Exercises

- 1. Let $\dot{x} = f(x)$ be a differential equation on \mathbb{R}^4 with f(0) = 0 and linear part A = Df(0) at this equilibrium. The eigenvalues of A are all on the imaginairy axis and read as $\pm i$ and $\pm 2i$. What is the normal form of f? Determine the symmetry of the normal form.
- 2. Write the nonlinear oscillator $\ddot{x} + \mu \dot{x} \dot{x}^3 + x = 0$ as a vector field und give phase portraits for well chosen values $\mu \in [-1, 1]$ of the parameter.
- 3. Show that the nonlinear oscillator of the previous exercise undergoes a Hopf bifurcation as μ passes through zero and determine whether this bifurcation is of supercritical or subcritical type.