

Matrices depending on parameters

Valesca Peereboom

October 8, 2018

・ロト ・四ト ・ヨト ・ヨト

2

Valesca Peereboom

Goal ●	Deformations 000	Versality 0000
Goal		

How can we define a simple normal form for not diagonizable matrices? Expecially for matrices close to each other.

Deformations ●00	Versality 0000

Deformations

A deformation of a matrix $A_0 \in \mathbb{C}^{n \times n}$ is a matrix $A(\gamma) \in \mathbb{C}^{n \times n}$ with:

- enteries that are power series of variables $\gamma_i \in \mathbb{C}$
- variables γ_i close to zero, convergent in the neighbourhood of $\gamma = 0$ with $A(0) = A_0$

A deformation is also called a **family** with parameter space $\Lambda = \{\gamma\}$ the **base** of the family.

Deformations ●00	Versality 0000

Deformations

A deformation of a matrix $A_0 \in \mathbb{C}^{n \times n}$ is a matrix $A(\gamma) \in \mathbb{C}^{n \times n}$ with:

- enteries that are power series of variables $\gamma_i \in \mathbb{C}$
- variables γ_i close to zero, convergent in the neighbourhood of $\gamma = 0$ with $A(0) = A_0$

A deformation is also called a **family** with parameter space $\Lambda = \{\gamma\}$ the **base** of the family.

Example:
$$A(\gamma) = \begin{pmatrix} 1 + \gamma_1 & 3 + (1 - \gamma_2)^2 \\ \gamma_3 \gamma_1 & 5 + \gamma_4^3 \end{pmatrix}$$

Equivalent deformations

Two deformations $A(\gamma)$ and $B(\gamma)$ of matrix A_0 are **equivalent** if there exists a deformation $C(\gamma)$ of the identity matrix $(C(0) = I_n)$ such that:

$$A(\gamma) = C(\gamma)B(\gamma)C(\gamma)^{-1},$$

so $A(\gamma)$ can be obtained by a change of basis of $B(\gamma)$.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Valesca Peereboom

Equivalent deformations

Two deformations $A(\gamma)$ and $B(\gamma)$ of matrix A_0 are **equivalent** if there exists a deformation $C(\gamma)$ of the identity matrix $(C(0) = I_n)$ such that:

$$A(\gamma) = C(\gamma)B(\gamma)C(\gamma)^{-1},$$

so $A(\gamma)$ can be obtained by a change of basis of $B(\gamma)$.

Mapping in parameter space

Define a mapping $\varphi : C^{I} \to C^{k}$ close to zero, which is convergent in the neighbourhood of zero with $\varphi(0) = 0$. Such that φ is a mapping of the parameter space $\{\mu\}$ to $\{\gamma\}$, and $A(\gamma) = A(\varphi(\mu))$.

Valesca Peereboom

Versal deformation

A **versal** deformation of a matrix A_0 is a deformation which is *equivalent* to every other deformation of A_0 under a suitable *change of parameters*:

$$B(\mu) = C(\mu)A(\varphi(\mu))C(\mu)^{-1}, \text{ for every } B(0) = A_0,$$

with $C(0) = I_n, \ \varphi(0) = 0.$

The deformation is **universal** if the change of parameters φ is unique for each $B(\mu)$.

Goal: Find the simplest versal deformation for matrices A_0 , with the least number of parameters (**miniversal**)

Transversality

Consider a smooth mapping $A : \gamma \to M$ where $M \subset \mathbb{C}^{n \times n}$, $N \subset M$ and let γ be a point in Λ such that $A(\gamma) \in N$. Then the mapping A is called **transversal** to N at γ if the tangent space to M at $A(\gamma)$ is the direct sum of tangent space of N at $A(\gamma)$ and the tangent space of the mapping A:

$$TM_{\mathcal{A}(\gamma)} = A_* T\Lambda_{\gamma} \oplus TN_{\mathcal{A}(\gamma)}$$

イロト イポト イヨト イヨト

3

Valesca Peereboom

∃ 𝒫𝔄𝔄

イロト イヨト イヨト イヨト

Orbit

Consider a set $M = \mathbb{C}^{n \times n}$ and the group $G = \{\det(c) \neq 0 | c \in \mathbb{C}^{n \times n}\}$, then the **orbit** of $m \in M$ is given by the set $G(m) = \{gmg^{-1} | g \in G\}$.

Valesca Peereboom

Goal O	Deformations	Versality 0●00

Orbit

Consider a set $M = \mathbb{C}^{n \times n}$ and the group $G = \{\det(c) \neq 0 | c \in \mathbb{C}^{n \times n}\}$, then the **orbit** of $m \in M$ is given by the set $G(m) = \{gmg^{-1} | g \in G\}$.

Lemma 1

A deformation $A(\gamma)$ is versal \Leftrightarrow the mapping A is transversal to the orbit of A_0 at $\gamma = 0$.

Valesca Peereboom

Universality of a sylvester family

A sylvester family:

$$A(\alpha) = \begin{pmatrix} 0 & 1 & & \\ & 0 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 0 & 1 \\ \alpha_1 & \alpha_2 & & \dots & \alpha_n \end{pmatrix}$$

defines a universal deformation of each of its matrices.

Valesca Peereboom

Minimal versal deformation for A_0 in Jordan normal form

A matrix A_0 in Jordan normal form has a versal deformation of the form $A_0 + B(\alpha)$ with for each Jordan block *i*: $B_i(\alpha)$ with

