1. On \mathbb{T}^{2} consider the Poincaré section $C:=\left\{x_{1}=0\right\}$ and a vector field X with flow φ_{t} for which the Poincaré mapping has the form $R: x_{2} \mapsto x_{2}+\rho(\bmod 1)$. In general the return time $\tau=\tau\left(x_{2}\right)$ shall not be constant. Construct a Poincaré section

$$
D=\left\{\varphi_{t\left(x_{2}\right)}\left(0, x_{2}\right) \mid x_{2} \in \mathbb{T}\right\}
$$

for which the return time is constant. Hint: searching for a (periodic) translation $t=t\left(x_{2}\right)$ of time leads to $\varphi_{\tau}(D)=D$ with constant time $\tau \in \mathbb{R}$. Explicitly write this as an equation in t and τ and formulate conditions on ρ that yield a solution.
2. Let X be a vector field with multi-periodic torus V. Show that $X_{\mid V}$ is quasi-periodic if and only if V is the closure of any of its orbits.
3. Let

$$
\begin{aligned}
& \dot{x}=f(x, z) \\
&=\omega+\mathcal{O}(z) \\
& \dot{z}=g(x, z)
\end{aligned}=a(x) \cdot z+\mathcal{O}\left(z^{2}\right) \text { }
$$

be a vector field on $\mathbb{T}^{n} \times \mathbb{R}$ with $a(x)>0$ for all $x \in \mathbb{T}^{n}$. The aim is to construct a co-ordinate transformation

$$
\begin{array}{cccc}
\Phi: & \mathbb{T}^{n} \times \mathbb{R} & \longrightarrow & \mathbb{T}^{n} \times \mathbb{R} \\
& (x, z) & \mapsto & (x, \lambda(x) \cdot z)
\end{array}
$$

that puts the vector field into Floquet form

$$
\begin{aligned}
\dot{x} & =\omega+\mathcal{O}(z) \\
\dot{z} & =\Omega z+\mathcal{O}\left(z^{2}\right)
\end{aligned}
$$

with $\Omega>0$. To this end verify that this leads to the equation

$$
\Omega=a+\left\langle\omega \mid \nabla_{x} \nu\right\rangle
$$

in $\nu(x):=\ln \lambda(x)$ and give necessary conditions both for a formal solution and for a real-analytic solution.

