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Abstract

Invariant tori of integrable dynamical systems occur both in the dissipative and in
the conservative context, but only in the latter the tori are parametrised by phase
space variables. This allows for quasi-periodic bifurcations within a single given
system, induced by changes of the normal behaviour of the tori. It turns out that
in a non-degenerate reversible system all semi-local bifurcations of co-dimension 1
persist, under small non-integrable perturbations, on large Cantor sets.

1 Introduction

A dynamical system is reversible if it admits an involutive symmetry G that maps orbits
z(t) to (Gz)(t) = z(−t). Typical examples of reversible systems are second order equa-
tions, where one cannot infer from the dynamics if time is going backwards, see [21, 25, 19]
and references therein. This includes many Hamiltonian systems, in particular simple me-
chanical systems where the Hamiltonian is the sum of the (quadratic) kinetic energy and
a positional potential energy. However, it turned out that reversible systems share many
properties of Hamiltonian systems even if they are not Hamiltonian themselves.

An important aspect are periodic orbits forming continuous families, and more gener-
ally Kolmogorov–Arnol’d–Moser (KAM)-theory. On an invariant torus with dense quasi-
periodic orbits the reversor G has to act as −id and such tori are parametrised by subman-
ifolds on which G acts as the identity. In the sequel we assume that suitable co-ordinates
(x, y) ∈ Tn×Rm = (Rn/Zn)×Rm around an invariant n–torus {y = y0} have been chosen
and work with the reversor G(x, y) = (−x, y). Then reversibility implies for

ẋ = f(x, y)
ẏ = g(x, y)

(1)

that f is even in x and g is odd in x, in particular g(0, y) = 0 for all y ∈ Rm. We call the
vector field (1) integrable if it is equivariant with respect to the translational torus action

(x, y) 7→ (x + ξ, y) ,
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whence g(x, y) ≡ g(y) ≡ 0 vanishes identically and the phase space is fibrated into
invariant tori Tn × {y}. The flow on such a torus is parallel (or conditionally periodic)
with frequency vector ω(y) := f(y) ≡ f(x, y) and in particular quasi-periodic if ω(y) is
rationally independent, every orbit being dense in Tn × {y}. In this setting KAM-theory
provides the following result.

Theorem 1 [20, 21, 26, 10] If the frequency mapping ω : Rm −→ Rn is non-degenerate,

then most tori survive a small reversible perturbation.

The classical situation is m = n where one can formulate non-degeneracy

det Dω(y) 6= 0 (2)

in the sense of Kolmogorov. Then ω is a local diffeomorphism and one can pull back
the whole geometry of the frequency space into the phase space. Resonant tori, with
frequency vector ω satisfying

〈k | ω〉 := k1ω1 + . . . + knωn = 0

for a non-zero k ∈ Z
n, should not be considered as dynamical objects as they are merely

disjoint unions of lower-dimensional tori that do have a dense orbit. Correspondingly,
persistence under arbitrary perturbations can only be proven if ω satisfies a strong form
of non-resonance. In the sequel we work with Diophantine conditions

∧

k∈Z
n

k 6=0

|2π〈k | ω〉| ≥ γ

|k|τ (3)

where τ > n − 1 and γ > 0. For the weaker Bruno conditions see [31, 24, 16, 22]. While
for bounded open Σ ⊆ Rn the set Σγ,τ of Diophantine frequency vectors is topologically
small, its relative measure tends to 1 as γ → 0. This remains unchanged when pulling
back Σγ,τ with the local diffeomorphism ω into phase space. The same conclusion remains
true if m ≥ n + 1 and the frequency mapping ω : R

m −→ R
n is a submersion.

It is instructive to study the geometric properties of the set Σγ,τ defined by (3). If
ω ∈ Σγ,τ then also sω ∈ Σγ,τ for all s ≥ 1. This allows to relax the non-degeneracy
condition (2), instead of all partial derivatives of ω spanning R

n it suffices that

< ω,
∂ω

∂y1

, . . . ,
∂ω

∂ym

> = R
n (4)

which in particular allows for m = n − 1. The surviving tori no longer retain their
frequency vector ω(y) but still have the same frequency ratios

[ω(y)] := [ω1(y) : ω2(y) : . . . : ωn(y)] ,

see [20, 8, 10]. The resulting Cantor dust parametrising the persistent invariant tori again
has relative measure

meas([ω]−1Σγ,τ )

meas([ω]−1Σ)

γ→0−→ 1
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tending to full measure.
The Diophantine conditions (3) exclude small neighbourhoods of (a dense set of)

hyperplanes. What has to be avoided is that a large portion of the image ω(Rm) of the
frequency mapping vanishes in these resonance gaps. The conditions (2) and (4) enforce
this by requiring ω(Rm) to be transverse to Σγ,τ , but the (linear) geometry of the latter
already ensures this if ω(Rm) is sufficiently curved. This allows to further relax to the
non-degeneracy condition

< ∂|ℓ|ω

∂yℓ

∣∣∣∣ ℓ ∈ N
m
0 > = R

n (5)

of Rüssmann, cf. [23, 10, 24]. In the perturbed system one finds invariant tori with
frequency vectors close to the unperturbed ones, though one should no longer speak of
surviving tori. Choosing τ > nL − 1 in (3), where L is the highest dervative needed
in (5), ensures that the relative measure of invariant tori still tends to 1 as the size of the
perturbation goes to 0.

The next section shows how these results can be generalized to non-degenerate lower-
dimensional tori. The normal linear behaviour of Tn × {y} × {0} ⊆ Tn × Rm × R2p is
elliptic or hyperbolic (or possibly a superposition of these in case p ≥ 2) and bifurcations
occur at tori with multiple eigenvalues on the imaginary axis. In section 3 the frequency-
halving and quasi-periodic pitchfork bifurcations are studied, here the tori themselves
persist and only the normal linear behaviour changes. During the quasi-periodic centre-
saddle bifurcation of section 4 the elliptic and hyperbolic tori that meet at parabolic tori
cease to exist. In the concluding section 5 these bifurcations are put into context. As an
example the gaps left open by theorem 1 are addressed, where quasi-periodic bifurcations
allow to shed some light on the dynamics.

2 Lower-dimensional tori

To allow for a non-trivial normal behaviour of the tori we extend (1) to

ẋ = f(x, y, z)
ẏ = g(x, y, z)
ż = h(x, y, z)

(6)

on Tn × Rm × R2p with reversing symmetry

G(x, y, z) = (−x, y, Rz) .

Here R is a linear involution on R2p with dim Fix(R) = p, whence

R
2p = Fix(R) ⊕ Fix(−R) .

For the moment we refrain from changing co-ordinates to adapt to this splitting. In the
unperturbed integrable case the right hand side of (6) is x–independent and reversibility

3



yields

f(y, Rz) = f(y, z)

g(y, Rz) = −g(y, z)

h(y, Rz) = −Rh(y, z)

for all (y, z) ∈ R
m+2p, entailing g(y, 0) ≡ 0. Let us make the extra assumption

∧

y∈Rm

h(y, 0) = 0 (7)

which ensures that T
n × R

m × {0} ⊆ T
n × R

m × R
2p is a family of invariant tori. In

the discussion to follow we will identify conditions on (6) that justify this assumption.
Where (7) fails we ultimately encounter a quasi-periodic centre-saddle bifurcation. In the
expansion

ẋ = ω(y) + O(z)

ẏ = O(z) (8)

ż = Ω(y) · z + O(z2)

the matrix Ω(y) ∈ gl(2p, R) is x–independent (like all terms on the right hand side),
because of integrability the tori are in Floquet form. It is helpful to decouple the y–
dependence in (8) from the dominant part and consider

ẋ = ω
ẏ = 0
ż = Ωz

(9)

with parameters ω ∈ Rn and Ω. Because of reversibility the latter matrix is an element
of

gl−(2p, R) :=

{
Ω ∈ gl(2p, R)

∣∣∣∣ ΩR = −RΩ

}

whence the spectrum of Ω consists of conjugate purely imaginary pairs ±iα, symmetric
real pairs ±β, complex quartets ±β ± iα and, if 0 is an eigenvalue, 0 with even algebraic
multiplicity. Excluding the eigenvalue 0 enforces (7) straightforwardly; if det Ω(y) 6= 0
then h(y, z(y)) ≡ 0 with z(y) given by the implicit mapping theorem allows for the
translation (y, z) 7→ (y, z − z(y)).

The hyperbolic part may be dealt with by means of reduction to a centre manifold,
so let us further assume that Ω is elliptic. As Ω and R anti-commute we can find a
simultaneous block-diagonalization

Ω = diag(α1J2, . . . , αpJ2) , R = diag(R2, . . . , R2)

with

J2 =

(
0 1
−1 0

)
and R2 =

(
1 0
0 −1

)
,
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for multiple frequencies see below.
Next to internal resonances we also have to avoid normal-internal resonances and

replace (3) by ∧

k∈Z
n

k 6=0

∧

ℓ∈Z
p

|ℓ|≤2

|2π〈k | ω〉 + 〈ℓ | α〉| ≥ γ

|k|τ . (10)

The (extended) frequency mapping

(ω, α) : R
m −→ R

n × R
p (11)

allows to pull back the geometry defined by (10) into phase space.

Theorem 2 [9, 26, 10, 12, 7, 3] BHT non-degeneracy implies quasi-periodic stability.

The non-degeneracy condition of Broer, Huitema and Takens formulated in [11] requires
the frequency mapping to be a submersion and all eigenvalues to be simple. The resulting
quasi-periodic stability is rather strong as Diophantine tori not only persist under small
reversible perturbations, but furthermore retain their normal linear behaviour. Similar to
theorem 1 the submersivity of (11) can be relaxed to (ω, α)(Rm) being sufficiently curved
to have a large intersection with (Rn × Rp)γ,τ . This allows for smaller dimension m and
in particular makes the important case m = n accessible.

In [12, 7] the requirement that all eigenvalues be simple is dropped and tori Tn×{y0}×
{0} are considered for which Ω0 := Ω(y0) has multiple eigenvalues. To still ensure (7)
the condition det Ω0 6= 0 is retained, while (11) is replaced by the (amended) frequency
mapping

(ω, Ω) : R
m −→ R

n × gl−(2p, R) . (12)

At points y1 ∈ Rm where Ω1 = Ω(y1) has only simple eigenvalues the submersivity of (11)
makes (12) transverse to the orbit of Ω1 under the adjoint action Ω 7→ TΩT−1 of

GL+(2p, R) :=

{
T ∈ GL(2p, R)

∣∣∣∣ TR = RT

}
.

This latter property is imposed on (12) also at y0, whence the amended frequency mapping
provides a versal unfolding of the Jordan normal form of Ω0.

The resulting quasi-periodic stability still exerts full control on the normal linear be-
haviour of the persisting tori. The complete versal unfolding of Ω0 is present in the
perturbed system, with the persisting tori parametrised by large Cantor sets. Compare
this with the approach in [32, 30] where the tori themselves are shown to be persistent
under weaker conditions, but all control on the normal linear behaviour is lost. As ex-
emplified in [2] such a control is needed if one wants to address the bifurcations resulting
from multiple frequencies.

To address bifurcations resulting from vanishing frequencies a non-degeneracy condi-
tion relaxing det Ω0 6= 0 is genuinely helpful. The formulation in [11] similarly already
anticipated the (dissipative) frequency-halving bifurcation treated in [1]. Writing (9) in
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vector field notation N = ω∂x + Ωz∂z , the Lie bracket with a constant vector field β∂z

reads as
[N, β∂z] = −Ωβ ∂z

and vanishes if and only if β ∈ ker Ω. Invertibility of the adjoint operator

ad N : β∂z 7→ [N, β∂z]

ensures that the constant part of any perturbing vector field can be transformed away.
In important cases it is possible to first restrict ad N to a subspace B of the space of
constant vector fields. For instance, where zero eigenvalues result from a lift to a 2–fold
covering space the lifted vector fields are equivariant with respect to the deck transforma-
tion and the resulting subspace B does not contain the corresponding (generalized) zero
eigendirections.

In the present reversible setting one can always restrict to the subspace B+ of constant
vector fields that are equivariant with respect to the reversor G (not to be confounded
with the subspace B− of reversible constant vector fields). The definition of BHT non-
degeneracy adopted in [3] is a condition on the torus Tn × {y0} × {0} taking the form
that

ker Ω(y0) ∩ B+ = {0} (13)

and that (12) be at y0 transverse to the product

{ω(y0)} × GL+(2p, R)(Ω0) ⊆ R
n × gl−(2p, R)

of the singleton with internal frequency vector ω(y0) and the GL+(2p, R)–orbit of Ω0.
The resulting quasi-periodic stability again exerts full control on the normal linear

behaviour of the persisting tori. The amended frequency mapping (12) now also provides
a versal unfolding of the nilpotent part of Ω0. In the next section we use this to address
the resulting bifurcations.

3 Pitchfork bifurcations

The frequency-halving bifurcation leads to a quasi-periodic pitchfork bifurcation on a 2–
fold covering space. We therefore first treat the latter in its own right. Note that (13)
boils down to

ker Ω0 ⊆ Fix(−R)

because of Ω0R = −RΩ0. Here we consider the simplest case of geometric multiplicity 1
and algebraic multiplicity 2 ; for definiteness we furthermore restrict to p = 1 altogether,
thereby dispensing with additional normal frequencies. Splitting z = (u, v) such that
Rz = (−u, v), the reversor takes the form

G(x, y, u, v) = (−x, y,−u, v) .

Theorem 2, or its Corollary 6 in [3], yields the persistence of the whole family {u = v = 0}
of invariant tori (parametrised by Diophantine ω), in particular of the parabolic tori

T
n × {y0} × {(0, 0)} ⊆ T

n × R
m × R

2 .
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To obtain information on the tori that are generated by the bifurcation we need non-linear
terms from (8). After a normalization with respect to (9), cf. [1, 2], the lowest order terms
read as

ẋ = ω
ẏ = 0
u̇ = av
v̇ = (λ − bu2 + cv)u

(14)

from which we compute the position u0 = ±
√

λ/b, v0 = 0 of the tori bifurcating off
from (y, u, v) = (y0, 0, 0). Here λ is a bifurcation parameter, similarly to ω and Ω we will
eventually have λ = λ(y) with λ(y0) = 0 whence the additional tori

T
n × {y} × {(u(y), 0)} (15)

exist for λ(y) > 0 in case b > 0 and for λ(y) < 0 in case b < 0.

Theorem 3 Let X be a real analytic vector field on Tn × Rm × R2 for which the torus

Tn × {y0} × {(0, 0)} is parabolic and the coefficient functions λ, a, b, c : Rm −→ R in

the normal form (14) satisfy λ(y0) = 0, Dλ(y0) 6= 0, a(y0) 6= 0, b(y0) 6= 0 and, if

a(y0) · b(y0) > 0, also c(y0) 6= 0. Then X undergoes a quasi-periodic reversible pitchfork

bifurcation.

The case of positive a(y0) · b(y0) is the supercritical case and where a(y0) and b(y0) have
different sign a subcritical quasi-periodic reversible pitchfork bifurcation takes place. See
also [18, 28].

Proof. We still have to show that the tori (15) persist under a small perturbation of (14).
As only the relative sign between a(y0) and b(y0) is relevant we fix sgn b(y0) = +1.
Concentrating on the plus sign u(y) = +

√
λ(y)/b(y) we translate the torus by means of

(x, y, u, v) 7→ (x, y, u−
√

λ(y)

b(y)
, v)

to the origin, with dominant part

ẋ = ω

ẏ = 0

u̇ = av

v̇ = −2λu + c

√
λ

b
v

and apply the scaling

(x, y, u, v, ω, t) 7→ (x, λ− 5

2 y, λ−1u, λ− 3

2 v, λ− 1

2 ω, λ
1

2 t)

to obtain the normal linear behaviour
(

0 a

−2 c/
√

b

)
.
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In the subcritical case sgn ab = sgn a = −1 this is of saddle type and the image torus
under G (the one with negative u–co-ordinate) is of saddle type as well. In the supercritical
case of positive a the normal linear behaviour is attractive if c < 0 and repulsive if c > 0,
the image torus under G is then repulsive or attractive, respectively. In any case we can
apply Corollary 4.2 of [11] to obtain quasi-periodic stability. �

Thus, in the supercritical case an attractor-repellor pair of tori bifurcates off from the
original tori, which thereby turn from elliptic to hyperbolic. Note that for any δ > 0 the
union

T
n ×

{
(y, u, v) ∈ R

m+2

∣∣∣∣ λ(y) > δb(y) , u = ±
√

λ(y)

b(y)
, v = 0

}
(16)

is an attractive/repulsive manifold and persists as such because of Theorem 4.1 in [17].
This carries mutatis mutandis over to the normally hyperbolic manifold (16) in the sub-
critical case. However, this does not apply to the individual tori as there is no attrac-
tion/repulsion in the y–direction.

In particular, the tori bifurcating off from Fix(−R) do not completely behave as in
a dissipative system. There, a single Diophantine torus may form a normally hyperbolic
manifold and thus persist by Theorem 4.1 of [17] a small perturbation that makes the
frequency vector resonant. This leads to full families T

n×R
m of tori as long as the attrac-

tion/repulsion normal to the tori (the Rm–direction represents external parameters and
does not carry normal dynamics) dominates the attraction/repulsion within the phase-
locked tori. Such a “fattening by hyperbolicity” as described in [1] does not take place in
the present reversible setting.

The lifted vector field on a 2–fold covering is equivariant with respect to the deck
transformation, which in adapted x–co-ordinates takes the form

F : (x, y, u, v) 7→ (x1 − 1

2
, x2, . . . , xn, y,−u,−v)

and makes the vector field reversible with respect to a second reversor H := F ◦ G. In
the normal form this enforces c ≡ 0 and (14) turns into

ẋ = ω
ẏ = 0
u̇ = av
v̇ = λu − bu3 .

(17)

In the supercritical case this reflects that the additional tori (15) are invariant under H
and must therefore be elliptic.

Theorem 4 Let X be a real analytic vector field on Tn × Rm × R2 that is reversible

with respect to both G and H . Assume that the torus Tn × {y0} × {(0, 0)} is parabolic

with coefficient functions λ, a, b : Rm −→ R in the normal form (17) satisfying λ(y0) = 0,

Dλ(y0) 6= 0, a(y0) 6= 0 and b(y0) 6= 0. Then at y = y0 a pair of tori (15) bifurcates off

from Tn ×Rm × {(0, 0)}, elliptic in the supercritical case a(y0) · b(y0) > 0 and hyperbolic

in the subcritical case a(y0) · b(y0) < 0.
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What takes place is a quasi-periodic Z2–equivariant reversible pitchfork bifurcation, where
the symmetry group Z2 is generated by F = G ◦ H . See also [18, 28].

Proof. We follow the proof of theorem 3, but apply at the end the Corollary to the Main
Theorem in [9] to obtain quasi-periodic stability of the elliptic or hyperbolic tori. �

Under the projection of the 2–fold covering to the base space the original tori are covered
twice by Tn × {y} × {(0, 0)} while both tori (15) are mapped bijectively to the same
additional torus in the phase space. Hence, this torus has the first frequency divided by 2
as compared to the torus it bifurcates off from.

Corollary 5 The frequency-halving bifurcation of an integrable reversible vector field

persists under small perturbations. �

4 The quasi-periodic centre-saddle bifurcation

Parabolic tori have normal linear behaviour governed by Ω0 = (0
0
a
0) with a 6= 0 and if the

reversor takes the form
G(x, y, u, v) = (−x, y, u,−v)

then ker Ω0 ⊆ Fix(R) whence adN : B+ −→ B− is not invertible. In this situation the as-
sumption (7) is no longer justified, correspondingly the resulting bifurcations lead to more
than just changes in the normal linear behaviour. In the simplest case, of co-dimension 1,
elliptic and hyperbolic tori annihilate each other when meeting at the parabolic tori. The
integrable normal form of this quasi-periodic centre-saddle bifurcation reads as

ẋ = ω
ẏ = 0
u̇ = av
v̇ = λ − bu2

with tori at u0 = ±
√

λ/b, v0 = 0. Using the scaling

(u, v, λ) 7→ (
u

ab
,

v

a2b
,

λ

a2b
)

we may restrict to a = b = 1 whence invariant n–tori only exist for λ ≥ 0 with elliptic
tori at u0 = +

√
λ > 0 and hyperbolic tori at u0 = −

√
λ < 0.

Theorem 6 Let the vector field X on Tn×Rm×R2 be an ε–small reversible perturbation

of ω∂x + v∂u + (λ − u2)∂v depending on parameters λ ∈ R and ω ∈ Σ ⊆ Rn. Then there

are mappings ω̂, Ω̂, φ in the variables (u, λ) ∈ R × Λ, with Λ an open interval around 0,

satisfying

ω̂(u, λ) = ω + O(ε) ∈ R
n

Ω̂(u, λ) =

(
0 1

−2u 0

)
+ O(ε) ∈ gl−(2, R)

φ(u, λ) = λ − u2 + O(u3) + O(ε) ∈ R
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and having the following property. The solutions of φ(u, λ) = 0 for which (ω̂(u, λ), Ω̂(u, λ))
is Diophantine determine invariant tori of X that have normal linear behaviour conjugate

to ω̂(u, λ) ∂x + Ω̂(u, λ) z ∂z.

Thus, also X undergoes a quasi-periodic centre-saddle bifurcation as, under variation of λ,
elliptic tori parametrised by a Cantor set defined by (10) and hyperbolic tori parametrised
by a Cantor set defined by (3) meet at parabolic tori parametrised by a Cantor set defined
by (3) and vanish. This answers a conjecture in [14] to the positive.

Proof. This follows directly from the conclusion of Theorem 3.1 in [29]. The proof of that
result uses (the Main) Theorem 2.3 of [29] which is formulated in terms of an admissible
pair (g, h) of Lie algebras. As worked out in Section 3.2 of [9], in the present reversible
setting the Lie algebra h of structure-preserving vector fields can be replaced by the vector
space h− of reversible vector fields together with the Lie algebra h+ of G–equivariant vector
fields, while the rôle of the finite-dimensional Lie algebra g < h is taken over by gl−(2, R)
together with gl+(2, R). �

The crucial property is [h+, h−] ⊆ h− as this ensures that a vector field Y solving the ho-
mological equation is G–equivariant and thus generates a time–t–mapping Ψ that trans-
forms reversible vector fields into reversible vector fields. See also [20, 27]. In this way
theorems 1–4 can be deduced from Theorems 2.3 and 3.1 of [29] as well, see [5].

5 Conclusions

Invariant tori in Floquet form undergo a semi-local bifurcation of co-dimension 1 if there
is a Floquet exponent on the imaginary axis with geometric multiplicity 1 and algebraic
multiplicity 2. For a vanishing Floquet exponent this leads to the bifurcations treated in
theorems 6 and 3 and corollary 5. The alternative is a double pair of elliptic eigenvalues
in 1:1 resonance encountered during a quasi-periodic reversible Hopf bifurcation, see [2]
for more details.

While the frequency-halving, quasi-periodic centre saddle and reversible Hopf bifurca-
tions are in essence already of Hamiltonian nature, compare with [15], the quasi-periodic
reversible pitchfork bifurcation gets replaced by its counterpart c ≡ 0 of theorem 4 if
one considers reversible Hamiltonian systems. Similar differences occur in higher co-
dimensions. For instance, vanishing Floquet exponents with algebraic and geometric
multiplicity 2 lead to the systems

ẋ = ω
ẏ = 0
u̇ = auv + λ2v
v̇ = λ1 − v2 ± u(u − λ2)

(18)

undergoing bifurcations of co-dimension 2, cf. [28, 13]. For a = 2 the reversible system (18)
is Hamiltonian, and as long as the coefficient a is positive this Hamiltonian nature prevails.
The cases with a < 0 are of essentially non-Hamiltonian nature.
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Quasi-periodic bifurcations help to explain the dynamics in the gaps opened by reso-
nances. For instance, in a family of elliptic tori the normal-internal resonances

2π〈k | ω〉 + 〈ℓ | α〉 = 0 (19)

with 0 6= k ∈ Z
n and ℓ ∈ Z

p, |ℓ| ≤ 2 lead to gaps left open by tori not satisfying (10).
Crossing a single resonance (19) generically generates two bifurcations of co-dimension 1
where the elliptic tori born in the bifurcations lead to secondary gaps within gaps, see [4]
for an in-depth analysis in the Hamiltonian context.

The following example shows that quasi-periodic bifurcations are not only possible and
furthermore unavoidable where one perturbs from integrable systems already displaying
quasi-periodic bifurcations, but in fact occur for generic perturbations of integrable sys-
tems satisfying the mild conditions of theorem 1. The integrable system is fibrated by
invariant tori Tn ×{y}, y ∈ Rm and the question is what happens in the gap left open by
theorem 1 in case of a single resonance

〈k | ω〉 = 0 . (20)

In suitable co-ordinates this resonance reads as ωn = 0 and one can split off the last
components u := xn ∈ T and v := ym ∈ R to describe the normal behaviour of (n − 1)–
tori

T
n−1 × {(u0, y1, . . . , ym−1, v

0)} ⊆ T
n−1 × T × R

m−1 × R .

For the unperturbed system this normal behaviour is trivial as the (n − 1)–tori fibrate
the invariant n–tori Tn ×{y}. Averaging the perturbed system along the (n− 1)–tori we
obtain an x–independent normal form

ẋi = ωi , i = 1, . . . , n
ẏi = 0 , i = 1, . . . , m
u̇ = fy(u, v)
v̇ = gy(u, v)

where solutions (u0, v0) of f = g = 0 correspond to invariant (n − 1)–tori and variation
of y may lead to bifurcations of these. The genericity considerations of [6] apply mutatis

mutandis, in particular it is generic for a single system u̇ = f(u, v), v̇ = g(u, v) to have only
equilibria with simple eigenvalues, but a whole family of systems depending on y ∈ R

m−1

may encounter bifurcations of co-dimension up to m− 1 (of which the bifurcations of co-
dimension ≤ m−2 subsequently persist the passage from the normal form to the original
perturbation on large Cantor sets).

In case of multiple internal resonances (20) one can similarly split off p pairs from x
and y to let (u, v) ∈ R2p describe the normal behaviour of resulting (n − p)–tori. Where
the number p of resonances exceeds m one has to work in what is termed the reversible
context 2 in [10, 27].

Acknowledgment. I thank Henk Broer, Igor Hoveijn and Florian Wagener for valuable
discussions and helpful remarks.
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