Matrices depending on parameters

Valesca Peereboom
v.d.peereboom@students.uu.nl

Deadline: October15, 2018.
For diagonizable matrices the normal form can easily be written as a diagonal matrix of eigenvalues. However, not all matrices are diagonizable and to find a similar normal form smoothly depending on parameters for every matrix, we used versal deformations.

We say that two matrices commute when $S P=P S$ and the cummutator $[P, S]=S P-P S$ is in that case zero. Since the orbit of a matrix m is given by the set of matrices $G(m)=\left\{g m g^{-1}\right\}$ for all $g \in G L(n, \mathbb{C})$ which is the set of non singular $n \times n$ - matrices, the tangent space of such a orbit can be written as $T G(m)=\{[g, m]\}$ for all $g \in G L(n, \mathbb{C})$.

During these exercises we take a closer look at the Sylvester family and the versal deformations with the fewest number of parameters (also called miniversal deformations) discussed in class.

Exercise 1.

Show by a direct computation of the commutators that the $n \times n$ Sylvester family:

$$
A(\alpha)=\left(\begin{array}{ccccc}
0 & 1 & & & \\
& 0 & 1 & & \\
\cdot & \cdot & \cdot & . & . \\
& & & 0 & 1 \\
\alpha_{1} & \alpha_{2} & & \ldots & \alpha_{n}
\end{array}\right)
$$

is transversal to the orbit of it's A_{0} matrices and has the minimal number of parameters.

Exercise 2.

a) Derive a miniversal deformation of the matrix:

$$
H=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
11 & 6 & -4 & -4 \\
22 & 15 & -8 & -9 \\
-3 & -2 & 1 & 2
\end{array}\right)
$$

(Hint: this matrix has eigenvalues 1 and -1 , both of order 2)
b) Show that the miniversal deformation of matrix H is transversal to the orbit of its original matrix (that is $A(0)=A_{0}$)

