1 Poincaré—Bendixson Theorem

1. Give the definition of the w-limit sets for bounded orbits of smooth
n—dimensional ODEs and establish their basic properties.

2. Characterize the w-limit sets of bounded orbits of smooth planar ODEs,
i.e. prove the Poincaré-Bendixson theorem in RZ.

3. Give examples that were not used in the lecture notes or during the
practicum.
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2 Uniqueness of the limit cycle near Hopf bi-
furcation

Consider the following smooth orbital normal form for the supercritical Hopf
bifurcation:

w = (a+i)w — wlw? + O(w*) , wecC, (2.1)
where the O(Jw|?)—terms can smoothly depend on « € R.

1. Derive the cubic Taylor expansion of the parameter-dependent Poincaré
mapping of (2.1) defined on the half-axis Rew > 0 near w = 0. Show
that it is independent of the O(|w|*)-terms in (2.1).

2. Prove that the Poincaré mapping has a unique stable positive fixed
point when o > 0. Conclude from this that a unique stable limit cycle
bifurcates from the origin in (2.1) with any O(|w|*)-terms.

3. Give an alternative proof of the uniqueness of the cycle using the Poin-
caré—Bendixson—Dulac theory, i.e. by constructing a trapping annulus
for (2.1), where the corresponding vector field has negative divergence.
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3 Uniqueness of the limit cycle near BT bi-
furcation

Consider the Bogdanov normal form for the Bogdanov—Takens bifurcation

él = 527
{ & = B+ Bobs +E - Lk (3:1)

1. Show that for 3 > 43, system (3.1) is orbitally equivalent to a pertur-
bed Hamiltonian system

él = (¢
{ (o= GG —1) — (G +7%0G6G) (3.2)

where v; = v;(8) = 0 as § — 0.

2. Study periodic and saddle homoclinic orbits in (3.2). In particular,
prove that it has exactly one cycle for small ||v|| between the vertical
half-axis

H = {y:71=0,%>0}

and a curve

1
P = {yim= —§72 + o(|72]), 72 > 0} .

3. Discuss the complete bifurcation diagram of the original system (3.1)
in the f—plane near 5 = 0.
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4 A dual cusp in a sociological model

Consider the planar model
i = P(z,y) = 2* — 2 — 1y
gy = Qx,y) = fy* — aby’ — ay

for self-organized segregation.

(4.1)

1. Explain the parameters o and g and why (4.1) is a model for segrega-
tion.

2. Compute the equilibria of (4.1) and their stability.

3. Derive the bifurcation diagram for (4.1).
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5 Bifurcations of monodromic heteroclinic con-
tours in planar systems

1. Discuss bifurcations happening for small ||«|| in generic two-parameter
planar systems

X = F(X,0), XeR% aeR? (5.1)

having at o = 0 two hyperbolic saddles connected by two heteroclinic
orbits forming a monodromic contour:

2. Give an explicit 2D polynomial ODE exhibiting both possible types of
such bifurcations.
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Periodic perturbations of planar Hamilto-
nian systems

. Introduce the Melnikov function for a planar Hamiltonian system with
a homoclinic orbit to a saddle subject to periodic forcing and discuss
its properties.

. Prove that a simple zero of the Melnikov function implies a transverse
intersection of the stable and unstable invariant manifolds of a saddle
periodic orbit in the perturbed system, i.e. the existence of a transverse
homoclinic orbit to this cycle.

. Consider the Duffing oscillator with the weak harmonic forcing and
damping:

i — x4+ 2 = e(ycos(wt) —61) , Y,w,0>0,0<e< 1.
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7 Local stability of periodic orbits
Assume that a smooth system

t = f(x), 2" € R"
has a periodic solution ¢(t) with the minimal period 7.

1. Prove that the Poincaré mapping near the cycle corresponding to ¢ is
well defined.

2. Establish a relationship between the eigenvalues of the linear part M of
the Poincaré mapping and the eigenvalues of the matrix Y (1), where

Y(t) = f(o()Y . Y(0)=id .

3. Discuss the notion of the “exponential asymptotic stability with the
phase”.
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8 Period-3 implies chaos

1. Prove the following theorem.

Theorem [Li & Yorke|] Suppose a continuous mapping f : [0,1] —
[0,1] has a cycle of minimal period 3. Then f has a cycle of minimal
period n for alln > 1.

2. Consider the logistic mapping
r— f(r,a) =ax(l—2), z€]l0,1]. (8.1)

Prove that at ag = 1+ 2v/2 the 3rd iterate of (8.1) exhibits a fold
bifurcation, generating a stable period 3 cycle and an unstable period 3
cycle as « increases.
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Lorenz system

. Explain the origin of the Lorenz-63 ODEs:

& = o(y—ux)
y = rx—y—uzxz (9.1)
z = —bz+uay

where (o, 7,b) are positive parameters.

. Analyse stability of equilibria in (9.1), in particular, derive a condition

for a nonzero equilibrium to have a Hopf bifurcation.
Prove that the Hopf bifurcation in (9.1) is always subcritical.

Describe the sequence of global bifurcations of (9.1) leading to the
Lorenz strange attractor and related 1D dynamics.
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