1. Sketch the set

$$
\Gamma_{\gamma, \tau}:=\left\{\omega \in \mathbb{R}^{2}| | 2 \pi\langle k \mid \omega\rangle \left\lvert\, \geq \frac{\gamma}{|k|^{\tau}}\right. \text { for all } 0 \neq k \in \mathbb{Z}^{2}\right\}
$$

of (γ, τ)-Diophantine frequency vectors, where $\gamma>0, \tau>1$ and $|k|:=$ $\left|k_{1}\right|+\left|k_{2}\right|$. What changes if $k \neq 0$ varies in \mathbb{N}_{0}^{2} instead of \mathbb{Z}^{2} ?
2. Prove the Lemma of Paley-Wiener : a periodic function with Fourier series $f(x)=\sum_{k \in \mathbb{Z}} f_{k} e^{2 \pi \mathrm{i} k x}$ is analytic if and only if the coefficients decay exponentially fast:

$$
\bigvee_{M, \eta>0} \bigwedge_{k \in \mathbb{Z}}\left|f_{k}\right| \leq M \cdot e^{-|k| \cdot \eta}
$$

3. Let $\sigma \in \mathbb{R}^{n}$ and $S \in G L_{n}(\mathbb{R})$. Show that $x \mapsto S x+\sigma$ defines an orientation preserving diffeomorphism on \mathbb{T}^{n} if and only if $S \in S L_{n}(\mathbb{Z})$. Conclude that the frequency vector of a conditionally periodic torus is well defined up to the lattice \mathbb{Z}^{n}. What does this mean for vector fields X and $\Phi_{*} X$ on \mathbb{T}^{n} if Φ - id is sufficiently small ?
