Exercises

1. Visualize the flow φ of

$$
\begin{aligned}
\dot{x} & =-y \\
\dot{y} & =x \\
\dot{z} & =-z
\end{aligned}
$$

and show that φ_{t} maps the leaves

$$
W^{-}(x, y)=\left\{(\xi, \eta, \zeta) \in \mathbb{R}^{3} \mid \lim _{t \rightarrow \infty}\left\|\varphi_{t}(\xi, \eta, \zeta)-\varphi_{t}(x, y, 0)\right\|=0\right\}
$$

into each other.
2. Compute all center manifolds of

$$
\begin{aligned}
& \dot{x}=x^{2} \\
& \dot{y}=-y
\end{aligned}
$$

and conclude that a center manifold is not unique. Hint: W^{0} consist of the equilibrium, the positive x-axis and one additional trajectory.
3. Define on $\mathbb{T}:=\mathbb{R} / \mathbb{Z}$ (a circle with radius $\frac{1}{2 \pi}$) for a given rotation number $\rho \in \mathbb{R}$ the rigid rotation $R: x \mapsto x+\rho(\bmod 1)$. Show that for $\rho \notin \mathbb{Q}$ every orbit $\left\{x, R(x), R^{2}(x), \ldots\right\}$ lies dense in \mathbb{T}. What is true for $\rho \in \mathbb{Q}$?
Let now $\dot{x}_{1}=1, \dot{x}_{2}=\omega$ be a differential equation on $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. Show that for $\omega=\frac{p}{q} \in \mathbb{Q}$ (no common primes) all orbits are periodic, with (minimal) period q. Furthermore show that for $\omega \notin \mathbb{Q}$ every trajectory densely spins around the torus \mathbb{T}^{2}. Hint: Define a Poincaré mapping on $\left\{x_{1}=0\right\}$ and use the first part of this exercise. How can an orbit be represented within the square $[0,1]^{2} \subseteq \mathbb{R}^{2}$?

