Exercises

1. A matrix $A \in M_{n \times n}(\mathbb{R})$ defines a linear differential equation $\dot{x} = Ax$, write L_A for the corresponding vector field. Next to the Lie bracket $[L_A, L_B]$ there is also the commutator [A, B] = AB - BA of two matrices; show that

$$[L_A, L_B] = -L_{[A,B]}$$

Furthermore show that

$$\varphi_t \circ \psi_s - \psi_s \circ \varphi_t = st [A, B] + \mathcal{O}\left((s^2 + t^2)^{\frac{3}{2}}\right)$$

for the flows φ of L_A and ψ of L_B . Hence, $[L_A, L_B] = 0$ if these two flows commute.

2. Show that $\mathfrak{sl}_n(\mathbb{R}) = \{A \in M_{n \times n} \mid \text{tr } A = 0\}$ is the Lie algebra of the Lie group $SL_n(\mathbb{R}) = \{S \in M_{n \times n} \mid \det S = 1\}$. To this end compute for a curve

the corresponding tangent vector

$$\left.\frac{\mathrm{d}}{\mathrm{d}t}\gamma(t)\right|_{t=0}$$

and use $\gamma(t) = \exp tA$ to conclude that $\mathfrak{sl}_n(\mathbb{R}) = T_{\mathrm{Id}}SL_n(\mathbb{R})$. What are the consequences for the flow of a divergence-free vector field?

3. For $T \in GL_n(\mathbb{R})$ show that T has a real logarithm, i.e. $T = \exp A$ with $A \in M_{n \times n}(\mathbb{R})$, if and only if there exists $S \in GL_n(\mathbb{R})$ with $S^2 = T$. *Hint:* First note that also $T \in GL_n(\mathbb{C})$ and compute the complex logarithm. Assume (if necessary) that T is semi-simple.