1. A matrix $A \in M_{n \times n}(\mathbb{R})$ defines a linear differential equation $\dot{x}=A x$, write L_{A} for the corresponding vector field. Next to the Lie bracket $\left[L_{A}, L_{B}\right]$ there is also the commutator $[A, B]=A B-B A$ of two matrices; show that

$$
\left[L_{A}, L_{B}\right]=-L_{[A, B]} .
$$

Furthermore show that

$$
\varphi_{t} \circ \psi_{s}-\psi_{s} \circ \varphi_{t}=s t[A, B]+\mathcal{O}\left(\left(s^{2}+t^{2}\right)^{\frac{3}{2}}\right)
$$

for the flows φ of L_{A} and ψ of L_{B}. Hence, $\left[L_{A}, L_{B}\right]=0$ if these two flows commute.
2. Show that $\mathfrak{s l}_{n}(\mathbb{R})=\left\{A \in M_{n \times n} \mid \operatorname{tr} A=0\right\}$ is the Lie algebra of the Lie group $S L_{n}(\mathbb{R})=\left\{S \in M_{n \times n} \mid \operatorname{det} S=1\right\}$. To this end compute for a curve

$$
\begin{array}{rccc}
\gamma: & \mathbb{R} & \longrightarrow & M_{n \times n} \\
t & \mapsto & \gamma(t)
\end{array}
$$

the corresponding tangent vector

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \gamma(t)\right|_{t=0}
$$

and use $\gamma(t)=\exp t A$ to conclude that $\mathfrak{s l}_{n}(\mathbb{R})=T_{\text {Id }} S L_{n}(\mathbb{R})$. What are the consequences for the flow of a divergence-free vector field?
3. For $T \in G L_{n}(\mathbb{R})$ show that T has a real logarithm, i.e. $T=\exp A$ with $A \in M_{n \times n}(\mathbb{R})$, if and only if there exists $S \in G L_{n}(\mathbb{R})$ with $S^{2}=T$. Hint: First note that also $T \in G L_{n}(\mathbb{C})$ and compute the complex logarithm. Assume (if necessary) that T is semi-simple.

