1. Let $\dot{x}=f(x)$ be a differential equation on \mathbb{R}^{4} with $f(0)=0$ and linear part $A=D f(0)$ at this equilibrium. The eigenvalues of A are all on the imaginairy axis and read as $\pm \mathrm{i}$ and $\pm 2 \mathrm{i}$. What is the normal form of f ? Determine the symmetry of the normal form.
2. Write the nonlinear oscillator $\ddot{x}+\mu \dot{x}-\dot{x}^{3}+x=0$ as a vector field und give phase portraits for well chosen values $\mu \in[-1,1]$ of the parameter.
3. Show that the nonlinear oscillator of the previous exercise undergoes a Hopf bifurcation as μ passes through zero and determine whether this bifurcation is of supercritical or subcritical type.
