Homework 4

Due Date: 22 October 2018
email: ernstroell@gmail.com

Exercise 1 This exercise explores the theory in the setting of the matrix Lie group $G L(2, \mathbb{R})$, the set of 2×2 invertible matrices. You may assume without proof that any one parameter subgroup in $G L(2, \mathbb{R})$ is the exponential of a matrix. That is, let $\varphi^{t}: \mathbb{R} \rightarrow$ $G L(2, \mathbb{R})$ be the one parameter subgroup, then there exists a matrix $A \in g l(2, \mathbb{R})$ s.t. $\varphi^{t}=$ $e^{t A}$. Note that if we let this subgroup act on \mathbb{R}^{2}, we obtain a flow. Recall from the lecture that for a Lie group G the conjugation by $g \in G$ operator was defined as

$$
\mathrm{C}_{g}: G \rightarrow G, \quad x \mapsto g^{-1} x g .
$$

In the case of $G L(2, \mathbb{R})$ the conjugation operator is given by

$$
\mathrm{C}_{P} X=P^{-1} X P
$$

Also recall that the Lie algebra of $G L(2, \mathbb{R})$ is given by $g l(2, \mathbb{R})$, the set of all 2×2 matrices.
(a) Show that $g l(2, \mathbb{R})$ with the standard commutator bracket $[A, B]=A B-B A$ is a Lie algebra.
(b) Show that the similarity by $P \in G L(2, \mathbb{R})$ operator, acting on the Lie algebra $g l(2, \mathbb{R})$ is given by

$$
\mathrm{C}_{P}: g l(2, \mathbb{R}) \rightarrow g l(2, \mathbb{R}), X \mapsto P^{-1} X P
$$

Do this, by considering a general one parameter subgroup φ^{t} in $G L(2, \mathbb{R})$. Then apply conjugation by a matrix $P \in G L(2, \mathbb{R})$ and differentiate this relation at $t=0$.
(c) Lastly, show that the Lie bracket is actually the standard commutator bracket. Do this in the following way. For a one parameter subgroup ψ^{t} and an element $A \in g l(2, \mathbb{R})$, apply a similarity by ψ^{t} to A and then differentiate this relation at $t=0$.

Exercise 2 Consider the flow of the planar linear system given by

$$
\varphi^{t}\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}
e^{-t} & e^{t}-e^{-t} \\
0 & e^{t}
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

(a) Show that there exists a matrix $P \in G L(2, \mathbb{R})$ so that there is a linear change of coordinates to the flow

$$
\psi^{t}\left(y_{1}, y_{2}\right)=\left(\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{t}
\end{array}\right)\binom{y_{1}}{y_{2}} .
$$

For both systems, make a phase portrait.
(b) As discussed in lecture, each flow arises as the solution of a vector field. For both systems above, show that the corresponding differential equations are

$$
\binom{\dot{x_{1}}}{\dot{x_{2}}}=\left(\begin{array}{cc}
-1 & 2 \\
0 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

and

$$
\binom{\dot{y_{1}}}{\dot{y}_{2}}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{y_{1}}{y_{2}} .
$$

(c) Show that there exists a $P \in G L(2, \mathbb{R})$ that transforms one differential equation into the other. That is, there is a linear change of coordinates $y=P x$ that transforms the one system into the other. Hint: For both obtained systems, compute the eigenvalues.

