1. On \mathbb{T}^2 consider the Poincaré section $C := \{x_1 = 0\}$ and a vector field X with flow φ_t for which the Poincaré mapping has the form $R: x_2 \mapsto x_2 + \rho \pmod{1}$. In general the return time $\tau = \tau(x_2)$ shall not be constant. Construct a Poincaré section

$$D = \left\{ \varphi_{t(x_2)}(0, x_2) \mid x_2 \in \mathbb{T} \right\}$$

for which the return time is constant. *Hint:* searching for a (periodic) translation $t = t(x_2)$ of time leads to $\varphi_{\tau}(D) = D$ with constant time $\tau \in \mathbb{R}$. Explicitly write this as an equation in t and τ and formulate conditions on ρ that yield a solution.

- 2. Let X be a vector field with multi-periodic torus V. Show that $X_{|V}$ is quasi-periodic if and only if V is the closure of any of its orbits.
- 3. Let

$$\dot{x} = f(x, z) = \omega + \mathcal{O}(z) \dot{z} = g(x, z) = a(x) \cdot z + \mathcal{O}(z^2)$$

be a vector field on $\mathbb{T}^n \times \mathbb{R}$ with a(x) > 0 for all $x \in \mathbb{T}^n$. The aim is to construct a co-ordinate transformation

$$\Phi : \mathbb{T}^n \times \mathbb{R} \longrightarrow \mathbb{T}^n \times \mathbb{R}$$
$$(x, z) \mapsto (x, \lambda(x) \cdot z)$$

that puts the vector field into Floquet form

$$\dot{x} = \omega + \mathcal{O}(z)$$

 $\dot{z} = \Omega z + \mathcal{O}(z^2)$

with $\Omega > 0$. To this end verify that this leads to the equation

$$\Omega = a + \langle \omega | \nabla_x \nu \rangle$$

in $\nu(x) := \ln \lambda(x)$ and give necessary conditions both for a formal solution and for a real-analytic solution.