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Abstract

The motion of Jupiter’s four Galilean satellites Io–Europa–Ganymedes–Callisto is subjected

to an orbital 1:2:4–resonance of the former (and inner) three. Willem de Sitter in the early

20th century gave a mathematical explanation of this in a Newtonian framework. He found a

family of stable periodic solutions by using the work of Poincaré. This paper briefly reviews

De Sitter’s theory, and focuses on the underlying geometry of a suitable covering space, where

we develop Kolmogorov–Arnold–Moser theory to find Lagrangean invariant tori excited by

the normal modes of the De Sitter periodic orbits. In this way we find many librations near

these periodic orbits that may well offer a more realistic explanation of the observations.
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1 Introduction

In 1610 Galileo published his Siderius Nuncius (see Figure 1) which forms the beginning of a long

history, where celestial observations were performed by a telescope. The message that Jupiter, to-

gether with his four satellites Io, Europa, Ganymedes and Callisto, forms a miniature solar system,

has had a strong impact on science and society, first of all since it confirms a heliocentric view

on the solar system. Later, Newton used this same system to have the validity of Kepler’s third

law checked for this system, confirmation of which led him to his postulate of universal inverse

square gravitation. This is reported in Part III of his celebrated Philosophiæ Naturalis Principia

Mathematicæ, published in 1687. For a description we refer to, e.g., Westfall [33]. Since then

the Galilean system has received quite some attention from celestial mechanics, among others

from Laplace. It took until around 1890 that the Astronomer Royal David Gill discovered an (al-

most) 1:2:4–resonance in the orbital motion of the inner three Galilean satellites Io, Europa and

Ganymedes. This resonance is strong enough to have a great influence on the dynamics of the

entire Galilean system, including Callisto. During the first decennia of the 20th century, Willem de

Sitter [29, 30, 31] developed a mathematical theory that takes this resonance into account and in a

Newtonian description he found a family of resonant, linearly stable periodic orbits with a period

of about 1 week. We refer to this as the family of De Sitter periodic orbits. This work is based on

Poincaré [27]. See Guichelaar [19] for a historic description.
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Figure 1: Title page of Galileo’s Sidereus Nuncius from 1610.

1.1 Setting of the problem

In a recent paper by Broer and Zhao [15] De Sitter’s work was retold and updated regarding the

periodic orbit. Also librations of the family of De Sitter periodic orbits were found with help

of Kolmogorov-Arnold-Moser (or kam) theory, mainly based on the work of Arnold, Féjoz and

Zhao [1, 5, 16, 17, 34]. It turns out that a nowhere dense, large measure union of Lagrangean

invariant tori exists, that carries plenty of such librations.

The present paper gives another existence proof of these Lagrangean tori, as an adaptation of the

parametrised kam theory as developed in Broer-Huitema-Takens [12, 22], based on Moser [25].

Also see Broer-Huitema-Sevryuk [11]. The 1:2:4–resonance leads to a singularity in phase space

that can be regularized by passing to co-rotating co-ordinates, which forms a covering map, com-

pare with Arnold [4], Broer-Vegter [14] and Broer-Hanßmann-Jorba-Villanueva-Wagener [9]. On

the corresponding covering space we have to keep the associated discrete group of deck transfor-

mations into account, which is automatically taken care of in our approach. In this respect the

present paper forms both a simplification and an improvement of [15]. The Lagrangean tori arise

by the excitation of normal modes of a family of normally elliptic isotropic invariant 2–tori, where

the latter arise from superposing the De Sitter periodic orbits with the periodic motion of Callisto.
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To incorporate this in our approach we use methods as described in Jorba-Villanueva [23] and [11].

Moreover, several time scales have to be taken into account; here we invoke Han-Li-Yi [20]. In the

sequel we prove one parametrised kam theorem that encompasses all these aspects.

For a more recent treatment of the Galilean satellites, which largely rests on numerical methods,

we refer to [24]. Interestingly, for the relativistic correction of the Newtonian equations of motion,

an approximation developed by De Sitter has been used.

1.2 Strategy

Since the focus of the present paper lies in the kam theory and its application to the Galilean

system, we only touch on the De Sitter periodic orbits and their normally linear part as far as

needed for checking the necessary kam non-degeneracy conditions. For all computational details

in this direction we refer to [15].

We present an overview of the paper, later on filling in details. We start by making the simpli-

fying assumption that Jupiter and his four satellites are all moving in one fixed plane. A second

assumption is that the masses m1,m2,m3,m4 of the succesive satellites are small with respect to the

mass m0 of Jupiter. If the mutual gravitational interactions between the satellites were set to zero,

the Newtonian description would lead to Keplerian ellipses, which have small eccentricities. The

entire mathematical analysis rests on perturbative properties of these ellipses, using their geometry,

their orbital frequencies, etc. Also in normalizing or averaging techniques, as applied below, such

Keplerian ellipses act as unperturbed starting point. The occurrences of the term ‘small’ in the

above, in the sequel are made more explicit in terms of perturbation parameters, where also certain

scaling arguments play a role.

The planar system formed by Jupiter and the four satellites has 10 degrees of freedom. Following

De Sitter [29] we shall deal initially with the 4–body system Jupiter-Io-Europa-Ganymedes, in

which case the planar system has 8 degrees of freedom. When adding the 5th body Callisto, which

is at a far distance, this increases the number of degrees of freedom by 2. Our first aim is to use

the symmetries of the problem to reduce the number of degrees of freedom.

The translational symmetry of the problem allows to reduce by 2 degrees of freedom — fixing

the conserved total linear momentum and taking the quotient by the symmetry group R2 through

fixing the centre of mass: we move uniformly with this centre through space.1 This is the 0th

reduction, from 8 to 6 degrees of freedom. Our description of motion of the satellites is always

with respect to Jupiter; we are not going to reconstruct the 0th reduction and not describe any

motion as superposed with the orbit of Jupiter (or the centre of mass) in space.

The first reduction concerns the rotational SO(2,R)–symmetry related to the conservation of the

total angular momentum. This amounts to fixing the conserved angular momentum and taking the

quotient by SO(2,R) through a passage to co-rotating co-ordinates, making it possible to reduce the

system by one degree of freedom, see Arnold [3]. This reduction from 6 to 5 degrees of freedom

is presented in § 3.1 of Section 3 and is enabled by a symplectomorphism of the phase space.

1Disregarding the influences of Saturn, the Sun, etc.
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Figure 2: The Jupiter-Io-Europa-Ganymedes system at a collinearity.

For the second reduction we shall restrict our analysis to a small neighbourhood of the double reso-

nance of the system: in terms of orbit frequencies this concerns the joint 2:1 frequency resonances

of both Io and Europa and of Europa and Ganymedes. These resonances induce an approximate

symmetry and the necessary Poincaré–Birkhoff normalization procedure, see e.g. [5, 6] and ref-

erences therein, is enabled by a transformation to a covering space of the phase space, where an

appropriate deck symmetry has to be taken into account. For details see § 3.2 of Section 3. This

leads to an extra SO(2,R)–symmetry as we shall see now.

The resonant normalization (or averaging) goes back at least to Poincaré [26], also see, e.g.,

[3, 4, 14, 28] or [5, 6] and references therein. This amounts to a stepwise normalization process

by averaging over the fast Keplerian angles of the system, leaving us with the so-called secular

system, which is related to the the slow evolutions of the Keplerian ellipses. The term ‘stepwise’

refers to a formal series expansion in the small parameters of the system. The normalizing process

involves symplectic co-ordinate transformations and also the reduction of the rotational symme-

try respects the symplectic structures at hand. After averaging and reduction, certain, so-called

resonant terms remain, that constitute the secular system. The resulting truncated normal form

approximation admits a second SO(2,R)–symmetry, where we speak of the resonant SO(2,R)–

symmetry to distinguish it from the rotational SO(2,R)–symmetry.

The reduction of the resonant SO(2,R)–symmetry is from 5 to 4 degrees of freedom. The desired

De Sitter periodic orbit after this reduction becomes a (relative) equilibrium, which turns out to

be stable (elliptic). Upon reconstructing to 5 degrees of freedom we indeed obtain a family of

periodic orbits, parametrised by the generator of the 1:2:4 resonance. When reconstructing to

6 degrees of freedom the superposition with an over-all rotation makes this a 2–parameter family

of conditionally periodic orbits (with 2 frequencies). To overcome this a motion is called periodic

if it is so in any rotating frame.
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1.3 The De Sitter periodic orbits

Following De Sitter we first only consider Jupiter and the inner three satellites Io, Europa and

Ganymedes with their orbital 1:2:4 resonance, later adding Callisto, the orbital period of which

is not close to any lower resonance of the inner three. It turns out that the inner 1:2:4 resonance

greatly affects the dynamics of the entire system. Summarizing from [15, 29] we have the following

result.

Theorem 1 (De Sitter’s periodic orbits). In the 4–body problem Jupiter-Io-Europa-Ganymedes

there exists a family of linearly stable periodic orbits for which the orbital frequencies are in

1:2:4–resonance.

In the sequel the orbits in Theorem 1 are referred to as the De Sitter periodic orbits.

Remarks.

- In the SO(2,R) × SO(2,R)–symmetric approximation, the De Sitter periodic orbits pass

through a collinearity, compare with Figures 2 and 4.2 To establish the existence in the

full system the Implicit Function Theorem is used; for more general continuation methods

see Poincaré [27].

- To establish the linear stability of the De Sitter periodic orbit also its normal linear part has

to be examined.

- It turns out that for a qualitative explanation of De Sitter’s theory [29, 30, 31] in the resonant

normalization mentioned before only one normalizing step has to be performed. For a dis-

cussion and an update of this theory, comparing this with the effects of the 2:5–resonance of

Jupiter and Saturn and with the influence of the Sun, see [15].

1.4 Librations

We now sketch our results on the motion of the Galilean satellites. In the 4–body problem Jupiter-

Io-Europa-Ganymedes we consider the normal linear part of the family of De Sitter periodic orbits

as found in Theorem 1, and the Lagrangean tori that are excited by the corresponding normal

modes, compare with [13, 23]. These tori carry the librational motions we are looking for.

Theorem 2 (The 4–body problem). In the 4–body problem Jupiter-Io-Europa-Ganymedes, there

is a large measure Cantor set of sufficiently small eccentricities and a large measure Cantor set of

sufficiently small masses of the satellites for which the following is true. The system admits a large

measure Cantor union of Lagrangean invariant tori in a small neighbourhood of the family of De

Sitter periodic orbits.

For the 5–body system also the far-away-moon Callisto is included, which provides a more com-

plete theory of the Galilean satellites. Callisto moves close to a circular orbit, which gives an

2This is an Ansatz by Poincaré.
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extra period to the system. In fact, this orbit, together with the De Sitter periodic orbit of Theo-

rem 1, gives rise to a normally elliptic, isotropic invariant 2–torus. From observations it is known

that there are no low order resonances between the Callisto–frequency and other frequencies. The

normal modes of the isotropic 2–tori again excite Lagrangean tori that carry librational motions.

Theorem 3 (The 5–body problem). In the 5–body problem Jupiter-Io-Europa-Ganymedes-Callisto,

there is a large measure Cantor set of sufficiently small eccentricities and a large measure Cantor

set of sufficiently small masses of the satellites for which the following is true. The system admits a

large 2–dimensional Hausdorffmeasure Cantor union of isotropic invariant 2–tori superposing the

family of the De Sitter periodic orbits with the periodic motion of Callisto. Furthermore the system

admits a large measure Cantor union of Lagrangean invariant tori in a small neighbourhood of

this family of 2–tori.

Both Theorems 2 and 3 were proven in [15], based on methods of Kolmogorov–Arnold–Moser

(kam) theory, largely inspired by [1, 5, 16, 17, 34]. In this paper we present the proofs of both

theorems as an adaptation of one central parametrised isotropic Hamiltonian kam-theorem that

keeps track of the deck group of the covering space. This central theorem is a direct application

of [12, 22, 25], also see [10, 11]. Moreover we incorporate the excitation theory as described

in [11, 13, 23] and we generalize [1, 16, 20] to deal with different time scales.

Remarks.

- The inner three motions in Theorem 3 remain close to the 1:2:4–resonance, while the out-

ermost orbit is almost circular with a frequency that is strongly non-resonant with the inner

three.

- The large measure Cantor sets in the above formulations arise from the fact that dense sets

of resonances have to be avoided. In fact we impose Diophantine conditions of the internal

and normal frequencies. In our approach parameters are needed for the necessary control of

these frequencies.

- The parameters used are the masses of the satellites, one of the eccentricities and the action

variable3 conjugate to the periodic De Sitter motion. We note that the latter are in fact

distinguished parameters, given by phase space variables.

- The various large measure Cantor sets in the above formulation are all intersections of one

large measure Cantor set in the product of phase space and parameter space.

1.5 On KAM theory

The results concern the persistence of the De Sitter periodic orbit [29, 30, 31] and the 2–dimensional

torus obtained by superpostion with the motion of the fourth moon Callisto. These lower dimen-

sion tori of dimension 1 and 2, respectively, turn out to be (normally) elliptic. For the details also

3For the 5–body problem in Theorem 3 we also use the action variable conjugate to Callisto’s periodic motion.
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see [15]. The main result of the present paper concerns the persistence of Lagrangean tori which

follows by excitation of the corresponding normal modes. Our perturbation analysis takes place

in the presence of multiple time scales — as is often the case in celestial mechanics. We seize the

occasion and formulate the necessary kam theorem on its own right, simultaneously generalising

the results of [11, 23] and [1, 20]; for details see § 4.

Important is the splitting of the system in an integrable part and a small perturbation. A first can-

didate for the integrable part would be the superposition of three (or four) independent Keplerian

systems, but a better integrable approximation is obtained by averaging along the De Sitter peri-

odic orbit § 3. In our case we can normalize up to arbitrarily high order N. For application of the

central kam theorem then two conditions play a role.

The first of these is a Diophantine condition to avoid a dense set of resonances. This leaves us with

a set that locally is the product of a Cantor set with a closed half line. Here a gap-parameter γ > 0

estimates the measure of the union of the resonance gaps. In the condition of the kam theorem,

this gap-parameter γ turns out to determine the size of the perturbation, see § 4.3. The game then

is to choose γ as small as possible given this perturbation size, since this automatically gives good

estimates on the measure of the surviving kam tori, see § 4.5.

The second condition requires non-degeneracy of a frequency mapping, ensuring that the Dio-

phantine geometry is properly transported from frequency space into the product of phase space

and parameter space, see § 4.2. This condition is a generalisation of the Kolmogorov condition

that the frequency mapping is a local diffeomorphism.

1.6 Outline

The kam theory mentioned in §§ 1.4 and 1.5, which forms the mathematical background of The-

orems 2 and 3 is the main result of this paper. These theorems will be precisely formulated as

Theorems 9 and 10, respectively. Both theorems are proven in § 5 using our general parametrised

kam Theorem 7. Also we have to check all the necessary conditions for application to the libra-

tional motions.

The first sections of the sequel quote from [15] as far as necessary for the application of our kam

theory. First, in § 2 we present a Newtonian model for the 4–body problem, and we give an

appropriate perturbative setting for this model. In § 3 we briefly touch on the existence of the De

Sitter periodic orbits, and their linear stability. Then, in § 4 the kam theory is developed, while in

§ 5 this theory is applied to the librations in the Galilean 4– and 5–body problem.

2 A Newtonian description of the 4–body problem

We consider the 4–body problem of Jupiter–Io–Europa–Ganymedes in the Newtonian setting, giv-

ing a Hamiltonian formulation. Only in § 5.2 do we consider the 5–body problem with the far

away satellite Callisto added.
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2.1 Co-ordinates for the 4–body problem

We consider the 4–body problem with masses m0,m1,m2,m3. Here the index 0 refers to Jupiter

and the indices 1, 2, 3 to the satellites Io, Europa and Ganymedes, respectively. We follow [15]

and replace our 4–body problem by 3 bodies in a central force field, denoting by q̃1 the position

of Io with respect to Jupiter, by q̃2 the position of Europa with respect to the centre of mass of the

former two and by q̃3 the position of Ganymedes with respect to the centre of mass of the former

three. Moreover let (p̃1, p̃2, p̃3) be the conjugate momenta.

We split the kinetic energy T into T = T0 + T1 with

T0 =
1

2

3∑

i=1

‖p̃i‖2(
1

mi

+
1

m0

) and T1 =
∑

1≤i< j≤3

p̃i · p̃ j

m0

while the potential energy U = U0 + U1 splits into

U0 = −
3∑

i=1

m0mi

r0i

and U1 = −
∑

1≤i< j

mim j

ri j

where the ri j denote the mutual distances between the 4 bodies. In this way the Hamiltonian F

splits as the sum F = FKep + Fpert of a Keplerian and a perturbing part

FKep = T0 + U0

Fpert = T1 + U1 .

Note that both FKep and Fpert depend on positions and momenta only via inner products and there-

fore are invariant under the SO(2,R) action that rotates the plane around the origin (i.e. around the

centre of mass); we call this the rotational SO(2,R)–symmetry of the system. This SO(2,R) ac-

tion is generated by the total angular momentum whence Noether’s Theorem [3, 5] ensures that

the total angular momentum is a conserved quantity.

2.2 Introduction of a small parameter

To account for the fact that the masses m1,m2 and m3 are much smaller than the Jovian mass m0

we introduce a small parameter µ as the order of the mass ratios and require

m1

m0

,
m2

m0

,
m3

m0

∼ µ ,

where we use ∼ to express that both members of the equation are of the same order. Since the

velocities are considered to be of order 1, the same ratios are used for the momenta, resulting in

m1 = µm̄1,m2 = µm̄2,m3 = µm̄3, p̃1 = µp̄1, p̃2 = µp̄2, p̃3 = µp̄3.

It follows that FKep ∼ µ and Fpert = O(µ2). This induces a scaling of the symplectic form by taking

(p̄1, p̄2, p̄3, q̃1, q̃2, q̃3) as a set of Darboux co-ordinates. To keep the same Hamiltonian vector field

we rescale the Hamiltonian function by µ−1. By abuse of notation we now may write FKep ∼ 1 and

Fpert = O(µ).
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Figure 3: Mean anomaly ℓ and argument g of the pericenter of a Keplerian motion.

2.3 First order approximating system

We sketch the set-up of our perturbation problem, for more details referring to § 3. The Hamilto-

nian system generated by FKep has 6 degrees of freedom, which leads to 6–dimensional Lagrangean

invariant tori. The dynamics consists of three independent elliptic motions of the satellites Io, Eu-

ropa and Ganymedes. This means that the 6–tori are foliated into invariant 3–tori. Moreover, the

1:2:4–resonance foliates the 3–tori into invariant 2–tori. Recall that we use the name De Sitter

periodic orbit for the motion on these 2–tori.

In order to get candidates for the De Sitter periodic orbits from these periodic orbits (also using the

Implicit Function Theorem), we average the perturbation Fpert along these periodic orbits (or, in

other words, over the 1:2:4–resonance), for details see § 3. This procedure leads to a function Fres

consisting only of resonant terms. We shall truncate at first order in the eccentricities, considering

the latter as small parameters. Finally, after performing a symplectic change of co-ordinates, we

shall end up with

F = FKep + Fres + Frem,

where FKep ∼ 1, Fres ∼ µe and the remainder Frem = O(µe2)+O(µ2). Here e is small and dominates

the eccentricities e1, e2, e3. For more details see § 3.3.

2.4 The resonant part of the perturbing function

For the three inner satellites Io, Europa and Ganymedes, FKep gives Keplerian ellipses on which

q̃1, q̃2, q̃3 move. Let ℓ1, ℓ2, ℓ3 and g1, g2, g3 be the corresponding mean anomalies and arguments of

the pericentres, respectively.
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Remarks.

- The mean anomaly of the particle along the ellipse is the angle ℓ = 2πA/B, where B is the

area of the ellipse and A the area swept by the particle, counting from the pericentre. By

Kepler’s second law, this angle is proportional to the time parametrisation of the motion.

- The argument of the pericenter is the angle that the main axis of the Keplerian ellipse makes

with a given horizontal direction. See Figure 3.

Note that on a deleted neighbourhood of the circular motions all of this is well-defined. To study

things near these cicular motions, in the sequel scalings are used. From Arnold et al. [5] we recall

that the variables ℓ1, . . . , g3, together with the semi major axes a1, a2, a3 and the eccentricities

e1, e2, e3 constitute a set of regular co-ordinates in such a deleted neighbourhood in the phase

space.

As announced in § 2.3, in order to find candidates for the De Sitter periodic solution, we average

the function Fpert over the fast Keplerian angle and truncate at first order in the (small) eccentricities

e1, e2, e3. Following [15, 29, 30, 31] we so obtain

Fres =
m1m2

a2

{
Ā e1 cos(ℓ1 − 2ℓ2 + 2g1 − 2g2) − B̄ e2 cos(ℓ1 − 2ℓ2 + g1 − g2)

}

+
m2m3

a3

{
Ā e2 cos(ℓ2 − 2ℓ3 + 2g2 − 2g3) − B̄ e3 cos(ℓ2 − 2ℓ3 + g2 − g3)

}
+ C̄,

for the resulting normalized part of Fpert. Here Ā and B̄ are two functions of the semi major axes

ratio α =
a1

a2

=
a2

a3

given by

Ā = 3
4
α b1

3/2(α) − 1
2
α b3

3/2(α) − α2 b2
3/2(α)

B̄ = 3
4
α b1

1/2(α) + 3
2
α b0

3/2(α) − α2 b1
3/2(α) − 1

2
α b2

3/2(α) .

Indeed, the two semi major axes ratios are necessarily equal at the resonance we are now consid-

ering: as Io versus Europa and Europa versus Ganymedes are both in 1:2 resonance, the two semi

major axes ratios have to be the same by Kepler’s third law. Moreover

C̄ = C̄(m0,m1,m2,m3, a1, a2, a3)

is a certain constant (depending only on the masses and the semi major axes, i.e. independent of

ℓ and g) which therefore is ignored in the sequel. For the Laplace coefficients b
(k)
s (α), s = 1

2
, 3

2
we

refer to [15]. In the sequel, we shall restrict to Ā > 0, B̄ > 0.

3 Resonant periodic orbits and a covering space

Recall that F = FKep + Fres + Frem, where Frem = O(µe2 + µ2), is invariant under the rotational

SO(2,R) action whence XF can be reduced from 6 to 5 degrees of freedom. One-parameter fam-

ilies of periodic orbits of the truncated normal form FKep + Fres can be continued to XF using the
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Figure 4: The 16 possible collinear configurations of the periodic orbits. The outer ellipse (of

Ganymedes) and its starting point are kept fixed, the changes are both apocentres and starting

points of both inner ellipses (of Europa and Io).

Implicit Function Theorem. Normalization introduces the resonant SO(2,R)–symmetry whence

the truncated system can be further reduced to 4 degrees of freedom where the periodic orbits are

determined by critical points of FKep + Fres and ultimately by critical points of Fres, see [15].

For studying critical points of Fres, it is of importance that the Fourier series of Fres only con-

tains cosines, which suggest to search for collinearities of the three satellites when simultaneously

passing through their peri- or apocentres.4 By the rotational SO(2,R)–symmetry we only have to

consider orbits of XFres
passing through the points with

(ℓ1, ℓ2, ℓ3, g1, g2, g3) = (0 or π, 0 or π, 0 or π, g3 or g3 + π, g3 or g3 + π, g3) ,

see Figure 2. Introducing the resonant angles δ1 = ℓ1 − 2ℓ2, δ2 = ℓ2 − 2ℓ3, we find the 16 different

cases

(δ1, δ2, η1 := g1 − g2, η2 := g2 − g3) = (
π

2
± π

2
,
π

2
± π

2
,
π

2
± π

2
,
π

2
± π

2
) (1)

4Earlier in this paper, we referred to this assumption as Poincaré’s Ansatz.
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to consider. We code these cases by D+,+,+,+,D+,+,+,−, . . ., where the subscript exactly denotes the

±–signs in (1), compare with Figure 4.

We conclude that if for the arguments of the pericenters we have g1 = g2 = g3 the function

Fres has a critical point. This implies that for sufficiently small µ the system generated by F =

FKep+Fres+Frem has a periodic orbit passing close to a collinearity. Moreover the normal dynamics

of such a solution is determined by the corresponding Hessian of Fres.

3.1 Reduction of the rotational symmetry

We recall that the rotational SO(2,R)–symmetry is related to the conservation of the total angular

momentum. Our aim is to reduce this symmetry. To this purpose we use symplectic Delaunay

co-ordinates (Li, ℓi,Gi, gi), i = 1, 2, 3, defined by



Li = µi

√
Mi

√
ai circular angular momentum

ℓi mean anomaly

Gi = Li

√
1 − e2

i
angular momentum

gi argument of pericentre .

(2)

Here the lower-case letters stand for angles, while

µi =
m0m̄i

m0 + µm̄i

, Mi = m0 + µm̄i,

compare with Figure 3.

One of the most important tools now consists of the transformation that co-rotates with the pure

1:2:4–resonance. In fact, we transform the system (2) symplectically to the co-ordinate system

(D1,D2,D3, δ1, δ2, δ3, Z1, Z2, Z3, η1, η2, η3) by



D1 = L1, δ1 = ℓ1 − 2ℓ2,

D2 = 2L1 + L2, δ2 = ℓ2 − 2ℓ3,

D3 = 4L1 + 2L2 + L3, δ3 = ℓ3,

Z1 = G1, η1 = g1 − g2,

Z2 = G1 +G2, η2 = g2 − g3,

Z3 = G1 +G2 +G3, η3 = g3 .

(3)

This transformation, in fact, consists of two independent parts. The upper three lines correspond

to co-rotation with the purely resonant part and are dealt with in § 3.2. The lower three lines allow

the reduction from 6 to 5 degrees of freedom since the angle η3 = g3 becomes cyclic [3], due to

the conservation of total angular momentum Z3. The corresponding symplectic reduction of the

rotational SO(2,R)–symmetry is thus achieved by fixing Z3 and ignoring the variable η3.
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3.2 Covering and deck symmetry

The change of variables (3) corresponds to a covering mapping Π : T6 × R6 −→ T6 × R6, that is

built up as follows. We emphasize the covering that takes place in the first three lines of (3).

First, in the angular directions (3) gives rise to the mappings

Π1 : (R/2πZ) × (R/4πZ) × (R/8πZ) −→ (R/2πZ) × (R/2πZ) × (R/2πZ) , (4)

(δ3, δ2, δ1) 7→ (ℓ3, ℓ2, ℓ1) := (δ3, δ2 + 2δ3, δ1 + 2δ2 + 4δ3)

mod (2πZ)

which is multiple-to-one, and

Π2 : (R/2πZ) × (R/2πZ) × (R/2πZ) −→ (R/2πZ) × (R/2πZ) × (R/2πZ) , (5)

(η3, η2, η1) 7→ (g3, g2, g1) := (η3, η2 + η3, η1 + η2 + η3)

mod (2πZ)

which is an automorphism of the 3–torus.

For the corresponding actions we simply get the linear automorphisms

Π3 : R3 −→ R
3 (6)

(D1,D2,D3) 7→ (L1, L2, L3) := (D1,D2 − 2D1,D3 − 2D2)

and

Π4 : R3 −→ R
3 (7)

(Z1, Z2, Z3) 7→ (G1,G2,G3) := (Z1, Z2 − Z1, Z3 − Z2) .

Remark. The total transformation then is Π = (Π1×Π2)× (Π3 ×Π4). Note that this transformation

combines two independent transformations (Id × Π2) × (Id × Π4) and (Π1 × Id) × (Π3 × Id). The

first of these has been detailed at the end of § 3.1. As said before, our focus now is on the second

of these.

To understand the covering mapping Π1 better, we consider the deck transformations

∆1,2 : (R/2πZ) × (R/4πZ) × (R/8πZ) −→ (R/2πZ) × (R/4πZ) × (R/8πZ)

defined by

∆1(δ3, δ2, δ1) = (δ3, δ2 − 2π, δ1) and ∆2(δ3, δ2, δ1) = (δ3, δ2, δ1 − 2π) . (8)

The following then is immediate.

Proposition 4 (Deck group). With the above definitions we have
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- Π1 ◦ ∆ j = Π1, for j = 1, 2, which expresses that the ∆ j are deck transformations,

- Moreover

Λ = 〈∆1,∆2 | ∆2
1 = Id,∆4

2 = Id, ∆1 ◦ ∆2 = ∆2 ◦ ∆1〉 � Z2 × Z4

is the deck group of the covering Π1 .

The mapping Π is a covering, which only in the δ–direction is multi-to-one. Therefore the deck

group in all the other directions is trivial. By abuse of notation we indicate the total deck group

also by Λ, and similarly the deck transformations ∆ ∈ Λ.

Referring to e.g. [4, 9, 14], we recall that functions H, vector fields X, mappingsΦ, etc. on the base

space M = {ℓ, g, L,G} are lifted to invariant functions H̃, equivariant vector fields X̃, equivariant

mappings Φ̃, etc. on the covering space M̃ = {δ, η,D, Z}, i.e. with

H̃ ◦ ∆ = H̃, ∆∗X̃ = X̃, ∆ ◦ Φ̃ = Φ̃ ◦ ∆ (9)

for all ∆ ∈ Λ. Conversely, any function, vector field, mapping, etc. on M̃ only projects down to a

similar object on M when the equivariance relation (9) holds.

In the sequel we shall apply both averaging and kam theory on the covering space M̃ = {δ, η,D, Z};
in both cases we have to take these equivariance considerations into account.

3.3 Normalization

On the covering space T6 × R6 we now perform a standard normalization process, based on the

infinitesimal action of the Keplerian vector field

XFkep
= ν3∂δ3

, (10)

for µ = 0. The corresponding transformations iteratively normalize the power series in µ and e,

where normal means independence of the fast angle δ3 = ℓ3. Here e measures the size of the ec-

centricities e1, e2, e3. This induces the resonant SO(2,R)–symmetry of the truncated normal form,

where δ3 becomes a cyclic variable. The normalizing transformations respect both the sympletic

form and the deck group Λ as well as the scaling that are introduced later. Such considerations go

back at least to Poincaré [26], also compare with [5, 6].

Remarks.

- In another language we speak of averaging over the fast angle δ3, where δ1 and δ2 are semi-

fast. Near the 1:2:4–resonance δ3 = ℓ3 is the only fast angle.

- For the present purposes it is sufficient to carry out only the first step of the normal form

iteration, but for application of kam theory later on we use N normalizing steps.
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- In terms of Poisson brackets the infinitesimal action (10) is generated by the function Fkep

for µ = 0. The action leads to an adjoint operator Ad : H 7→ {FKep,H}, which gives a direct

sum splitting

ker Ad ⊕ im Ad

of the space. Normalization then amounts to removing all terms in the image, where the

remaining terms in the kernel exactly are the resonant symmetric ones.

Here we only formulate the results of this procedure, for details referring to [15, 29].

Domains in the covering space. We assume that 0 < a1 < a2 < a3, 0 < e1, e2, e3 ∼ e ≪ 1, where

e is a positive constant considered as small, and such that

a1(1 + e)

a2(1 − e)
< 1,

a2(1 + e)

a3(1 − e)
< 1.

guaranteeing that the three elliptic orbits are bounded away from each other.

This gives an open subset P̃ ⊆ M̃. In terms of the co-ordinates (δ, η,D, Z), we now have that the

components of D and Z are positive.

We choose (D0
1
,D0

2
,D0

3
) ∈ R3

+ such that the 9–dimensional set

D̃ = {(δ, η,D, Z) ∈ P̃ : D1 = D0
1,D2 = D0

2,D3 = D0
3}

contains all 1:2:4–resonant Keplerian motions in P̃. Consider a neighbourhood Ñ ⊆ P̃ of D̃, which

is sufficiently small in terms of |µ|. We now have the following result proven in [15].

Theorem 5 (Normal form). Assume that all functions are real analytic in their arguments. Then

there exists a Λ–equivariant, near-identity, real-analytic symplectic transformation Φ : Ñ →
Φ(Ñ), such that

F ◦ Φ = FKep + Fres + Frem.

On Ñ the functions Fres ∈ ker Ad and Frem have the following properties.

- Fres =
1

2π

∫ 2π

0
Fpert d δ3 is the truncation at 1st order of the eccentricities, and

- Frem = O(µe2) + O(µ2).

Remarks.

- In a complex extension of Ñ in the supremum norm we have |Φ − Id| = O(µ).

- The normalized Hamiltonian function now reads

FKep(D1,D2,D3) + Fres(D1,D2,D3, δ1, δ2, Z1, Z2, η1, η2; Z3) + O
(
µe2

)
+ O(µ2),

defined on a subset of T5 × R5 where, due to the rotational symmetry, Z3 acts as a (distin-

guished) parameter. Note that truncating to FKep + Fres turns δ3 into a cyclic variable and

thus D3 into a (distinguished) parameter as well.
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3.4 Relative frequencies of the pericentres

In the sequel we need several details on the relative frequencies as these appear in the reductions.

From [15, 29] we quote that the angles η1 = g1 − g2 and η2 = g2 − g3 have frequencies

ν1 =
∂Fres

∂Z1

= −2
3
√

2Ā cos(δ1 + 2η1)e2m2 + 2B̄ cos(δ1 + η1)e1m1 −
3
√

2Ā cos(δ2 + 2η2)e1m3√
m0e1e2

,

ν2 =
∂Fres

∂Z2

=
2B̄ cos(δ1 + η1)e3m1 − 2

3
√

2Ā cos(δ2 + 2η2)e3m3 − 2B̄ cos(δ2 + η2)e2m2√
m0e2e3

,

called relative frequencies of the pericentres in XFKep+Fres
. They are differences of the frequencies

of g1, g2 and g3

νg1
= −2

3
√

2Ā cos(δ1 + 2η1)m2√
m0e1

,

νg2
=

2B̄ cos(δ1 + η1)m1 − 2
3
√

2Ā cos(δ2 + 2η2)m3√
m0e2

,

νg3
=

2B̄ cos(δ2 + η2)m2√
m0e3

.

As explained in § 1.2, after reduction of both the rotational and the resonant SO(2,R)–symmetry,

we end up in 4 degrees of freedom, where we have to look for relative equilibria in order to find

periodic orbits of the 4-body problem at hand.

Equilibria. These equilibria occur as the critical points of the function Fres as obtained in the

Normal Form Theorem 5. Following [15, 29] we put

ν1 = ν2 = 0 , (11)

in order to find the ‘simple’ solutions under Poincaré’s Ansatz. According to the considerations

of [29, pp. 10-12] regarding the signs of νg1
, νg2

, νg3
, this leads only to the two families

E−,−,+,+ (i.e. [29], Case (6)) and E+,+,+,+ (ı.e. [29], Case (16))

if no further conditions are put on the masses. For the remaining cases we introduce the quantity

Q̄ =
3
√

2Ām̄3 − 2B̄m̄1,

which has to be non-zero since νg2
, νg1

and νg3
are non-zero. It follows that for Q̄ > 0, also for

E−,−,−,+(i.e. [29], Case (2)) and E+,+,−,+(i.e. [29], Case (12)) ,

equation (11) is satsified. Moreover, for the case where Q̄ < 0, for

E−,+,+,−(i.e. [29], Case (7)) and E+,−,+,−(i.e. [29], Case (13) ),

equation (11) is satisfied. See [29, p.10]. In all of these cases, this gives a one-parameter family

of eccentricities (e1, e2, e3) (parametrised by one of the eccentricities, e.g. by e2), such that the two

relative frequencies ν1, ν2 are zero.
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Case Sign of Q̄ Sign of Hessian determinant

E−,−,+,+ irrelevant positive

E+,+,+,+ irrelevant positive

E−,−,−,+ positive negative

E+,+,−,+ positive negative

E−,+,+,− negative negative

E+,−,+,− negative negative

Table 1: The 6 families of relative equilibria, the sign of Q̄ =
3
√

2Ām̄3 − 2B̄m̄1 related to their

existence and sgn det D2Fres related to application of the Implicit Function Theorem.

Periodic orbits. In Table 1 this information is summarized: Given the appropriate signs of Q̄

there exist 6 families of relative equilibria of Fres with corresponding periodic orbits

D−,−,+,+,D+,+,+,+,D−,−,−,+,D+,+,−,+,D−,+,+,−,D+,−,+,−

of FKep + Fres, which are candidates for De Sitter periodic orbits of F = FKep + Fres + Frem. Indeed,

for all candidates the continuation from FKep+Fres to F = FKep+Fres+Frem can be carried out with

help of the Implicit Function Theorem for sufficiently small µ and e, since by the Normal Form

Theorem 5

Frem = O(µe2) + O(µ2).

This is due to the fact that the Hessian matrices D2Fres have non-zero determinants. To gain more

insight in the normal linear dynamics we have to extend this study further.

3.5 Normal linear dynamics of the periodic orbits

Note that for the study of the normal linear dynamics of the periodic orbits D−,−,+,+, D+,+,+,+,

D−,−,−,+, D+,+,−,+, D−,+,+,− and D+,−,+,− we only have to consider the system generated by FKep+Fres.

In that case we may again reduce the resonant SO(2,R)–symmetry to 4 degrees of freedom and di-

rect our attention to the (relative) equilibria E−,−,+,+ and E+,+,+,+, etc. Recall that the corresponding

8–dimensional phase space has co-ordinates (D1,D2, δ1, δ2, Z1, Z2, η1, η2) with small µ.

Remark. Note that FKep and Fres do not appear in the same magnitude of µ. This is the reason for

the proper degeneracy of the system. Application of the Implicit Function Theorem in fact becomes

simpler since the different time scales make the Hessian effectively a block-diagonal matrix. This

simplification carries over when replacing the Implicit Function Theorem by kam theory.

The normal linear behaviour is determined by the matrixL, obtained from the Hessian of FKep and

the Hessian of Fres by

L = J · (D2FKep + D2Fres)

where the matrix
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J =



0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0



.

corresponds to the symplectic structure. It follows that L has the form

L =



0 0 µ2e 0 0 0 µ2e 0

0 0 0 µ2e 0 0 0 µ2e

µ−1 µ−1 0 0 0 0 0 0

µ−1 µ−1 0 0 0 0 0 0

0 0 µ2e 0 0 0 µ2e 0

0 0 0 µ2e 0 0 0 µ2e

0 0 0 0 e−3 e−3 0 0

0 0 0 0 e−3 e−3 0 0



, (12)

where we indicate the entries only by their orders in µ and e, for details see [15]. A direct obser-

vation teaches us that L has eigenvalues of the orders
√
µe and µ/e. For the following refinement

of Theorem 1 also see [15].

Theorem 6 (De Sitter [29]). In the above circumstances the following is true.

1. D−,−,+,+ is the only stable family of periodic orbits in the system generated by FKep+Fres , for

sufficiently small values of µ and e.

2. This family can be continued as an elliptic periodic solution to the full system generated by

FKep + Fpert .

Recall that in (11) we had put ν1 = 0 and ν2 = 0 to find D−,−,+,+. From these equations we

furthermore obtain

e1 =
2 · 25/6Ām̄2e2

2
√

2B̄m̄1 + 25/6Ām̄3

and e3 =

√
2B̄m̄2e2

2
√

2B̄m̄1 + 25/6Ām̄3

.

From this it follows that in Theorem 6 we may well replace the small constant e by the small

parameter e2.

Remarks.

- The continued stable periodic orbits thus provide a possible explanation of the real evolution

of the system Jupiter-Io-Europa-Ganymedes, which was the base of De Sitter’s theory of the

Galilean satellites [30, 31].
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- One question is whether for Q̄ = 0 the families undergo bifurcations. This value is outside

the relevant domain of parameters, but still may provide us with an organising centre, visible

in the dynamics. Compare with Broer-Hanßmann-Hoo-Naudot [7, 10] for examples of such

bifurcations.

- Is the family D−,−,+,+ also stable in the spatial problem? This is an open research question.

4 On Kolmogorov Arnold Moser theory

In this section we develop the Kolmogorov-Arnold-Moser or kam theory for the investigation of

invariant tori near the family of De Sitter periodic orbits D−,−,+,+ found before. This amounts to the

formulation of a general theorem on the persistence of isotropic invariant tori in nearly integrable

Hamiltonian systems, where a discrete group symmetry is preserved. This result goes back to

Huitema [22], also see [12], also see [8]. Similar results were found by Herman (unpublished) and

developed further by e.g. Féjoz [16], also see [17] and Zhao [34]; for historical remarks compare

with [13], p. 312. The entire development heavily rests on Moser [25], particularly on the Lie

algebra aspects therein.

We note that an extra complication in our setting is the presence of different time scales, which

is characteristic for proper degeneracy. First of all the motion in the De Sitter periodic orbit is

fast. The normal dynamics has two more time scales corresponding to the block structure in the

matrix (12). Moreover the motion of Callisto is fast again. A similar kam setting was encountered

in the theory of Arnold [1, 16]. We here have to extend this approach to isotropic lower dimensional

tori.

Lagrangean invariant tori are typically parametrised by the actions conjugate to the toral angles.

The Kolmogorov condition stipulates that the actions map diffeomorphically to the frequencies,

thereby ensuring persistence of most of these tori. For the invariant tori near the De Sitter periodic

orbit, however, it will be important that other parameters of the system, to wit the masses, can be

used to control the frequencies. Fortunately, a general parametrised kam theory was developed by

Broer-Huitema-Sevryuk-Takens and Moser [11, 12, 22, 25], also see Broer-Hanßmann-Sevryuk-

Wagener [8, 13, 21] and references therein. In the sequel we shall apply this parameter dependent

approach to the properly degenerate system at hand.

Recall that a properly degenerate system is a superintegrable system which has more independent

first integrals than required for integrability. In the case of proper degeneracy the flow is never er-

godic on Lagrangean tori but can only be so on lower dimensional isotropic tori. One consequence

of this degeneracy is that part of the perturbation is needed to fulfill the kam non-degeneracy con-

ditions at hand. An advantage, however, is that this leads to multiple time scales, which makes the

check of these non-degeneracy conditions easier, compare with [1, 16, 20].
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4.1 Parametrised KAM theory

Stepping to a somewhat more abstract setting we consider a real analytic system of the form

ẋ = ω(λ) + f (x, y, z, λ) (13)

ẏ = g(x, y, z, λ)

ż = Ω(λ) z + h(x, y, z, λ) ,

with x ∈ Tn, y ∈ Rn, z ∈ R2p and λ ∈ Rs, which is Hamiltonian with respect to the symplectic form

d x ∧ d y + d z2 =

n∑

i=1

d xi ∧ d yi +

p∑

j=1

d z2 j−1 ∧ d z2 j .

Here λ is as an external parameter. In applications the variables y = (y1, y2, . . . , yn) can act as

(distinguished) parameters, but also masses or eccentricities can take the role of parameters. In

vector field form the system (13) is called X and its integrable approximation X̃ then has the form

X̃ = ω(λ)
∂

∂x
+ Ω(λ) z

∂

∂z
, (14)

where the terms f , g and h are considered small in the compact-open topology. The latter is the

topology of local uniform convergence of complex analytic extensions. Note that the integrable

family X̃ has isotropic invariant tori given by the equation z = 0, this is a family of tori parametrised

by y and λ. The aim of this section is to study their persistence as X̃ is perturbed to the vector

field X.

The present properly degenerate situation allows to split up the vector field (14) according to the

time scales. Since the motion of the satellites is fast, the frequency vector ω is of order 1. Recall

that the components of this vector describe the 1:2:4–resonant periodic motion of the inner satel-

lites Io, Europa, Ganymedes and, where applicable, also the periodic motion of Callisto. Therefore

either with n = 1 or n = 2 and thus p = 4 or p = 5, respectively. The matrix Ω ∈ SP(8,R) is

given by (12) with its 2 time scales, of order
√
µe and µ/e. We now shall formulate the relevant

kam theorem for the general case of multiple time scales.

4.2 The perturbation problem, non-degeneracy and time scales

To study persistence we single out one of the isotropic5 tori, say for the values y = y0 and λ = λ0.

For simplicity we translate to y0 = 0 and λ0 = 0.

We assume the matrix Ω(0) to be simple, in particular with no eigenvalue 0. The real analytic

mapping

F : λ ∈ Rs 7→ (ω(λ),Ω(λ)) ∈ Rn × sp(2p,R) (15)

5Recall that in the 4–body problem this torus is a periodic orbit and in the 5–body problem the dimension of the

torus is 2.
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is called the (generalized) frequency mapping. We assume this mapping to be transversal to the

Cartesian product

{ω(0)} × O(Ω(0)) ⊂ Rn × sp(2p,R) ,

whereO(Ω(0)) denotes the orbit ofΩ(0) under the adjoint action of the symplectic group SP(2p,R)

on sp(2p,R).6 We then may assume that Ω(λ) has a Williamson diagonal form [18], with eigenval-

ues of type

±i β, ±α ± i β and ± α ,
of respective numbers nE (purely elliptic), nC (complex hyperbolic) and nR (real hyperbolic), where

necessarily nE+2nC+nR = p. Let β be the nE+nC vector containing all the positive purely imaginary

(parts of the) eigenvalues, the so-called normal frequencies of the isotropic torus. We abbreviate

r = nE+nC . The above non-degeneracy condition often is referred to as the Broer-Huitema-Takens

(bht)-condition. We assemble the data of internal and normal frequencies in the mapping

F̃ : λ ∈ Rs 7→ (ω(λ), β(λ)) ∈ Rn × Rr . (16)

Note that the bht-condition implies that F̃ is a submersion.

Remarks.

- Since we have n internal frequencies it follows that the problem needs s = n+nE+2nC+nR =

n+p parameters for versal unfolding. So even if we let the y–variables act as n (distinguished)

parameters, we still need p further parameters.

- The bht-non-degeneracy for p = 0 boils down to the standard Kolmogorov non-degeneracy

condition for the case of Lagrangean invariant tori.

- In the present case the Lagrangean tori are obtained by excitation of normal modes and this

necessitates the use of external parameters like the masses.

In the present situation of multiple time scales we split the frequency mapping (16) into

F̃ = (F̃1, F̃2, . . . , F̃m) : Rs −→
m∏

j=1

(Rn j × Rr j) . (17)

In this way the values of F̃ turn into

(ω, β) =
(
(ω1, β1), (ω2, β2), · · · , (ωm, βm)

)
,

where we have n j internal frequencies ω j of order ε j and r j normal frequencies β j of the same

order ε j. The orders of magnitudes of time scales are 1 = ε1 ≫ ε2 ≫ · · · ≫ εm > 0. For the

4–body problem we have m = 3 with n = (1, 0, 0) and r = (0, 2, 2) while for the 5–body problem

we have m = 4 with n = (2, 0, 0, 0) and r = (0, 2, 2, 1)

Let us consider the bht-condition and what it means for the splitting (17). First of all when F̃ is

submersive, then so are its components F̃ j. That the latter also implies the former is more involved

and we return to it in § 4.4, also splitting the parameter space Rs.

6This means that F is a versal unfolding of (ω(0),Ω(0)) with respect to the adjoint action of SP(2p,R). For this

terminology also compare with Arnold [2].
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4.3 Diophanticity

It is well-known that in the present perturbation problem a dense set of normal-internal resonances

〈k, ω〉 + 〈ℓ, β〉 = 0

shows up that leads to the notorious small divisor problem. A usual way to overcome this is by

introducing the following Diophantine property. Let τ > n − 1 and γ > 0. We say that the pair of

vectors (ω, β) ∈ Rn × Rr is (τ, γ)–Diophantine if for all k ∈ Zn \ {0} and all ℓ ∈ Zr with |ℓ| ≤ 2 one

has

|〈k, ω〉 + 〈ℓ, β〉| ≥ γ

|k|τ . (18)

The set of all (ω, β) satisfying (18) is denoted by (Rn×Rr)τ,γ. Note that for (ω, β) ∈ (Rn×Rr)τ,γ and

σ ≥ 1 also the scalar multiple σ · (ω, β) is contained in (Rn×Rr)τ,γ, which means that (Rn×Rr)τ,γ is

the union of closed half lines. The intersection of (Rn ×Rr)τ,γ with the unit sphere Sn+r−1 moreover

is a Cantor set and the measure of Sn+r−1 \ (Rn × Rr)τ,γ is of order O(γ) as γ → 0. E.g. compare

with [12]. From now on γ will be referred to as gap-parameter.

In the present situation of multiple time scales there are no low-order resonances between frequen-

cies of different time scales. However, the Diophantine conditions (18) still remain necessary to

exclude high-order resonances and also low-order resonances among frequencies of the same time

scale (in our application it is not true that every frequency has its own time scale).

4.4 KAM persistence

For a precise formulation of the persistence result we need some further specifications. Let Γ ⊂
R

n × Rr be a box with boundaries parallel to the co-ordinate hyperplanes and define

Γτ,γ = Γ ∩ (Rn × Rr)τ,γ .

Finally define

Γγτ,γ = {(ω, β) ∈ Γτ,γ | dist ((ω, β), ∂(Γ)) ≥ γ} ,
observing that the measure of Γ

γ
τ,γ again is full up to order O(γ) as γ→ 0.

In the present case of multiple time scales it is helpful to also split the parameter space into

Γγτ,γ = Γ
γ,1
τ,γ × Γγ,2τ,γ × · · · × Γγ,mτ,γ . (19)

Here we require that the component F̃ j : Γ
γ
τ,γ −→ Rn j × Rr j is not only a submersion, but that the

derivative has maximal rank, already with respect to the variables in Γ
γ, j
τ,γ. If this property holds for

j = 1, . . . ,m, we say that the unperturbed vector field X̃ satisfies the scaled bht non-degeneracy

condition. This condition is sufficient for F̃ to be submersive. Furthermore, this condition is easy

to check in our applications: here multiple time scales actually help to solve our problems.
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Theorem 7 (Main Result). Let X and X̃ be real analytic families of Hamiltonian vector fields as

described above on Tn ×Rn ×R2p ×Γ, so where X̃ is integrable and where Γ = Γ1 ×Γ2 × · · · ×Γm ⊂
R

n × Rr is an open box. Assume that Ω has only simple eigenvalues and that X̃ is scaled bht non-

degenerate. Fixing constants τ > n + nE − 1 and γ > 0, where the gap-parameter γ is sufficiently

small, also take X − X̃ sufficiently small in the compact-open topology. Then there exists a C∞–

diffeomorphism (onto its image)

Φ : Tn × U × V × Γ −→ Tn × Rn × R2p × Γ, (20)

for neighbourhoods U of 0 ∈ Rn and V of 0 ∈ R2p, such that

1. The mapping Φ is skew in the sense that the following diagram commutes.

T
n × Rn × R2p × Γ Φ−→ T

n × Rn × R2p × Γ

↓ ↓

T
n × Rn × Γ −→ T

n × Rn × Γ

↓ ↓

T
n × Γ −→ T

n × Γ

↓ ↓

Γ −→ Γ ;

where vertical arrows denote natural projections and where the horizontal arrows indicate

the relevant components ofΦ. MoreoverΦ is real-analytic in the x variables and maps fibers

in the Rn– and R2p–directions affinely onto fibers;

2. Φ is near the identity in the C∞–topology and preserves the symplectic form dx ∧ dy + dz2.

Moreover, if the vector fields X and X̃ are invariant under a discrete symmetry group Λ,

compatible with the symplectic structure dx ∧ dy + dz2, then the diffeomorphism (20) is

equivariant with respect to Λ ;

3. Restricted to Tn × {0} × {0} × Γγτ,γ the mapping Φ conjugates X̃ to X, i.e.,

Φ∗(X̃) = X. (21)

The restriction Φ∗|Tn×{0}×{0}×Γγτ,γ also preserves the normal linear dynamics of these invariant

tori.

4. The nE elliptic normal modes give rise to a Cantor family of invariant (n+nE)–tori perturbed

from Tn+nE × {0} × {0} ×Γ ⊆ Tn+nE ×Rn+nE ×R2(p−nE ) ×Γ where the Cantorisation results from

Diophantine conditions of the form (18) with ℓ ∈ Zr restricted to |ℓnE+1| + . . . + |ℓr| ≤ 2 and

|k|τ in the denominator of the right hand side replaced by (|k| + |ℓ1| + . . . + |ℓnE
|)τ.
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Proof. The only problem is to show that the scaled bht-condition implies the bht-condition. This

follows directly from the definitions, and the conclusions 1–3 of the theorem follow directly from

the results in [12, 22]. For conclusion 4 rewrite (13) in the elliptic z–directions in symplectic polar

co-ordinates and apply the first part of the theorem with n replaced by n + nE and p replaced by

p − nE. �

Remarks.

- Observe that the mapping Φ conjugates the unperturbed restriction X̃|Tn×{0}×{0}×Γγτ,γ to a quasi-

periodic subsystem of the perturbation X. Therefore the perturbed tori have the same fre-

quencies as the unperturbed ones. Moreover these tori are close together, since Φ is near the

identity mapping.

- For the case that m = 1 (and Λ = {Id}), the conclusions 1–3 of Theorem 7 reduce to Theo-

rem 6.1 in [12, 22] and Theorem 2.6 in [11]. Note that the extension to Λ–equivariance in

conclusion 2 is not an extra complication as it already follows from Theorem 8.1 in [12, 22],

which uses the Lie algebra approach that goes back to Moser.

- The excitation of normal modes expressed in conclusion 4 can also be applied separately to

any selection of ν ≤ nE elliptic normal modes, compare with [11, 13, 23]. The main ‘com-

plication’ lies in properly assigning the ν modes that have been chosen among the nE elliptic

modes; for instance, the choice to simply excite the first νmodes leads to Diophantine condi-

tions of the form (18) with ℓ ∈ Zr restricted to |ℓν+1|+ · · ·+ |ℓr | ≤ 2 and |k|τ in the denominator

of the right hand side replaced by (|k|+ |ℓ1|+ · · ·+ |ℓν|)τ. This leads to (nE
ν ) families of (n+ ν)–

tori, i.e. the whole ramified torus bundle near the invariant n–tori gets Cantorized. The proof

remains the same.

- Excitation of normal modes behaves well with respect to different time scales as normal

frequencies β j of time scale ε j are merely turned into internal frequencies of that same time

scale.

- Theorem 7 can also be formulated and proven for C∞–vector fields or even for vector fileds of

finite (but sufficiently high) differentiability. In fact, real analyticity allows to improve The-

orem 7 by replacing the Diophantine conditions by Bryuno conditions and by Nekhoroshev-

like estimates on the remainder of the Birkhoff normal form. The latter allows for estimates

that are exponentially small in the distance to the initial n–tori for both the portion of nearby

invariant tori of dimensions n + ν in the perturbed system and, in the normally elliptic case

p = r = nE, for the inverse of the (Arnold) diffiusion time for initial conditions not on

invariant tori, see [23].

- The formulation of Theorem 7 is kept in the style of [11, 12, 22], also see [8], but its formula-

tion can be easily adapted to the case with multiple eigenvalues [10]. In particular the linear

theory of the quasi-periodic Hamiltonian Hopf bifurcation can be covered, for the non-linear

theory see [7, 21].
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- For the case that p = 0 (and Λ = {Id}), Theorem 7 reduces to the special case of Theo-

rem (Main Result) in [20] where only the lowest order derivatives are used; also see [34,

Example-Condition 5.3]. If moreover m = 2, then this is Arnold’s Theorem [1, 16].

4.5 Comments on estimates

We describe the smallness condition on X − X̃ in Theorem 7. A neighbourhoodU in the compact-

open topology can be expressed in terms of the supremum norm on compacta of holomorphic

extensions of the real analytic components of the vector fields X and X̃, extended into a complex

domain O ⊆ (Cn/Zn) × Cn × C2p × Cs. Indeed, there exists a constant δ > 0, independent of the

gap-parameter γ in (18), such that X − X̃ ∈ U if and only if the estimates

| f |O < γδ, |g|O < γδ2 and |h|O < γδ2 (22)

hold. Here f , g and h are the component functions of X − X̃, compare with (13). This means that

one chooses the gap-parameter γ in dependence of the actual size of the perturbation. For instance,

if after normalization the sizes | f |O, |g|O and |h|O of the nonlinear terms are made smaller, we can

choose γ smaller as well. This is good for the measure theoretic estimates.

Remark. Since Φ is a near-identity diffeomorphism, the measure theoretic estimates of the un-

perturbed situation are largely maintained. To be precise, the union of the perturbed, X–invariant

n–tori project down to Γ onto a set of full measure up to order γ as γ → 0. In particular, in phase

space the quasi-periodic (n+nE)–tori acummulate with Hausdorff density 1 on the invariant n–tori.

The present situation of multiple time scales allows to relax the smallness condition on X − X̃ a bit,

not letting the smallest part of the unperturbed X̃ dictate the required smallness of the perturbation.

Indeed, splitting (13) according to the time scales 1 = ε1 ≫ ε2 ≫ · · · ≫ εm > 0 we may

replace (22) by

| f j|O < ε jγδ, |g j|O < ε jγδ
2 and |h j|O < ε jγδ

2 (23)

for j = 1, . . . ,m.

4.6 Comments on parameter dependence

We formulated Theorem 7 for vector fields that explicitly depend on external parameters. These

parameters are used to control both the internal and normal frequencies of the invariant tori. If only

internal frequencies have to be controlled, one can always resort to the actions y conjugate to the

toral angles x. This is taken care of by localisation y = yloc + κ, for details see [11, 12]. In this way

the actions y turn into distinguished parameters κ. However, when also normal frequencies have to

be controlled one meets the so-called ‘lack-of-parameter’ problem.

One possible solution for the ‘lack-of-parameter’ problem would be to invoke Rüssmann–like con-

ditions involving higher derivatives of the frequencies with respect to the distinguished parameters,

see [11] for details. This is not what we plan to do in this paper.
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Instead, in the application to the 4– and 5–body problems we use the masses of the Galilean

satellites as external parameters. This not only solves the ‘lack-of-parameter’ problem for the

invariant 2–tori in the 5–body problem, but also serves for persistence of the Lagrangean tori. In

this way we avoid the (heavy) computation of a nonlinear Birkhoff normal form around the De

Sitter periodic orbits and the 2–tori, respectively.

Remarks.

- In the present approach, the Diophantine conditions (18) single out a large measure Cantor

set in the product of phase space and parameter space. For this reason persistence only holds

on a Cantor set in the space of masses. We note that the projection of the former Cantor set

to phase space leads to persistent libration occurring on a set of positive measure.

- When performing higher order Birkhoff normalization we would expect to obtain a result

similar to Theorem 3, but for all (sufficiently small) masses.

5 Application of KAM theory

In the remainder we aim to apply Theorem 7 to the 4–body problem Jupiter-Io-Europa-Ganymedes

first and then to the 5–body problem Jupiter-Io-Europa-Ganymedes-Callisto. In both cases the

rotational SO(2,R)–symmetry not only applies to the unperturbed system (the normal form, which

in addition has the resonant SO(2,R)–symmetry), but also to the perturbed system (the ‘original’

system describing the 4–body resp. 5–body problem). For this reason we do not (yet) reconstruct

to 6 resp. 8 degrees of freedom, but let the perturbation analysis take place in 5 resp. 7 degrees of

freedom. We start giving a sketch of the approach, for details see the next two subsections.

Remarks.

- Both in the 4– and in the 5–body setting we aim to find Lagrangean tori that are excited

by normally elliptic modes: these Lagrangean tori carry the librating motion. In the 4–

body case the excitation occurs from the (normally) elliptic periodic motion D−,−,+,+. In

the 5–body case this role is taken by the normally elliptic isotropic invariant 2–tori. Such

situations are usually referred to as ‘local’ Lagrangean kam Theory, for a description and

further references, see [13], § 8.4. Note that the internal frequencies of the Lagrangean tori

are approximated by the internal and normal frequencies of the excited periodic orbit resp.

invariant 2–torus.

- All Lagrangean tori as well as the isotropic 2–tori persist by Theorem 7. Note that the

persistence of the periodic orbits D−,−,+,+ is established by the Implicit Function Theorem.

- For the 4–body problem a list of the corresponding orders of the frequencies in FKep + FN
res +

FN
rem is itemized in § 5.1, while their non-degeneracy is checked in the pages immediately

thereafter. Here N denotes an appropriate truncation.

- For the 5–body problem similar issues are addressed at the end of § 5.2.
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The 4–body system. As we have seen in § 3, for the 4–body model, after reduction of the planar

rotational symmetry in the plane, the family D−,−,+,+ of De Sitter’s periodic orbits is normally

elliptic. The periodic orbits in the integrable approximation are accumulated by 5–dimensional

Lagrangean tori that provide the librating orbits. These are the local Lagrangean tori as obtained

by excitation of normal modes; we apply Theorem 7 with n = 1 internal frequencies and nE = r =

p = 4 excited frequencies. For the scaled bht non-degeneracy we choose m = 3 and subdivide

n1 = n = 1, r1 = 0, n2 = n3 = 0 and r2 = r3 = 2. The time scales are ε1 = 1, ε2 =
√
µe and

ε3 = µ/e. Note that n = 1 just means that we are exciting the normal modes of a periodic orbit, in

particular we only have to deal with the normal frequencies of § 3.5, i.e. the eigenvalues the matrix

L in (12), and their dependence on the parameters m̄1, m̄2, m̄3 and e2.

The 5–body system. Following the same line of thought, the role of the De Sitter family of

periodic orbits of the inner three satellites D−,−,+,+ is replaced by normally elliptic isotropic 2–

tori, obtained by taking these together with the (almost) circular motion of Callisto. This yields

the integrable appromation X̃ to which we apply Theorem 7 with n = 2 internal frequencies and

nE = r = p = 5 excited frequencies. For the scaled bht non-degeneracy we choose m = 4 and

subdivide n1 = n = 2, r1 = 0, n2 = n3 = n4 = 0, r2 = r3 = 2 and r4 = 1. The time scales are ε1 = 1,

ε2 =
√
µe, ε3 = µ/e and ε4 = µe2. As a result we obtain both persistence of the normally elliptic

2–tori themselves and the the local Lagrangean tori as obtained by excitation of normal modes,

that provide the desired libration for this case.

5.1 Librations in the 4–body setting

As announced above, we now apply Theorem 7 to the 4–body problem Jupiter-Io-Europa-Ganymedes

to detect many librations of the De Sitter periodic orbit D−,−,+,+. These librational motions are per-

turbed families of Lagrangean tori T5 × U, U ⊆ R5 open, which arise by excitation of the normal

modes of D−,−,+,+. To use conclusion 4 of Theorem 7, we have to verify the scaled bht-condition.

We have shown that for 0 < µ ≪ 1 the elliptic equilibrium E−,−,+,+ of the SO(2,R) × SO(2,R)–

reduced system FKep+Fres is non-degenerate, with normal frequencies appearing at different orders

in the small quantity µ. Recall that the orders of frequencies are as follows. The internal frequency

νper of δ3 is of order 1. The normal frequencies νn,1 and νn,2 are of order

ε2 =
√
µe

and the normal frequencies νn,3 and νn,4 are of order

ε3 =
µ

e
.

In order to control the smallness conditions required for Theorem 7 we consider an appropriate

N-th order normal form approximation of FKep + Fpert by eliminating the dependence on the angle

δ3. This leads to FKep + FN
res + FN

rem in which

- for N = 2, F2
res = Fres,
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- FN
res − Fres = O(µe2 + µ2),

- FN
res is independent of δ3,

- FN
rem is of order O(µeN) + O(µN),

where we recall that e measures the size of the eccentricities e1, e2 and e3 of the three internal

satellites. Note that next to O(µN) we only achieve O(µeN). For this reason we also need to

consider e as a small parameter. To ensure that

ε1 = 1≫ ε2 ≫ ε3 > 0

we require that

0 < µ ≪ e3 ≪ 1 .

Note that this implies that for N ≥ 2 we have µN ≪ µeN .

We now analyse the dynamics of FKep + FN
res. We note that also the higher normal forms have

the SO(2,R) × SO(2,R)–symmetry, consisting of rotations over the angles η3 = g3 and δ3 =

ℓ3. Reducing this symmetry turns the De Sitter periodic orbit into the equilibrium point E−,−,+,+.

By the Implicit Function Theorem the non-degeneracy of E−,−,+,+ allows for continuation to a

non-degenerate elliptic equilibrium EN
−,−,+,+ of the reduced system with Hamiltonian FKep + FN

res,

provided that µ and e are sufficiently small. Reconstructing the resonant SO(2,R)–symmetry leads

to a family of normally elliptic periodic orbits DN
−,−,+,+ of FKep + FN

res, where only the rotational

SO(2,R)–symmetry is reduced.

Using the 8–dimensional local co-ordinate z around the equilibrium EN
−,−,+,+, the Hamiltonian func-

tion FKep + FN
res gives rise to

ż = Ωz + h(z) (24)

where Ω has the form (12). We recall that Ω is elliptic, i.e., has only simple, purely imaginary

eigenvalues. The equation (24) corresponds to the third equation in (13), the first and second

equation of which have disappeared by the reduction.

The perturbation problem takes place in 10 dimensions where we have reconstructed the resonant

SO(2,R)–symmetry by adding the first and second equation of (13). This turns the equilibrium

E−,−,+,+ into the periodic orbit D−,−,+,+. While the persistence of D−,−,+,+ follows from the Implicit

Function Theorem, we use Theorem 7 to obtain Lagrangean tori by the excitation of normal modes.

It is thus sufficient to verify the non-degeneracy condition for the frequencies νper, νn,1, νn,2, νn,3, νn,4

of D−,−,+,+. Moreover, according to Theorem 7, it is enough to verify the non-degeneracy conditions

separately for frequencies in the different time scales. We choose as parameters

λ = (m̄1, m̄2, m̄3, e2) (25)

the rescaled masses and one of the eccentricities. While e2 is a distinguished parameter, the masses

are external parameters. We refrain from using only distinguished paramer, in this way avoiding

the computation of a nonlinear Birkhoff normal form around D−,−,+,+.

The non-degeneracy conditions on the frequencies νper, νn,1, νn,2, νn,3, νn,4 are as follows.
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1. The frequency of the periodic orbit νper. Here the non-degeneracy condition is nothing more

than
∂FKep

∂D3

, 0 . (26)

2. The normal frequencies νn, j, j = 1, 2, 3, 4. Here the check boils down to the dependence

of the coefficients of the monic quadratic equations (4) and (5) of [15] with respect to the

parameters. We abbreviate these equations to

x2 + b1x + c1 = 0 (27)

and

x2 + b2x + c2 = 0 (28)

respectively.

Lemma 8 (Non-degeneracy). The Jacobians of (b1, c1) in (27) with respect to (m̄1, e2) and of

(b2, c2) in (28) with respect to (m̄2, m̄3) are both non-degenerate almost everywhere.

Proof. Assisted by maple 16, we find that

- det

(
∂(b1, c1)

∂(m1, e2)

)
evaluated at (m1 = 1,m2 = m3 = 0) equals 8B̄3Ā;

- det

(
∂(b2, c2)

∂(m2,m3)

)
evaluated at (m1 = 1,m2 = m3 = 0) equals −16 · 25/6B̄10.

These expressions are analytically dependent on the variables e2 and m1 = µm̄1 and on m2 = µm̄2

and m3 = µm̄3 respectively. Since these expressions are not identically zero, the zeroes are confined

to subsets of lower dimension. �

We aim to apply Theorem 7 to obtain 5–dimensional (Lagrangean) tori that carry the librational

motions of the De Sitter periodic orbit DN
−,−,+,+, by the excitation of normal modes. First, for the

distinguished parameters e2 and D3 we have to introduce localized variables

eloc
2 = e2 − κ1,

Dloc
3 = D3 − κ2

which yields external parameters κ1 and κ2, compare with [11, 12]. By abuse of notation we denote

the parameter by

λ = (m̄1, m̄2, m̄3, κ1, κ2),

compare with (25). This allows to specify a box Γ ⊆ R5 in the parameter space. In the range of the

frequency mapping

F : Γ −→ R5, λ 7→ (νper, νn,1, νn,2, νn,3, νn,4)

Diophantine conditions (18) apply. The splitting (19) amounts to considering the parameters κ2,

(m̄1, κ1) and (m̄2, m̄3) separately. The corresponding time scales are ε1 = 1, ε2 =
√
µe and ε3 = µ/e,

where we recall that 0 < µ ≪ e3 ≪ 1. This also ensures that the smallness condition on the

perturbation as expressed in (23) is satisfied.
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Theorem 9 (Librational motions). Let N ≥ 2 be a given order of normalization. In the Diophan-

tine conditions (18) we take n = 5, r = 0, τ > 4 and the gap-parameter γ > 0 sufficiently small.

Then there exists a bound e0 > 0 on the eccentricities such that for µ ≪ e3 and e ≤ e0 there exists

a C∞–diffeomorphism

Φ : T5 × U × Γ ⊆ Ñ −→ T5 × R5 × Γ
onto its image, where U is a neighbourhood of 0 in R5, with the following properties.

1. The mapping Φ is skew in the sense that the following diagram commutes.

T
5 × R5 × Γ Φ−→ T

5 × R5 × Γ

↓ ↓

T
5 × Γ −→ T

5 × Γ

↓ ↓

Γ −→ Γ ;

where vertical arrows denote natural projections and where the horizontal arrows indicate

the relevant components of Φ. Moreover Φ is real-analytic in the toral variables and maps

fibers in the R5–direction affinely onto fibers;

2. Φ is near the identity in the C∞–topology and preserves the symplectic form. Moreover, the

diffeomorphism (20) is equivariant with respect to the deck group Λ as given in Proposi-

tion 4;

3. Restricted to T5×{0}×Γγτ,γ the mappingΦ conjugates the unperturbed system to the perturbed

system.

4. The measure of the gaps in the union of surviving kam tori can be estimated by const. µeN .

Proof. The constant δ in the specification (23) of the neighbourhood U is determined by Theo-

rem 7. The constants τ and ε j, j = 1, 2, 3 have been specified before. To achieve the smallness

conditions (23) it suffices to take the normalization order N sufficiently large. Indeed, then the or-

der O(µeN)+O(µN) of the remainder FN
rem in the Hamiltonian function, as specified at the beginning

of the section, ensures that the corresponding vector field satisfies the smallness condition (23). In

terms of § 4.5 we now choose γ = µeN , which leads to the measure theoretical estimate of conclu-

sion 4. The necessary scaled bht non-degeneracy condition follows from Lemma 8 and (26).

From property 4 of Theorem 7 we obtain the desired Cantor family of Lagrangean invariant tori.

�
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Remarks.

- In summary Theorem 9 roughly implies the following. There is a Cantor set of sufficiently

small e, such that for µ ≪ e3 there exists a set of masses m1,m2,m3 of large relative measure,

satisfying max{m1,m2,m3} ≤ µm0, for which the following is true. There is a union of

Lagrangean invariant tori of the Hamiltonian vector field XF , of large relative measure in a

small neighbourhood of the continued family of stable periodic orbits D−,−,+,+.

- When reconstructing the rotational SO(2,R)–symmetry, returning from 5 to 6 degrees of

freedom, an extra angle η3 = g3 is restored. As a consequence, the De Sitter periodic or-

bits lift to conditionally periodic orbits on 2–tori and the librating Lagrangean 5–tori lift to

librating Lagrangean 6–tori.

- By choosing the gap-parameter γ as a suitable power of e, related to the bound O(µeN), we

achieve that the measure of the complement of the persisting Lagrangean invariant tori scales

with the size of the perturbation; compare with [5, 11].

5.2 Invariant 2–tori and their librations in the 5–body setting

Callisto is not at resonance with Io, Europa and Ganymedes. Thus, in the 5–body problem obtained

by adding Callisto to our model, De Sitter’s periodic orbits have to be replaced by invariant 2–tori

while the librating Lagrangean tori become of dimension 7 (with Callisto we add 2 degrees of

freedom). The small mass m4 of Callisto is of the same order µ as m1,m2,m3 and correspondingly

we rescale m4 = µm̄4. With p̃4 = µp̄4 and q̃4 denoting linear momentum and relative position

of the fourth satellite with respect to the common centre of mass of Jupiter and the other three

satellites the Hamiltonian F̃ (rescaled by µ−1) of the system becomes F̃ = F̃Kep + F̃pert with F̃Kep =

FKep + FKep,4 and F̃pert = Fpert + Fpert,4. Here

FKep,4 =
‖p̄4‖2
µ4

− µ4M4

r04

and Fpert,4 = µ

3∑

i=1

p̄i p̄4

m0

− µ
3∑

i=1

m̄im̄4

ri4

while M4 = m0 + µm̄4 and µ4 = m0m̄4/M4.

In the Darboux co-ordinates (3) on our covering space we replace Z3 by

Z′3 = G1 +G2 +G3 +G4

and furthermore add

D4 = L4

δ4 = ℓ4 + g4 − g3

together with

ξ4 + iη4 =
√

2(L4 −G4)e−i(g4−g3). (29)
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Note that the latter choice (going back to Poincaré) allows the orbit of the last body to be circular

while the other orbits have to be ellipses with non-zero eccentricity.

Recall that νper is the frequency of the De Sitter periodic orbit (co-incinding with the Keplerian

frequency of the third satellite), and denote by νKep,4 the Keplerian frequency of the fourth satellite.

Extending the hypothesis made in § 3.3 by a3 < a4, 0 ≤ e4 < e < 1 such that

a3(1 + e)

a4(1 − e)
< 1

we ensure that the four elliptic orbits are bounded away from each other. These conditions extend

P̃ ⊆ M̃ to Q̃.

The covering mapping (3) thereby is replaced by Π̃ : T7 × R9 −→ T8 × R8, consisting of

Π̃1 : (R/2πZ)5 × (R/4πZ) × (R/8πZ) −→ (R/2πZ)5 × (R/2πZ) × (R/2πZ) ,

(η3, η2, η1, δ4, δ3, δ2, δ1) 7→ (g3, g2, g1, ℓ4, ℓ3, ℓ2, ℓ1)

(which is multiple-to-one), Π̃2 assigning (ξ4, η4) to (g4,G4) as in (29) and the linear automorphism

Π̃3 : R7 −→ R
7

(Z1, Z2, Z3,D1,D2,D3,D4) 7→ (G1,G2,G3, L1, L2, L3, L4)

The total transformation then is Π̃ = Π̃1 × Π̃2 × Π̃3. The deck transformations ∆ of this covering

are still given by (8).

Let D0
4
∈ R+ be chosen such that for D3 = D0

3
,D4 = D0

4
, the vector (νper, νKep,4) is (γ, τ)–

Diophantine for some γ > 0, τ > 1 and extend D̃ ⊆ P̃ to

Ẽ = {(δ, η,D, Z′) ∈ Q̃ : D1 = D0
1,D2 = D0

2,D3 = D0
3,D4 = D0

4}

containing the 1:2:4–resonant Keplerian motions. Consider a neighbourhood Ñ ⊆ Q̃ of Ẽ, which

is sufficiently small in terms of |µ|. Then we can extend Proposition 5 to obtain for any integer N

a Λ–equivariant analytic symplectic transformation ψ : Ñ −→ φ(Ñ) that is O(µ)–close to the

identity such that

F̃ ◦ ψ = F̃Kep + F̃res + F̃rem ,

with in Ñ analytic functions

- F̃res =
∫
T2 F̃res dδ3dδ4,

- F̃rem = O(µeN + µN),

compare with Proposition 7.1 of [15]. From F̃ the truncated normal form

F̃Kep + F̃res (30)

inherits the rotational SO(2,R)–symmetry, which can be reduced by fixing the value of the total

angular momentum Z′
3

and ignoring the cyclic angle η3 = g3. In fact, normalization could as well
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have taken place in 7 degrees of freedom and below the perturbation analysis does take place on

the reduced phase space.

For N = 2 the normalized F̃res consists of the average Fres over δ3 as in Theorem 5 (see also § 2.4)

and of the average of Fpert,4 over both fast angles δ3 and δ4. Since the first term µ
∑3

i=1 p̄i p̄4/m0

in Fpert,4 does not contribute to the secular system, see Lemma 64 of [16], the latter average is

F̄sec,4 =

∫

T2

Fpert,4 dδ3dδ4 = −µ
3∑

i=1

∫

T2

m̄im̄4

ri4

dδ3dδ4 ;

a function of order O(µe2), see [32, p. 405], and thus dominated by Fres. This allows us to evaluate

F̄sec,4 at the corresponding circular orbits of the inner three satellites, obtaining a function F̂sec,4

and arriving at an approximating system with Hamiltonian function

F̂ = F̃Kep + Fres + F̂sec,4 .

The point (0, 0) is an elliptic equilibrium of F̂sec,4(ξ4, η4) with normal frequency

νn,5 = µm̄4 f (m̄, a) (31)

with f a function of the masses m̄1, m̄2, m̄3 and the semi-major axes a1, a2, a3, a4 ; see Claim 7.1

in [15] for the explicit expression. The periodic solution of the three inner satellites superposed

with a circular orbit of the fourth satellite descends to a non-degenerate equilibrium of the reduced

system obtained by dividing out the SO(2,R) × SO(2,R)–symmetry of shifting the angles δ3, δ4

(with the reduction of the rotational SO(2,R)–symmetry of shifting η3 already in place). For any

N and small e, µ the non-degeneracy allows to continue the equilibrium from F̂ to the truncated

normal form (30). When reconstructing this SO(2,R) × SO(2,R)–symmetry, the equilibrium cor-

responds to normally elliptic invariant 2-tori of (30) with a neighbourhood consisting of nearby

librating Lagrangean tori of dimension 7.

In this situation the full strength of Theorem 7 can be applied — showing persistence of the invari-

ant isotropic 2–tori (under small perturbation O(µeN + µN) for sufficiently large N) and obtaining

librational Lagrangean tori by excitation of normal modes. Next to the parameters for the inner

three satellites as in § 5.1 we take m̄4 and D4 as additional parameters, the latter distinguished with

respect to the former. While the orbital motion of Callisto is fast, with frequency νKep,4 of the same

order as νper, the time scale of the normal frequency is of order µe2. This makes our time scales

ε1 = 1≫ ε2 =
√
µe ≫ ε3 =

µ

e
≫ ε4 = µe2 . (32)

We use m̄4 to control the normal frequency of Callisto, see (31), and use for control of the internal

frequency of Callisto that FKep,4 is non-degenerate with respect to D4.

Theorem 10 (Invariant 2–tori and their librations). Let N ≥ 2 be a given order of normalization.

In the Diophantine conditions (18) we take n = 2, r = 5, τ > 6 and the gap-parameter γ > 0

sufficiently small. Then there exists a bound e0 > 0 on the eccentricities such that for µ ≪ e3 and

e ≤ e0 the following holds true.
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1. Persistence of the invariant 2–tori: there exists a symplectic, equivariant C∞–diffeomorphism

Φ : T2 × U × V × Γ ⊆ Ñ −→ T2 × R2 × R10 × Γ

onto its image, where U is a neighbourhood of 0 in R2 and V is a neighbourhood of 0 in R10,

with the properties 1–3 of Theorem 7.

2. The 5 elliptic normal modes of these 2–tori give rise to a Cantor family of invariant La-

grangean 7–tori perturbed from T7×{0}×Γ ⊆ Ñ ⊆ Q̃ ⊆ T7×R7×Γ where the Cantorisation

results from the Diophantine conditions

|〈k, ω〉 + 〈ℓ, β〉| ≥ γ

(|k| + |ℓ|)τ ,

for all k ∈ Z2 and all ℓ ∈ Z5.

3. The measure of the gaps in the union of surviving kam tori can be estimated by const. µeN .

Proof. Again we normalize N times and apply Theorem 7. The constant δ in the specification (23)

of the neighbourhood U is determined by Theorem 7. The gap-parameter γ has been specified

before while the m = 4 time scales are given in (32). To achieve the smallness conditions (23)

it again suffices to take the normalization order N sufficiently large. The necessary scaled bht

non-degeneracy condition follows from Lemma 8 together with (31) and

det

(
∂(νper, νKep,4)

∂(D3,D4)

)
, 0

where the latter is a consequence of Kepler’s third law. �

Remarks.

- In the 5–body setting the De Sitter periodic orbits are replaced by isotropic invariant 2–tori.

By this we mean that the periodic orbits as found by De Sitter are close to the projection

(δ3, δ4) 7→ δ3 of these 2–tori.

- The quasi-periodic orbits with seven frequencies (and five rather small amplitudes) seem to

provide a more realistic approximation of the actual motion of the Galilean satellites.

- When reconstructing the rotational SO(2,R)–symmetry, returning from 7 to 8 degrees of

freedom, an extra angle η3 = g3 is restored. As a consequence, the quasi-periodic 2–tori

lift to conditionally periodic 3–tori and the librating Lagrangean 7–tori lift to librating La-

grangean 8–tori.

- By choosing the gap-parameter γ as a suitable power of e, related to the bound O(µeN), we

achieve that the measure of the complement of the persisting Lagrangean invariant tori scales

with the size of the perturbation; compare with [5, 11].
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