 4β1 which is the distance between E1 and E2.

Using this the second equation of system (1) becomes:

η̇2 = β1 + β2

(
η1 + ξ01

)
+
(
η1 + ξ01

)2 − η2
(
η1 + ξ01

)
= β1 + β2

(
η1 +

−β2 − ν

2

)
+

(
η1 +

−β2 − ν

2

)2

− η2
(
η1 + ξ01

)
= β1 + β2η1 −

β2
2

2
− β2ν

2
+ η21 − η1β2 − η1ν +

β2
2

4
+

β2ν

2
+

ν2

4
− η1η2 − η2ξ

0
1 .

=
−β2

2 + 4β1

4
+

ν2

4
+ η1(η1 − ν)− (ξ01η2 − η1η2)

= η1(η1 − ν)− (ξ01η2 − η1η2).

This means system (1) turns into the following:{
η̇1 = η2,

η̇2 = η1(η1 − ν)− (ξ01η2 + η1η2).
(3)

Step 2: Rescaling the system In this step we will rescale η1, η2 and t which will make the distance
between the two equilibria equal to 1 and independent of any parameters. Define ζ1, ζ2 and τ as:

ζ1 =
η1
ν
, ζ2 =

η2
ν3/2

, t =
τ

ν1/2
. (4)

This means:
dζ1
dτ

= ν−1 dη1
dt

dt

dτ
= ν−3/2 dη1

dτ
.

Similarly we calculate:
dζ2
dτ

= ν−3/2 dη2
dt

dt

dτ
= ν−2 dη2

dτ
.

From now on we we use the notation ζ̇1, ζ̇2 when taking the derivative with respect to our rescaled
time τ . With this the first equation of system (3) becomes:

ζ̇1 = ζ2.

The second equation of system (3) will turn into:

ν2ζ̇2 = νζ1(νζ1 − ν)− (ξ01ν
3/2ζ2 + ν5/2ζ1ζ2).
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If we introduce new parameters: {
γ1 = ξ01ν

−1/2,

γ2 = ν1/2,

and divide both sides by ν2 we yield:

ζ̇2 = ζ1(ζ1 − 1)− (γ1ζ2 + γ2ζ1ζ2).

Together this means we now have our rescaled system:{
ζ̇1 = ζ2,

ζ̇2 = ζ1(ζ1 − 1)− (γ1ζ2 + γ2ζ1ζ2).
(5)

We can see if β → 0 then clearly ν → 0 also looking at the formula of ξ01 we can see also see that
ξ01 → 0 as β → 0. This means that γ → 0. Note that since we did only rescale η1, η2 and time t
linearly by positive constants we find that system (5) and system (3) must be orbitally equivalent. In
the first step, the only thing we did is translate the entire system in such a way that our antisaddle
now lies at the origin. This means system (3) is also equivalent to system (1). Putting these two
together we get that system (5) is orbitally equivalent to system (1).

Step 3: The Hamiltonian system
Notice that if γ = 0 then system (5) becomes:{

ζ̇1 = ζ2,

ζ̇2 = ζ1(ζ1 − 1).
(6)

We can notice that this system is Hamiltonian with the Hamiltonian H(ζ1, ζ2) =
ζ2
1

2 +
ζ2
2

2 − ζ3
1

3 . The
idea is that if ||γ|| is small we can view system (5) as a perturbed Hamiltonian system.

Figure 2: Phase portrait of the Hamiltonian system (6) (Source: [1])

In this step we will analyse the Hamiltonian properties of the system, which will helps us analyse the
system for small γ. We can derive that S1 = (0, 0) and S2 = (1, 0) are the two equilibria of this system.
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We can trace them all the way back to our equilibria in system (1), and find that S1 corresponds to
E1 and S2 to E2. The Jacobi-matrix J ′ of this system is as follows:

J ′(ζ1, ζ2) =

(
0 1

2ζ1 − 1 0

)
.

We can substitute S1 and S2 into this expression and calculate the eigenvalues of the matrix. For S1

this yields λ1,2 = ±i so S1 is a centre, and for S2 this yields λ1,2 = ±1 which implies that S2 is a
saddle. We can also compute that H(S1) = 0 and H(S2) =

1
6 . Since H is a Hamiltonian, we know

that Ḣ = 0 which means that the level sets of H consist of orbits of system (6). For the level set

of the saddle H = 1
6 , we can find that ζ2 = ±

√
1+2ζ3

1

3 − ζ21 , correspond to two separatrices of the

saddle S2. These two curves meet at the points (1, 0) (our saddle S2) and (− 1
2 , 0) so these two curves

together form a closed curve. Since there are no other equilibria in this system there can be no other
equilibria on this closed curve we know that this closed curve corresponds to a homoclinic orbit. So
now we have a homoclinic orbit with a centre inside. This means that the homoclinic orbit bounds the
cycles inside. We can look at the level sets H corresponding to these cycles by studying the equation
H(ζ1, 0) = h for ζ1 ∈ [0, 1]. We can see that this gives h ∈ [0, 1

6 ]. We can also see that H(ζ1, 0) is
monotone on this interval of ζ1.

Step 4: The perturbed system.
Now let ||γ|| be small instead of zero. This means that system (5) is no longer Hamiltonian. We
do however still have the same two equilibria S1 and S2 as in the previous step. However since our
Jacobi-matrix J ′ will now be different we can find that S1 is no longer a centre. S2 will stay as a
saddle, but the homoclinic orbit from before can no longer be found for most values of γ, since for
most values of γ the two separatrices no longer form a closed orbit like before. Now consider the part
of the ζ1-axis between S1 and S2 like in the previous step. Using the parametrisation H(ζ1, 0) = h
from the previous step, we take a point on this line with h ∈ (0, 1

6 ) and look at the orbit that passes
through this point. Since ||γ|| is very small we assume that this orbit crosses the ζ1-axis at least one
more time in both forward and backward time. We call this intersection in backward time Z− and
in forward time Z+. We can now look at the value H at the points Z− and Z+ (since the orbits do
no longer have to be cycles, these values will often be different). We can now define the following
function ∆(h, γ):

∆(h, γ) = H(Z−)−H(Z+). (7)

We call this function the orbit split function. We extend this function to the end points by defining
∆(0, γ) = 0 and for h = 1

6 we define Z− as the intersection with the ζ1-axis of the stable separatrix of
the saddle. We define Z+ as the intersection of the unstable separatrix with the same axis. We can
then apply the usual definition of ∆ to h = 1

6 .
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Figure 3: The perturbed Hamiltonian system and the split function (Source:[1])

Notice that this means that if for any γ we find that ∆( 16 , γ) = 0 then we find a homoclinic orbit
again. We call the curve of values of γ for which this happens P which is defined as follows:

P = {(γ1, γ2) ∈ R2 : γ2 ≥ 0, ∆

(
1

6
, γ

)
= 0}. (8)

We can also look at the equation ∆(h, γ) = 0 for any h ∈ (0, 1
6 ). Whenever (h, γ) satisfies this equation,

we have found a cycle in system (5). This gives rise to the following curve in the (γ1, γ2)-plane:

Lh = {(γ1, γ2) ∈ R2 : γ2 > 0,∆(h, γ) = 0}. (9)

Step 5: Approximating ∆. Our next step is to analyse our function ∆ more closely and figure out a
formula so we can study the curves we defined above. When γ ̸= 0 we compute Ḣ (where we use that
for γ = 0, Ḣ = 0 so we are only interested in terms with a γ: in them):

Ḣ =
∂H

∂ζ1
ζ̇1 +

∂H

∂ζ2
ζ̇2

= (ζ1 − ζ21 )ζ̇1 + ζ2ζ̇2

= −ζ2(γ1ζ2 + γ2ζ1ζ2)

= −γ1ζ
2
2 − γ2ζ1ζ

2
2 .

Define Γ as part of an orbit from system (5) ranging from Z− to Z+. Using the fundamental theorem
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of calculus we find:

∆(h, γ) =

∫ τZ−

τZ+

Ḣ dτ = −
∫ τZ+

τZ−

Ḣ dτ

=

∫ τZ+

τZ−

(γ1ζ
2
2 + γ2ζ1ζ

2
2 ) dτ

=

∫
Γ

(γ1ζ2ζ̇1 + γ2ζ1ζ2ζ̇1) dτ

=

∫
Γ

(γ1ζ2ζ̇1 + γ2ζ1ζ2ζ̇1 )dτ

= γ1

∫
Γ

ζ2 dζ1 + γ2

∫
Γ

ζ1ζ2 dζ1.

Here the orientation of Γ is given by the direction as we increase time. For h = 1
6 is worth to note

that by integrating over Γ we mean integrating over the unstable and stable separatrices separately
and summing them. This expression is exact, but comes with the problem that we have no explicit
formula for our orbits Γ. However, when ||γ|| is small, the orbits will only differ ever so slightly from
the closed orbits from system (6). These orbits are just level sets from the Hamiltonian H(ζ) = h. So
if we use this approximation we can write:

∆(h, γ) = γ1

∫
H(ζ)=h

ζ2 dζ1 + γ2

∫
H(ζ)=h

ζ1ζ2 dζ1 + o(||γ||).

We will now name:

I1(h) =

∫
H(ζ)=h

ζ2 dζ1, (10)

and:

I2(h) =

∫
H(ζ)=h

ζ1ζ2 dζ1. (11)

Step 6: Uniqueness of the limit cycle In this step we will prove that for certain values of γ there will be
a unique limit cycle in system (5). We first use the implicit function theorem. For Lh, corresponding
to h ∈ (0, 1

6 ), we have the equation ∆(h, γ) = 0. We have the same equation for P, corresponding to
h = 1

6 . Since Dγ1(h, γ) = I1(h) ̸= 0 for any point on P or Lh. We find that the implicit function
theorem tells us that these two curves exist. It also tells us that Lh for h ∈ (0, 1

6 ) and P for h = 1
6

can be represented by:

γ1(h, γ2) = −I2(h)

I1(h)
γ2 + o(|γ2|), γ2 ≥ 0. (12)

We can find a more explicit from of (10) for P. To do this we first prove the following lemma:

Lemma 2. Q( 16 ) =
1
7 .

Proof. To compute this recall that we found that our homoclinic orbit could be parametrised by:

ζ2 = ±
√

1 + 2ζ31
3

− ζ21 .

Also recall that these two parts meet at the points (− 1
2 , 0) and (1, 0). We can now use the symmetry

of the homoclinic orbit to compute that:

I1

(
1

6

)
=

∫
H(ζ)= 1

6

ζ2 dζ1 =

∫ 1

− 1
2

√
1 + 2ζ31

3
− ζ21 dζ1 =

6

5
.
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Similarly we compute:

I2

(
1

6

)
=

∫
H(ζ)= 1

6

ζ1ζ2 dζ1 =

∫ 1

− 1
2

ζ1

√
1 + 2ζ31

3
− ζ21 dζ1 =

6

35
.

This gives Q( 16 ) =
6
35

5
6 = 1

7 , proving the claim.

With this we can conclude that P has the following characterisation:

P = {(γ1, γ2) ∈ R2 : γ1 = −1

7
γ2 + o(|γ2|), γ2 ≥ 0}. (13)

Now if we start at h = 0 and increase h to 1
6 . The curve Lh moves from the vertical half axis

{γ ∈ R2 : γ1 = 0, γ2 ≥ 0} towards curve P. If we can prove that this motion is monotonous as we
increase h we know that there must be a cycle in this enclosed area and it must be unique. This
monotonicity of this motion is captured in the following function:

Q(h) =
I2(h)

I1(h)
,

for h ∈ (0, 1
6 ]. Note that this function is smooth for these values since we are just integrating

two different polynomials over smooth curves and then dividing these by each other. Note that

limh↓0
I2(h)
I1(h)

= 0. So we extend this function in a smooth way to 0 by defining Q(0) = 0. In the book

Elements of Applied Bifurcation Theory [1], they made the following numerical plot of Q:

Figure 4: Numerical plot of Q (Source: [1])
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In here we can clearly see that Q is monotonous as we increase h from 0 to 1
6 .

Before we move on to proving analytically that Q is monotonous, we want to make sure that there are
no other cycles somewhere in system (5). For any values of γ outside this enclosed area between P
and the vertical half-axis. there cannot exist a cycle. If there were to be a closed orbit outside for any
γ outside this area then this orbit has to cross the ζ1 axis between S1 and S2. This is true since we
know from index theory that any closed orbit of a dynamical system, has to enclose at least one fixed
point. We cannot have any closed orbits around just the saddle, since a saddle has index −1 and any
closed orbit of a dynamical system must have index 1. We also cannot have any closed orbits around
both our equilibria since then according to index theory the index of this closed orbit should be equal
to the sum of the indices of the two equilibria. Since a focus has index 1 and the saddle has index −1
these will sum to be 0. Since this is not equal to 1 we conclude that this is also not an option. By
checking the zeroes of our function ∆ we ensure that there are no cycles that cross the axis between
S1 and S2 other than the ones we have already found.

We now move on to proving that Q is monotonous, which is what the following lemma will state:

Lemma 3. For h ∈ [0, 1
6 ] we have dQ

dh > 0.

If we can prove that this lemma is true then we have proved the unicity of the cycle in area enclosed
by the vertical half-axis and P.

Proof of Lemma 2 :
To prove this lemma we make use of a few propositions:

Proposition 4. The integrals I1(h) and I2(h) satisfy the following system of differential equations:{
h(h− 1

6 )İ1 = ( 56h− 1
6 )I1 +

7
36I2,

h(h− 1
6 )İ2 = − 1

6hI1 +
7
6hI2,

(14)

where the dots represent taking the derivative with respect to h.

Proof. Let h ∈ (0, 1
6 ). We can now take the equation H(ζ) = h which corresponds to a closed orbit of

system (6):
ζ21
2

+
ζ22
2

− ζ31
3

= h. (15)

We will now consider ζ2 as a function of ζ1 and h. If we differentiate equation (15) on both sides with
respect to h, we yield:

ζ2
∂ζ2
∂h

= 1.

We rewrite this to ∂ζ2
∂ζ = 1

ζ2
. This means if take the derivative of I1 and I2 with respect to h and take

this derivative inside the integral (which we can do since the integrands are smooth), we can use this
identity:

dI1
dh

=

∫
H(ζ)=h

∂

∂h
ζ2 dζ1 =

dζ1
ζ2

, (16)

and:
dI2
dh

=

∫
H(ζ)=h

∂

∂h
ζ1ζ2 dζ1 =

∫
H(ζ)=h

ζ1dζ1
ζ2

. (17)

We can also differentiate (15) with respect to ζ1. This gives:

ζ1 + ζ2
∂ζ2
∂ζ1

− ζ21 = 0.
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We rewrite this to ζ21 = ζ1 + ζ2
∂ζ2
∂ζ1

. We now multiply this equation by ζm1 ζ−1
2 , where m = 0, 1 or 2,

and we integrate over ζ1:∫
H(ζ)=h

ζm+2
1 dζ1
ζ2

=

∫
H(ζ)=h

ζm+1
1 dζ1
ζ2

+

∫
H(ζ)=h

ζm1
∂ζ2
∂ζ1

dζ1. (18)

We simplify this third integral using partial integration:∫
H(ζ)=h

ζm1
∂ζ2
∂ζ1

dζ1 = ζm1 ζ2

∣∣∣∣
H(ζ)=h

−
∫
H(ζ)=h

mζm−1
1 ζ2 dζ1.

Note that:

ζm1 ζ2

∣∣∣∣
H(ζ)=h

= 0,

because of the symmetry of the curve H(ζ) = h in the ζ1-axis. Using this we can simplify (18) to the
following: ∫

H(ζ)=h

ζm+2
1 dζ1
ζ2

=

∫
H(ζ)=h

ζm+1
1 dζ1
ζ2

−m

∫
H(ζ)=h

ζm−1
1 ζ2 dζ1. (19)

Using (15) and (16) we find:

h
dI1
dh

= h
dζ1
ζ2

=
1

2

∫
H(ζ)=h

ζ21dζ1
ζ2

+
1

2

∫
H(ζ)=h

ζ2 dζ1 −
1

3

∫
H(ζ)=h

ζ31dζ1
ζ2

= (∗).

Now use the definition of I1 (10) and equation (19) for m = 1:

(∗) = 1

2
I1 +

1

2

∫
H(ζ)=h

ζ21dζ1
ζ2

− 1

3

∫
H(ζ)=h

ζ31dζ1
ζ2

=
1

2
I1 +

1

2

∫
H(ζ)=h

ζ21dζ1
ζ2

− 1

3

∫
H(ζ)=h

ζ21dζ1
ζ2

+
1

3

∫
H(ζ)=h

ζ2 dζ1

=
5

6
I1 +

1

6

∫
H(ζ)=h

ζ21dζ1
ζ2

= (∗∗).

We can now apply equation (19) once more for m = 0 and use (17):

(∗∗) = 5

6
I1 +

1

6

∫
H(ζ)=h

ζ1dζ1
ζ2

=
5

6
I1 +

1

6

dI2
dh

.

So we have found:

h
dI1
dh

=
5

6
I1 +

1

6

dI2
dh

. (20)

We can now follow a similar thought process for hdI2
dh . Using (15) and (17) we find:

h
dI2
dh

=

∫
H(ζ)=h

ζ1dζ1
ζ2

=
1

2

∫
H(ζ)=h

ζ31dζ1
ζ2

+
1

2

∫
H(ζ)=h

ζ1ζ2 dζ1 −
1

3

∫
H(ζ)=h

ζ41dζ1
ζ2

= (□).

11



Now using equation (19) for m = 2 and for m = 1 together with (11) we yield:

(□) =
1

2
I2 +

1

2

∫
H(ζ)=h

ζ31dζ1
ζ2

− 1

3

∫
H(ζ)=h

ζ41dζ1
ζ2

=
1

2
I2 +

1

2

∫
H(ζ)=h

ζ31dζ1
ζ2

− 1

3

∫
H(ζ)=h

ζ31dζ1
ζ2

+
2

3

∫
H(ζ)=h

ζ1ζ2 dζ1

=
7

6
I2 +

1

6

∫
H(ζ)=h

ζ31dζ1
ζ2

=
7

6
I2 +

1

6

∫
H(ζ)=h

ζ21dζ1
ζ2

− 1

6
ζ2 dζ1 = (□□).

Finally, using (10) and (17) together with (19) for m = 0 together with :

(□□) =
7

6
I2 −

1

6
I1 +

1

6

∫
H(ζ)=h

ζ21dζ1
ζ2

=
7

6
I2 −

1

6
I1 +

1

6

∫
H(ζ)=h

ζ21dζ1
ζ2

=
7

6
I2 −

1

6
I1 +

1

6

dI2
dh

.

So from this we yield:

h
dI2
dh

=
7

6
I2 −

1

6
I1 +

1

6

dI2
dh

.

We can rewrite this to:

(h− 1

6
)İ2 = −1

6
I1 +

7

6
I2. (21)

Now we multiply equation (20) by (h− 1
6 ) on both sides and substitute (21) in there:

h(h− 1

6
)İ1 = (h− 1

6
)
5

6
I1 +

1

6
(−1

6
I1 +

7

6
I2) = (

5

6
h− 1

6
)I1 +

7

36
I2.

This is the first equation of the system (14). We obtain the second equation by multiplying (21) by
h on both sides. With this the proposition is proved.

We now move on to the next proposition we need:

Proposition 5. The function Q(h) = I1(h)
I2(h)

satisfies the Riccati equation:

h

(
h− 1

6

)
Q̇ = − 7

36
Q2 +

(
h

3
+

1

6

)
Q− h

6
. (22)
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Proof. We start by using system (14) we just proved together with the quotient rule and the definition:

h

(
h− 1

6

)
Q̇ = h

(
h− 1

6

)(
I1İ2 − I2İ1

I21

)

= h

(
h− 1

6

)(
İ2
I1

− I2İ1
I21

)

= −h

6

I1
I1

+
7h

6

I2
I1

− I2
I1

((
5h

6
− 1

6

)
I1
I1

+
7

36

I2
I1

)
= −h

6
+

7h

6
Q−Q

(
5h

6
− 1

6
+

7

36
Q

)
= − 7

36
Q2 +

(
h

3
+

1

6

)
Q− h

6
.

This proves the proposition.

If we take the Taylor series of Q at h = 0 we get Q(h) = Q(0) + Q̇(0)h+ Q̈(0)
2 h2 + · · · = αh+O(h2).

If we substitute this into the Ricatti equation (22), then we yield:

h

(
h− 1

6

)
α = − 7

36
α2h2 +

(
h

3
+

1

6

)
αh− h

6
+O(h2),

which simplifies to:
1

3
αh− h

6
+O(h2) = 0.

Solving 1
3αh−

h
6 = 0 for any value of h ∈ [0, 1

6 ] implies that α = 1
2 . This means that Q̇(0) = α = 1

2 > 0.
This property of Q will come in handy when proving the following proposition:

Proposition 6. For all h ∈ (0, 1
6 ), the function Q satisfies 0 ≤ Q(h) ≤ 1

7 .

Proof. We already know Q(0) = 0 and Q( 16 ) =
1
7 . This means we still need to check what happens

for h ∈ (0, 1
6 ). Since Q̇(0) > 0 and Q(0) = 0 we know that Q(h) is positive for small h > 0. Suppose

h̄ ∈ (0, 1
6 is h-coordinate of the first intersection of the graph of Q(h) with the positive h-axis. This

means that Q(h̄) = 0 and Q(h) > 0 for every h ∈ (0, h̄). These two together imply that Q̇(h̄) < 0. If

we now substitute h̄ into the Ricatti equation (22) and notice that − h̄
6 < 0 we get:

h̄

(
h̄− 1

6

)
Q̇(h̄) = − 7

36
Q(h̄)2 +

(
h

3
+

1

6

)
Q(h̄)− h̄

6
= − h̄

6
< 0.

Notice that h̄ > 0 and (h̄− 1
6 ) < 0. This means the inequality above can only hold if Q̇(h̄) > 0 which

is a contradiction. This means that Q(h) ≥ 0. Now suppose h̄ ∈ (0, 1
6 ) is the first intersection of the

graph of Q(h) with the line Q = 1
7 . This means that Q(h̄) = 1

7 and 0 ≤ Q(h) < 1
7 for all h ∈ (0, h̄).

Together these two imply that Q̇(h̄) > 0. Now we substitute h̄ into the Ricatti equation (22):

h̄

(
h̄− 1

6

)
Q̇(h̄) = − 7

36
Q(h̄)2 +

(
h

3
+

1

6

)
Q(h̄)− h̄

6

=
7

36

1

72
+

(
h

3
+

1

6

)
1

7
− h̄

6
=

5

42

(
1

6
− h̄

)
.

Notice that h̄ > 0, h̄− 1
6 < 0 and 1

6 − h̄ > 0. From this we yield:

h̄

(
h̄− 1

6

)
Q̇(h̄) =

5

42

(
1

6
− h̄

)
< 0,
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which can only hold if Q̇(h̄) < 0 giving a contradiction. This proves the proposition.

Now lastly, we need to figure out if there are any points 0 < h < 1
6 where Q̇ vanishes. Suppose

h̄ ∈ (0, 1
6 ) is such a point. This means Q̇(h̄) = 0. We now compute the second derivative at this point.

Taking the derivative with respect to h on both sides of the Ricatti equation (22) we get:

(h− 1

6
)Q̇+ hQ̇+ h(h− 1

6
)Q̈(h) = − 7

18
QQ̇+

1

3
Q+

(
h

3
+

1

6

)
Q̇− 1

6
.

Rewriting this equation and applying that Q̇(h̄) = 0 gives:

Q̈(h̄)

∣∣∣∣
Q̇(h̄)=0

=
1

3

(
Q− 1

2

)
.

The proposition 6 gives Q− 1
2 < 0 so:

Q̈(h̄)

∣∣∣∣
Q̇(h̄)=0

=
1

3

(
Q− 1

2

)
< 0.

This means that at any point h̄ where Q̇(h̄) = 0 that Q̈(h̄) < 0. This means any extrema is a minimum.
We know Q(0) = 0 and Q̇(0) > 0. This means that if Q were to have a minimum h̄ between h = 0
and h = 1

6 then it must first have a maximum, which is not possible. This means no such point h̄

can exist. Since Q( 16 ) =
1
7 = max0≤h≤ 1

6
Q(h), which means that Q̇( 16 ) > 0. We now know Q̇(0) > 0,

Q̇(h) ̸= 0 for all h ∈ (0, 1
6 ]. Since Q is smooth, this means that Q̇ cannot be negative for any h, which

implies that Q̇ > 0 for all h ∈ [0, 1
6 ). This proves lemma 3.

Now that we have proven this lemma, we know that the cycle in system (5) is unique.

Step 7: Returning to the original parameters The only the thing that remains is to translate the
results we have found to our original parameters in system (1). To do this we have to study the map
γ(β). Recall that: {

γ1 = ξ01ν
−1/2,

γ2 = ν1/2.
(23)

Note that for β2
2 > 4β1, ξ

0
1 and ν are smooth functions of γ. Since for these values of β ν(β) > 0

we also get that ν1/2 and ν−1/2 will also depend smoothly on β. This means that γ(β) is a smooth
function. The fact that ν > 0 also gives γ2 = ν1/2 > 0 and this means that γ maps the region:

{(β1, β2) ∈ R2 : β2
2 > 4β1},

homeomorphically on the upper half-plane:

{(γ1, γ2) ∈ R2 : γ2 ≥ 0}.

This means that γ is a smooth diffeomorphism. This implies that Dγ(β) is locally invertible
(opmerking 2.7 [2]). Since we are only interested in values of β near the origin, this is sufficient to
apply the inverse function theorem. We can rewrite (23) to:

−β2

2
− γ2

2

2
= γ1γ2,

β2
2 − 4β1 = γ4

2 .
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Using the inverse function theorem we yield that these equations define a smooth function β(γ). First
we rewrite the first equation to:

β2 = −γ2
2 − 2γ1γ2 = −γ2(2γ1 + γ2).

We can rewrite the second equation to:

β1 =
1

4
(β2

2 − γ4
2).

Substituting the expression we got for β2 in here we yield:

β1 =
1

4
([−γ2(2γ1 + γ2)]

2 − γ4
2) = γ1γ

2
2(γ1 + γ2) + o(||γ||4)

So these two together form: {
β1 = γ1γ

2
2(γ1 + γ2) + o(||γ||4),

β2 = −γ2(2γ1 + γ2).
(24)

Using this we can now start to derive:

P = {(β1, β2) : β1 = − 6

25
β2
2 + o(β2

2), β2 < 0}. (25)

So from (13) we know for γ2 ≥ 0:

γ1 = −1

7
γ2 + o(|γ2|).

Which we rewrite to:
γ2 + 7γ1 + o(|γ2|) = 0.

Now we multiply both sides by (6γ2 + 7γ1)γ
2
2 :

(γ2 + 7γ1)(6γ2 + 7γ1)γ
2
2 + o(||γ||4) = 6γ4

2 + 49γ1γ
3
2 + 49γ2

1γ
2
2 + o(||γ||4) = 0.

We rewrite this to:

25γ2
1γ

2
2 + 25γ1γ

3
2 = −24γ2

1 + γ2
2 − 24γ1γ

3
2 − 6γ4

2 + o(||γ||4).

We need to rewrite this one step further:

25γ1γ
2
2(γ1 + γ2) = −6(−γ2(γ1 + γ2))

2 + o(||γ||4).

Now we can use (24) to conclude:

β1 = − 6

25
β2
2 + (o(β2

2)),

where we used that o(β2
2) = o(||γ||4). This proves that (25) is the right representation of P . Note

that (24) maps the the vertical half-axis in the
(γ1, γ2)−plane to the Hopf bifurcation line H in the (β1, β2)−plane. Since system (1) and (5) are
orbitally equivalent, we now know that there exist a unique cycle in system (1) in the region enclosed
by H and P in the (β1, β2)−plane. This concludes the proof of the theorem.
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