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Abstract. There are two inequivalent ways in which the laws of physics in a gravita-
tional field can be related to the laws in an inertial frame, when quantum mechani-
cal effects are taken into account. This leads to an ambiguity in the derivation of
Hawking’s radiation temperature for a black hole: it could be twice the value
usually considered.

The physical process by which a black hole emits Hawking radiation seems to
be fairly well understood according to the established view. One assumes that the
laws governing a system in a gravitational field can directly be obtained by view-
ing the field as generated by an acceleration relative to another coordinate frame,
which we will call the «inertial framey. In the inertial frame no gravitational field
is felt. If we know the physical laws in the inertial frame, then we can derive the
laws for the gravitational field. This is called the «equivalence principle».

Strictly speaking this procedure only works if the gravitational field is «homo-
geneousy». By «homogeneous» we mean that there is an intertial frame in which
the entire gravitational field disappears, in some finite region, not just at a point.
Weak homogeneous fields are also constant, but strong homogeneous fields in-
crease in the direction of the field lines, and have a «horizon» where the field
becomes infinite.

In the succesful theory of general relativity the distinction between homo-
geneous and inhomogeneous fields is not made. In regions of space-time that are
sufficiently small all fields are homogeneous and that is all that counts. If quan-
tum mechanics is switched on we might have to be more careful, however. Our
first proposal is now that the equivalence principle might only be valid in the
comparison of two coordinate frames that have a constant acceleration with
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respect to each other. The reason is that in quantum mechanics we whish to
construct the Hamiltonian, which describes the time evolution of a system in Hil-
bert space. Only in a background that itself is time-independent may the Hamil-
tonian and the Hilbert space be well-defined. If certain concepts of locality
and causality are required also then this restriction might not be too severe to
prevent us from deriving theories that combine general relativity with quantum
mechanics.

A pair of different models of certain systems or processes in physics are
called «equivalent» if a one-to-one mapping exists that expresses the behaviour
of one in terms of that the other. A gravitational field that is constant in the
time 7and transverse space coordinates X can be obtained by the transformation

z=rcoshr
(1) t=rsinhr
X=X=(x,y)

from the inertial frame (x, ¢). We see of course that this is just a continued Lo-
rentz boost.
The spaces

I={r,7;r>0,r real}
and
II={r,7;r<0,rreal}

are causally disconnected. The horizon is at £ = 0.

According to the equivalence principle a physical field p(x, f) with |z |>|¢|
also describes what happens at the corresponding point in space I. Classically
(i.e. without quantum machanics) this mapping is straightforward and unique.
We now argue that for the quantum mechanical case there are two options.

i. The conventional quantum mechanical mapping

This corresponds to assuming that for any scalar observable
(X, tys -5 X0 8y with | z;|>| ; |, one has

9)) O]yt Xy 1) 0 = (O Ty, £y T,

where &, = (x;, yl.,ri), The subscript g refers to the gravitational field. It then
turns out that the expection value on the r.h.s. of (2) is a thermal one, in a
vacuum heated to a definite temperature. In natural units (with respect to the
time parameter 7), this temperature T is given by
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3) 1/T=4=2m.

- This is well known from the literature [1] and we will come back to its deriva-
vation later.

In this picture not only the classical but also the quantum mechanical dyna-
mical variables of two worlds, / and II, are mapped onto the corresponding
variables of one non-accelerated world. The two worlds could be different uni-
verses separated by one common horizon.

Certainly a working model has been obtained of a homogeneous gravitational
field. If a gravitational field is described this way we call it a field of type /. These
field occur in Nature almost by definition, because: we can always view an accele-
rated object from a coordinate frame that keeps pace with it and define the
field that the object feels by the above transformation rules. Thus for instance
an ion that is accelerated by a strong electric field can be described as if it feels
a gravitational field of type / neutralizing this electric field.

ii. The y-p-mapping

There is however another model for a gravitational field, which we will call
a gravitational field of type II. In this case the spaces I and II both represent the
same world. Consider the 3-space given by t = 7= 0:

)y _y@3 3
@ V()—-VI()+V}}).

We may imgaine that the Hilbert space # of the non-acceletarated world can
be written as a normal product:

) =3, -3y,

and the Hamiltonian with respect to 7 is (apart from possible quantum effects
at the horizon):

H=H, + H.
Now the mapping of ¢ onto 7 has a negative first derivative if r <0, so that
Hy<0.

Therefore it is natural to consider ¥}, as the space of hermitean conjugate states
g< Vv, if ; is composed of the states | ¥ > e Here the subscript refers to the
gravitational field in the accelerated frame. So we suggest the mapping

(6) “p>ine_’l‘l’1>g g<‘p2'

where [ 2> is a state in the inertial frame, and | V) ,> ¢ re two states in the
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gravitational field. The difference with the previous picture is that now we inter-
pret the r.h.s. of eq. (6) as the density matrix p in the type /7 gravitational field.
If we ignore for a moment the positivity restriction on p then the mapping
{ ¥ > < p is one-to-one of a single world onto a single world. Whether or not
a pure density matrix (eigenvalues 1 and 0) remains pure as a function of 7
will depend on the dynamics of the theory [2]. The vacuum 0>, will map
onto a particular, 7 independent density matrix pAP:

—B8E
© 0> >80 =) [n>,e " <nl
n

corresponding to a certain temperature $-1. In general there will be a (not nor-
malized) highly excited state that maps onto the identity

®) 11> e = )_ |7 > g <.
n

Observables are now mapped not as in eq. (2) but
(9) ine<1l ¢(xls tl) e xn’ tn)| 0> ine= <‘P(£1: TP ey En’ Tn) >g-

If x;,...,x, are far away from the horizon then the vacuum state | 0> g in
(8) will contribute to (9), so that then (2) and (9) become identical..

The reason why an accelerated ion does not feel a type I7 gravitational field
is that in the corresponding inertial frame the spaces I and II are not identical:
space IT does not contain the ion. Another system in Nature could be described
by a type II gravitational field: elastic scattering of a particle p against its anti-
particle p, or more generally:

|py 2y >~ [Py P >

The particle p, (becoming p,) is accelerated in space /, and the antiparticles in
opposite directions in space II. However the acceleration has to be continued
before and after the collision, so this rather fabricated example is of relatively
little physical interest. Rather, we could speculate that real gravitational fields,
like the ones surrounding a black hole, are of type I/ near the horizon, rather
than type 1.

Let us postpone the discussion of the likelihood of this supposition and first
compute the Hawking temperature of radiation emanating from the horizon in
the two kinds of fields. Take the scalar field ® of a particle without spin. We
write

(10) d(x,t)=A(x, 1)+ AT(x, 1);
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j ‘kx —ik t a(k) 3
an A(X, t) = |e*X 7 d’k

V2k,
(12) [a(k), af(k))] = 8(k — k'),

k= (k, kj),
and find, ifr >0,
(13) ®(x,t)= dk f de £ (r, &, w)(e b (w, k) + bt (w0, — 1)) ek |
) ,

where fis a solution to a particular differential equation, and

(14) b(w, B)Ve™ —e ™ = a(w, k) e 4ol w, —B) e_%,,_,’

where a(w, E) is linear in a(k). We also have (if w > 0):

(15) c(62, )Ve™ — e = a(— 0, e 2 +al(w, —Bye 2 .

They satisfy the commutation rules of creation and annihilation operators:
(16) [b(w, k), b1, k)] =[c(w, k), cT(w', k)]=8(w-w")8(k—k")

and

a7 [b,b]l=1[c,cl=1[b,c]l=[b,ct]=0.

If r < 0 then ¢(x, ¢) only depends on ¢ and c¥:

oo

(18) d(x, 1) = jdk f dw f(=r,k, w)(e™“Tc(w, k) + e~ ct(w, — k) .
0
The Hamiltonian in the accelerated frame is:
(19) H=f wdwjd/? O H(w, Ob(w, k) — cf(w, Be(w, B).
0

Clearly, the vacuum in the non-accelerated world, | 0 > ine TEPresents a stationary
state, also in the accelerated frame. To what state does it corresponds in the
accelerated frame? We have for all w,

(20) a(w, k)| 0>, = 0.

ine
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Therefore, from (14) and (15), we get

(21 b(w,K)[0>,  =e ™ ct(w, k)|0>

ine’

(@, B0> =N (w, 00>, ..

ine
If we express the eigenstates of H in eq. (19) by ]nl, n,>, then the solution to
egs. (21) is:

(22) 10> =N] Y emonnn>,
w,i n=90

where /N is a normalization factor.

In space 7, only the first entry, n,, is observable.

Now let us compare the two «equivalence principles». In a type I gravitational
field the probability of detecting n, = n particles is proportional to

(23) Z|/<n,n2|0>ine|2=l<n’n|0>‘ |2ae-21rnu‘

1ne
nz
Since the energy is F = nw, this corresponds to a temperature T = 1/8 = 1/27.
But in a type II field we have

(24) ny[pny) = NeT™ms, .
Now we have the density matrix directly, and the temperature is 7 = 1/8 = 1/x;
twince the previous value. We believe therefore that if black holes carry a type
IT gravitational field, then they radiate with temperature

(25) T=1/4mM

rather than the smaller value derived by Hawking [1].
. Notice that the Hamiltonian H of eq. (19) consists of two parts that enable
us to write in picture (ii):

(26) ,0 =—1 [P, H1]5

with H, = |wb*b. But it could be that quantum gravitational effects near or at

the horizon add terms not of the form (26). In that case transitions between
pure states and mixed states could in principle occur. These effects, at present
not well understood, would also remove the enourmous degeneracy of Hilbert
space near r = 0, and only a more complete theory than the present can perhaps
tell us which of the two theories holds for a black hole. So we conclude that the
question of the precise value of Hawking’s temperature is still open.
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Can black holes really have a type II gravitational field? We first remark that,
just like in the case of a homogeneous field, transition to coordinates that are
regular at the horizon doubles space-time. The Kruskal coordinates x, y are
defined by

xy = —2M) e’
27

x/y = et2M
where r and ¢ are Schwarzschild coordinates. The two relations that are obtained
from each other by changing the signs of both x and y correspond to spaces /
and /I. This doubling occurs in exactly the same way for charged and rotating
black holes.

Strictly speaking the transition towards the coordinates (27) is against our
own philosofphy because there is no invariance with respect to translations in
the new time variable. However if the mass M is large, then the system (27) is
much more continuous near the horizon than the Schwarzschild coordinates
rand .

From a classical point of view identification of spaces I and I is very strange:
the far future in the Scharzschild coordinates corresponds to the far future in
space I and the far past in space II. Apparently then, causality is lost. This is
why one never obtained the type II picture from semi-classical arguments where
the radiadion of a classical dust cloud is considered as seen by a distant observer.

In the conventional theory, in which macroscopic causality is postulated
with the same time arrow in spaces I and /I, one really considers the complete
system, collapsing stellar matter and evaporating black hole, as one background
configuration onto which a quantum mechanical fields theory can be superim-
posed. The difficulty with that is the back-reaction of the metric. In Kruskal
coordinates the Hawking radiation at large Schwarzschild time originates in a
region where the collapsing matter has a close to infinite kinetic energy per
particle, so that the gravitational shock waves from those particles may perhaps
not be ignored.

So we propose that the imploding material that produced the black hole was
too far in the past to be taken into account. A formal continuation of the Kruskal
coordinates then gives us a space /I which is identical to space I so that a type
Il gravitational field belongs to the possibilities. In that case, classically it looks
odd that we choose the causal time arrow in space I/ in a direction opposite to
space I but there is no contradiction. Certainly, the quantum mechanical equaiton
we get, eq. (16), respects causality in all possible ways.

We conclude that the Hawking temperature of a black hole could be a factor
two higher than the conventional derivation gives, without as yet any contradic-
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tion with the known laws of physics. We stress that there is no contradiction in
the conventional theory either. As far as we know, type [ and type IJ gravitational
fields are equally possible near a black hole.

The author acknowledges discussions with S. Hawking, H. van Dam, F.A.
Bais and P. van Baal.
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