
Homework 5

(i) Show that the space of axially symmetric vector fields is generated by the three
vector fields
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meaning that the most general S1–equivariant vector field has the form
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where τ = 1

2
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(ii) Show that for (1) to be volume-preserving, the coefficient functions have to satisfy
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(iii) In the invariants τ and z the vector field (1) reduces to

τ̇ = 2τg(τ, z) (3a)

ż = h(τ, z) (3b)

whence the line {τ = 0} is always invariant — as expected from the S1–symmetry. Use (2)
to show that the equations of motion (3) are Hamiltonian with Hamiltonian function
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h(τ̃ , 0) dτ̃ .
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