Homework 5

(i) Show that the space of axially symmetric vector fields is generated by the three vector fields

$$
-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}, \quad x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} \quad \text { and } \quad \frac{\partial}{\partial z}
$$

meaning that the most general \mathbb{S}^{1}-equivariant vector field has the form

$$
\begin{equation*}
f(\tau, z)\left(-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}\right)+g(\tau, z)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)+h(\tau, z) \frac{\partial}{\partial z} \tag{1}
\end{equation*}
$$

where $\tau=\frac{1}{2}\left(x^{2}+y^{2}\right)$.
(ii) Show that for (1) to be volume-preserving, the coefficient functions have to satisfy

$$
\begin{equation*}
2 \frac{\partial \tau g}{\partial \tau}+\frac{\partial h}{\partial z}=0 \tag{2}
\end{equation*}
$$

(iii) In the invariants τ and z the vector field (1) reduces to

$$
\begin{align*}
\dot{\tau} & =2 \tau g(\tau, z) \tag{3a}\\
\dot{z} & =h(\tau, z) \tag{3b}
\end{align*}
$$

whence the line $\{\tau=0\}$ is always invariant - as expected from the \mathbb{S}^{1}-symmetry. Use (2) to show that the equations of motion (3) are Hamiltonian with Hamiltonian function

$$
H(\tau, z)=\int_{0}^{z} 2 \tau g(\tau, \tilde{z}) \mathrm{d} \tilde{z}-\int_{0}^{\tau} h(\tilde{\tau}, 0) \mathrm{d} \tilde{\tau}
$$

