Matrices depending on parameters

Valesca Peereboom

October 8, 2018

Goal

How can we define a simple normal form for not diagonizable matrices? Expecially for matrices close to each other.

Deformations

A deformation of a matrix $A_{0} \in \mathbb{C}^{n \times n}$ is a matrix $A(\gamma) \in \mathbb{C}^{n \times n}$ with:

■ enteries that are power series of variables $\gamma_{i} \in \mathbb{C}$

- variables γ_{i} close to zero, convergent in the neighbourhood of $\gamma=0$ with $A(0)=A_{0}$
A deformation is also called a family with parameter space $\Lambda=\{\gamma\}$ the base of the family.

Deformations

A deformation of a matrix $A_{0} \in \mathbb{C}^{n \times n}$ is a matrix $A(\gamma) \in \mathbb{C}^{n \times n}$ with:

- enteries that are power series of variables $\gamma_{i} \in \mathbb{C}$

■ variables γ_{i} close to zero, convergent in the neighbourhood of $\gamma=0$ with $A(0)=A_{0}$
A deformation is also called a family with parameter space $\Lambda=\{\gamma\}$ the base of the family.

$$
\text { Example: } \boldsymbol{A}(\gamma)=\left(\begin{array}{cc}
1+\gamma_{1} & 3+\left(1-\gamma_{2}\right)^{2} \\
\gamma_{3} \gamma_{1} & 5+\gamma_{4}^{3}
\end{array}\right)
$$

Equivalent deformations

Two deformations $\boldsymbol{A}(\gamma)$ and $B(\gamma)$ of matrix A_{0} are equivalent if there exists a deformation $C(\gamma)$ of the identity matrix $\left(C(0)=I_{n}\right)$ such that:

$$
A(\gamma)=C(\gamma) B(\gamma) C(\gamma)^{-1}
$$

so $A(\gamma)$ can be obtained by a change of basis of $B(\gamma)$.

Equivalent deformations

Two deformations $A(\gamma)$ and $B(\gamma)$ of matrix A_{0} are equivalent if there exists a deformation $C(\gamma)$ of the identity matrix $\left(C(0)=I_{n}\right)$ such that:

$$
A(\gamma)=C(\gamma) B(\gamma) C(\gamma)^{-1}
$$

so $A(\gamma)$ can be obtained by a change of basis of $B(\gamma)$.

Mapping in parameter space

Define a mapping $\varphi: C^{l} \rightarrow C^{k}$ close to zero, which is convergent in the neighbourhood of zero with $\varphi(0)=0$. Such that φ is a mapping of the parameter space $\{\mu\}$ to $\{\gamma\}$, and $A(\gamma)=A(\varphi(\mu))$.

Versal deformation

A versal deformation of a matrix A_{0} is a deformation which is equivalent to every other deformation of A_{0} under a suitable change of parameters:

$$
\begin{array}{r}
B(\mu)=C(\mu) A(\varphi(\mu)) C(\mu)^{-1}, \text { for every } B(0)=A_{0} \\
\text { with } C(0)=I_{n}, \varphi(0)=0
\end{array}
$$

The deformation is universal if the change of parameters φ is unique for each $B(\mu)$.

Goal: Find the simplest versal deformation for matrices A_{0}, with the least number of parameters (miniversal)

Transversality

Consider a smooth mapping $A: \gamma \rightarrow M$ where $M \subset \mathbb{C}^{n \times n}$, $N \subset M$ and let γ be a point in Λ such that $A(\gamma) \in N$.
Then the mapping A is called transversal to N at γ if the tangent space to M at $A(\gamma)$ is the direct sum of tangent space of N at $A(\gamma)$ and the tangent space of the mapping A :

$$
T M_{A(\gamma)}=A_{*} T \Lambda_{\gamma} \oplus T N_{A(\gamma)}
$$

Orbit

Consider a set $M=\mathbb{C}^{n \times n}$ and the group $G=\left\{\operatorname{det}(c) \neq 0 \mid c \in \mathbb{C}^{n \times n}\right\}$, then the orbit of $m \in M$ is given by the set $G(m)=\left\{g m g^{-1} \mid g \in G\right\}$.

Orbit

Consider a set $M=\mathbb{C}^{n \times n}$ and the group $G=\left\{\operatorname{det}(c) \neq 0 \mid c \in \mathbb{C}^{n \times n}\right\}$, then the orbit of $m \in M$ is given by the set $G(m)=\left\{\mathrm{gmg}^{-1} \mid g \in G\right\}$.

Lemma 1

A deformation $A(\gamma)$ is versal \Leftrightarrow the mapping A is transversal to the orbit of A_{0} at $\gamma=0$.

Universality of a sylvester family

A sylvester family:

$$
A(\alpha)=\left(\begin{array}{ccccc}
0 & 1 & & & \\
& 0 & 1 & & \\
. & \cdot & . & . & . \\
& & & 0 & 1 \\
\alpha_{1} & \alpha_{2} & & \ldots & \alpha_{n}
\end{array}\right)
$$

defines a universal deformation of each of its matrices.

Minimal versal deformation for A_{0} in Jordan normal form

A matrix A_{0} in Jordan normal form has a versal deformation of the form $A_{0}+B(\alpha)$ with for each Jordan block $i: B_{i}(\alpha)$ with
non-zeros at $\left(\begin{array}{ccc|cc|c} & & & & & \\ & & & & & \\ \alpha_{1} & \ldots & \alpha_{n_{1}} & \ldots & \alpha_{n_{1}+n_{2}} & \ldots \\ \hline \vdots & & & & & \\ \vdots & & & \ldots & \ldots & \ldots \\ \hline \vdots & & \vdots & & \ldots\end{array}\right)$
and minimal number of parameters $d=\sum_{j=1}^{N_{i}}(2 j-1) n_{j}$, for i^{\prime} th Jordan block of length N_{i} with eigenvalue λ_{i} of orders $n_{1} \geq \cdots \geq n_{N_{i}}$.

