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Abstract.Thereare two inequivalentways in whichthelawsofphysicsin agravita-
tional field can be relatedto thelaws in an inertial frame,whenquantummechani-
cal effectsaretaken into account.This leadsto an ambiguityin the derivationof
Hawking’s radiation temperaturefor a black hole: it could be twice the value
usuallyconsidered.

The physicalprocessby which a black hole emitsHawking radiation seemsto

befairly well understoodaccordingto theestablishedview. Oneassumesthat the
lawsgoverninga systemin a gravitationalfield can directly be obtainedby view-
ing the field asgeneratedby anaccelerationrelativeto anothercoordinateframe,

whichwe will call the <<inertial frame>>. In theinertial frameno gravitationalfield
is felt. If we know the physicallawsin the inertial frame,thenwe canderivethe
lawsfor thegravitationalfield. Thisis calledthe <<equivalenceprinciple>>.

Strictly speakingthis procedureonly works if thegravitationalfield is <<homo-

geneous>>.By <<homogeneous>>we meanthat thereis an intertial frame in which
the entiregravitationalfield disappears,in somefinite region,notjust at a point.
Weak homogeneousfields are also constant,but strong homogeneousfields in-

creasein the direction of the field lines, and havea <<horizon>> wherethe field

becomesinfinite.
In the succesful theory of generalrelativity the distinction betweenhomo-

geneousandinhomogeneousfields is not made. In regionsof space-timethat are
sufficiently small all fields arehomogeneousand that is all that counts.If quan-
tum mechanicsis switched on we might have to be more careful,however.Our

first proposalis now that the equivalenceprinciple might only be valid in the
comparisonof two coordinate frames that have a constantaccelerationwith
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respect to each other. The reasonis that in quantum mechanicswe whish to
constructthe Hamiltonian,which describesthe time evolutionof asystemin Hil-

bert space.Only in a backgroundthat itself is time-independentmay the Hamil-
tonian and the Hilbert space be well-defined. If certain conceptsof locality

and causalityare required also then this restriction might not be too severeto
prevent us from deriving theoriesthat combinegeneralrelativity with quantum
mechanics.

A pair of different models of certain systemsor processesin physics are

called <<equivalent>>if a one-to-onemapping existsthat expressesthe behaviour
of one in terms of that the other. A gravitationalfield that is constantin the

time r and transversespacecoordinates.~ canbe obtainedby the transformation

z = r coshr

(1) t=rsinhr

from the inertial frame(x, t). We seeof coursethat this is just a continuedLo-

rentzboost.
Thespaces

I = { r, r; r> 0, r real

and

II={r, r;r <0, rreal}

are causallydisconnected.Thehorizonis at r = 0.

According to the equivalenceprinciple a physical field p(x, t) with j z > j t
also describeswhat happensat the correspondingpoint in spaceI. Classically
(i.e. without quantum machanics)this mappingis straightforwardand unique.
We now argue that for the quantum mechanicalcase there are two options.

i. The conventionalquantummechanicalmapping

This correspondsto assumingthat for anyscalarobservable

Ø(x1, t1 x,~,t~)with z1 1>1 t. ‘one has

(2) (UI Ø(x1,t1, . . . , x,~,t,~)0) = ~ r1 E,~.T~)>g

where ~ = (x1, y1, r~)~The subscript g refers to the gravitationalfield. It then
turns out that the expectionvalue on the r.h.s. of (2) is a thermal one, in a
vacuumheatedto a definite temperature.In natural units (with respectto the
timeparameterr), this temperatureT is given by
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(3) l/T=13=2ir.

This is well known from the literature [11and we will comeback to its deriva-
vation later.

In this picture not only the classicalbut also the quantummechanicaldyna-
mical variables of two worlds, I and II, are mappedQnto the corresponding
variablesof one non-acceleratedworld. The two worlds could be different uni-
versesseparatedby onecommonhorizon.

Certainly a working model hasbeenobtainedof a homogeneousgravitational

field. If a gravitationalfield is describedthisway we call it a field of type I. These
field occur in Naturealmostby definition,becausewe can alwaysview an accele-

rated object from a coordinate frame that keepspacewith it and define the
field that the object feels by the abovetransformationrules.Thus for instance

an ion that is acceleratedby a strong electric field canbe describedas if it feels
a gravitationalfield of typeI neutralizingthiselectric field.

ii. The ui-p-mapping

Thereis howeveranothermodel for a gravitationalfield, which we will call

a gravitationalfield of type II. In this casethe spacesI andII both representthe
sameworld. Considerthe 3-spacegiven by t = T = 0:

(4) v~3~= +

We may imgaine that the Hilbert space~Cof the non-acceletaratedworld can

be written as a normal product:

(5)

and the Hamiltonian with respectto T is (apartfrom possiblequantumeffects

at the horizon):

H=H
1 +I-i~.

Now the mapping of t onto T has a negativefirst derivative if r <0, so that

H11’~0.

Thereforeit is natural to consider as the spaceof henniteanconjugatestates

g< ~ I~if is composedof the states ~ > Here the subscriptrefersto the

gravitationalfield in the acceleratedframe.Sowe suggestthemapping

(6) I’
1~>hI~~l>gg<~2I

where i~Li > ~ is a statein the inertial frame, and > g are two statesin the
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gravitationalfield. The differencewith the previouspictureis thatnow we inter-
pret the r.h.s. of eq.(6) as the densitymatrix p in thetypeII gravitationalfield.
If we ignore for a moment the positivity restriction on p then the mapping

~,1i> ~÷p is one-to-oneof a single world onto a single world. Whetheror not
a pure density matrix (eigenvalues 1 and 0) remainspure as a function of r

will dependon the dynamics of the theory [2]. The vacuum 0 > me will map

ontoa particular,r independentdensitymatrix

(7) I0>ine~’1)g° ~In>ge’~”1g<nI

correspondingto a certain temperaturej31• In generaltherewill be a (not nor-
malized)highly excitedstatethat mapsontotheidentity

(8) I>ine~Ig~ ~I’~>gg<’~I

Observablesarenow mappednotas in eq.(2) but

(9) ine<hJ Ø(x1,t1, . . . , ~ ~ 0> ~ = <p(~1,T~ . . . ~ T,~)>g~

If x1,. . . , x,~are far away from the horizon then the vacuumstate j ~> g in

(8) will contributeto (9), so that then(2) and(9) becomeidentical.
The reasonwhy an acceleratedion does not feel a type II gravitationalfield

is that in the correspondinginertial frame the spacesI and II are not identical:
spaceII doesnot containthe ion. Anothersystemin Nature could be described

by a type II gravitationalfield: elastic scatteringof a particlep againstits anti-
particlep, or moregenerally:

I P1 1~2> I ~2Pl>~

The particle p1 (becomingp2) is acceleratedin spaceI, and the antiparticlesin
oppositedirections in spaceII. However the accelerationhas to be continued

before and after the collision, so this rather fabricatedexampleis of relatively
little physical interest.Rather,we could speculatethat real gravitationalfields,
like the onessurroundinga black hole, are of type II nearthe horizon, rather
than typeI.

Let us postponethe discussionof the likelihood of this suppositionand first
computethe Hawking temperatureof radiation emanatingfrom the horizon in

the two kinds of fields. Take the scalar field c1 of a particlewithout spin. We
write

(10) f(x,t)=A(x,t)+At(x,t);
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( a(k)
(11) A(x,t)=Ie~~~_hlcot d3k

(12) La(k),a~(k)1=

k = (k, k
3),

and find, ifr >0,

(13) ~(x,t)= d~f ~

ill

wheref is a solutionto a particulardifferentialequation,and

(14) b(w,~)~e~_ew=a(w,~)e
2 +~~(—w,—~)e~,

wherea(w, k) is linearina(k). We also have(if w >0):

(15) c(w,~)~/e~—e’~=a(—w,k~)e2 +ctt(~,—k~)e2.

They satisfy the commutation rules of creation and annihilation operators:

(16) [b(w, ~), bt(w’, i~,’)]= [c(w, k~,ct(w’, k’)] = ~(w—w’)~(k—k’)

and

(17) [b,b] = [c,c] = [b,c] = [b,ct] = 0.

If r < 0 then~(x, t) only dependson c andct:

(18) ~ t) = fdk f dw f(—r, ~, w)(e~Tc(w, ~)+e~Tct(w, —

J ‘~0

TheHamiltonianin the acceleratedframeis:

(19) H = f wdwfd~(bt(w, k~)b(w,~) _ct(w, ~)c(w, k)).

Jo J

Clearly, thevacuumin the non-acceleratedworld, 0 > ~ representsastationary
state,also in the acceleratedframe. To what statedoes it correspondsin the

acceleratedframe?Wehavefor all w,

(20) *~.~X(W,k)I0>ine=O.
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Therefore,from (14) and (15), we get

(21) b(w, ‘~10> inc = e~”C~(w, ~)10 >ine~

c(w, ~) 0> ~ = e~bt(~,k) I 0> ine~

If we expressthe eigenstatesof H in eq. (19) by I~1,n2>, then the solution to

eqs.(21) is:

(22) O>ine Nfl ~ e’~In,n>,
w,k n0

whereN is a normalizationfactor.

In spaceI, only the first entry,n1, is observable.
Now let us comparethe two <<equivalenceprinciples>>.In a typeI gravitational

field the probability of detectingn1 = n particlesis proportionalto

(23) E I ~11, ~2I0> mel
2 = I <~,n0> inel2°e2’~”~.

Since the energy is E = nc~,,this correspondsto a temperatureT = 1/j3 = 1/2ir.

But in a typeII field we have

(24) (~
1l~I~2>= Ne~”’~”

Now we have the densitymatrix directly, and the temperatureis T = 1/j3 = 1/ir;

twince the previousvalue. We believe thereforethat if black holes carry a type
II gravitationalfield, then they radiatewith temperature

(25) T=1/4irM

ratherthan thesmallervalue derivedby Hawking [1].
Notice that the Hamiltonian H of eq. (19) consistsof two parts that enable

usto write in picture(ii):

(26)

with H1 = wb*b. But it could be that quantumgravitationaleffectsnearor at

the horizon add terms not of the form (26). In that case transitionsbetween
pure statesand mixed statescould in principle occur.Theseeffects, at present

not well understood,would also removethe enourmousdegeneracyof 1-lilbert
spacenear r = 0, and only a more completetheory than the presentcanperhaps
tell us which of the two theoriesholds for a blackhole.Sowe concludethat the
questionof theprecisevalueof Hawking’s temperatureis still open.
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Can black holes really havea type II gravitational field? We first remark that,
just like in the case of a homogeneousfield, transition to coordinatesthat are

regular at the horizon doubles space-time.The Kruskal coordinatesx, y are
definedby

xy = (r — 2M) e~2M
(27)

x/y = etI2M

wherer and t are Schwarzschildcoordinates.The two relationsthat are obtained
from each other by changing the signs of bothx andy correspondto spacesI

and II. This doubling occurs in exactly the sameway for chargedandrotating

blackholes.
Strictly speakingthe transition towards the coordinates(27) is against our

own philosofphybecausethereis no invariancewith respectto translationsin

the new time variable. Howeverif the massM is large,then the system(27) is
much more continuousnear the horizon than the Schwarzschildcoordinates
r and t.

From a classicalpoint of view identification of spacesI and II isvery strange:

the far future in the Scharzschildcoordinatescorrespondsto the far future in
spaceI and the far past in spaceII. Apparently then, causality is lost. This is

why oneneverobtainedthe type II picturefrom semi-classicalargumentswhere
the radiadionof a classicaldustcloud is consideredas seenby a distantobserver.

In the conventionaltheory, in which macroscopiccausality is postulated
with the same time arrow in spacesI and II, one really considersthe complete
system,collapsing stellar matter and evaporatingblack hole,as one background
configuration onto which a quantummechanicalfields theory can be superim-

posed.The difficulty with that is the back-reactionof the metric. In Kruskal
coordinatesthe Hawking radiation at large Schwarzschildtime originatesin a
region where the collapsing matter has a close to infinite kinetic energyper
particle, so that the gravitationalshockwavesfrom thoseparticlesmay perhaps

not beignored.
So we proposethat the imploding material that producedthe black hole was

too far in the past to be takeninto account.A formal continuationof the Kruskal
coordinatesthen gives us a spaceII which is identical to spaceI so that a type
II gravitational field belongsto the possibilities. In that case,classicallyit looks

odd that we choosethe causaltime arrow in spaceII in a direction oppositeto
spaceI butthereis no contradiction.Certainly,thequantummechanicalequaiton
weget,eq. (16), respectscausalityin all possibleways.

We conclude that the Hawking temperatureof a black hole could be a factor

two higherthan the conventionalderivation gives,without as yet any contradic-
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tion with the known laws of physics.We stressthat thereis no contradictionin
the conventionaltheoryeither. As far as we know, type I and type II gravitational

fields areequallypossibleneara blackhole.

The author acknowledgesdiscussionswith S. Hawking, H. van Dam, F.A.

Bais and P. van Baal.

REFERENCES

[1] S.W. HAWKING, Particle Creation by Black Holes,Comm. Math.Phys.43 (1975,199.
[2] SW. HAWKING, Breakdownof predictability in gravitational collapse,Phys.Rev.D14

(1976),2460.
S.W. HAWKING, The unpredictabilityofQuantum Gravity,CambridgeUniversitypreprint,
May 1982.

Manuscriptreceived:June 30, 1983.

Invited paper


