Exercises

1. Sketch the set

$$\Gamma_{\gamma,\tau} := \left\{ \omega \in \mathbb{R}^2 \mid |2\pi \langle k \mid \omega \rangle| \ge \frac{\gamma}{|k|^{\tau}} \text{ for all } 0 \neq k \in \mathbb{Z}^2 \right\}$$

of (γ, τ) -Diophantine frequency vectors, where $\gamma > 0, \tau > 1$ and $|k| := |k_1| + |k_2|$. What changes if $k \neq 0$ varies in \mathbb{N}_0^2 instead of \mathbb{Z}^2 ?

2. Prove the Lemma of Paley–Wiener : a periodic function with Fourier series $f(x) = \sum_{k \in \mathbb{Z}} f_k e^{2\pi i k x}$ is analytic if and only if the coefficients decay exponentially fast :

$$\bigvee_{M,\eta>0} \quad \bigwedge_{k\in\mathbb{Z}} \quad |f_k| \leq M \cdot e^{-|k|\cdot\eta} \; .$$

3. Let $\sigma \in \mathbb{R}^n$ and $S \in GL_n(\mathbb{R})$. Show that $x \mapsto Sx + \sigma$ defines an orientation preserving diffeomorphism on \mathbb{T}^n if and only if $S \in SL_n(\mathbb{Z})$. Conclude that the frequency vector of a conditionally periodic torus is well defined up to the lattice \mathbb{Z}^n . What does this mean for vector fields X and Φ_*X on \mathbb{T}^n if Φ – id is sufficiently small ?