INLDS Practicum 4

For each planar system below, construct its phase portrait for $\alpha = 0$ and for small $\alpha < 0$ and $\alpha > 0$ numerically (using the MATLAB tool pplane9). Identify the occurring bifurcation and try to support your conclusions by analytical arguments as outlined below.

Exercises

Ex.1 A system with a local bifurcation

$$\begin{cases} \dot{x} = y, \\ \dot{y} = \alpha - y + x^2. \end{cases}$$
(1)

- (a) Find a multiple equilibrium at $\alpha = 0$.
- (b) Introduce new coordinates (ξ, η) by the linear substitution

$$\begin{cases} x = \xi - \eta, \\ y = \eta. \end{cases}$$

(c) Write the principal part of the system at $\alpha = 0$ in the new coordinates. Compute the normal form coefficient *a* for the saddle-node bifurcation and verify that $a \neq 0$.

Ex.2 A system with a global bifurcation in which a local bifurcation is involved

$$\begin{cases} \dot{x} = x(1-x^2-y^2) - y(1+\alpha+x), \\ \dot{y} = x(1+\alpha+x) + y(1-x^2-y^2). \end{cases}$$
(2)

- (a) Substitute $x = r \cos \varphi$, $y = r \sin \varphi$ and rewrite the system in the polar coordinates (r, φ) .
- (b) Prove that the unit circle r = 1 is invariant and study equilibria on this circle.
- (c) Find a multiple equilibrium at $\alpha = 0$ on the invariant circle.
- (d) Compute the normal form coefficient a for the saddle-node bifurcation of this equilibrium at $\alpha = 0$ and verify that $a \neq 0$.

Homework

Hand-in exercise is number 2.