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In three spacetime dimensions, the Einstein equations imply that source-free regions are 
flat. Localized sources can therefore only affect geometry globally rather than locally. Some 
of these effects, especially those generated by mass and angular momentum are discussed. 

I. INTRODUCTION 

Because Einstein and curvature tensors are equivalent in three spacetime 
dimensions, general relativity is dynamically trivial there. Outside sources, spacetime 
is flat. All effects of localized sources are on the global geometry, which is fixed by 
singularities of the worldlines of the particles; these are arbitrary flat space geodesics. 
This means in particular that the conserved quantities, total energy-momentum and 
angular momentum, are related to topological invariants. As we shall see, there is a 
static ,&-body solution with conical spatial geometry, whose total energy is additive 
and determines the Euler invariant of the spatial surface. Moving particles will also 
be treated. When angular momentum is present, novel phenomena involving time 
appear. 

We shall derive the global J-body geometry both analytically, in terms of an 
explicit metric solution, and geometrically. Angular momentum will be similarly 
discussed both in terms of an explicit “Kerr” solution corresponding to a localized 
spinning source and through its orbital effects. We shall also comment on the 
linearized approximation, and on the absence of a Newtonian limit. 

When a cosmological term is present, the curvature is a (non-vanishing) constant, 
and the situation changes considerably; that analysis will be given elsewhere [ 1 ]. We 
emphasize that we are discussing ordinary Einstein gravity, rather than the quite 
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different “topologically massive” gravity model [2], where additional terms of 
topological origin provide both graviton dynamics and matter couplings. 

Flat but globally nontrivial external solutions were actually first obtained in four- 
dimensional gravity by Marder’ [3] (following an observation by Fierz, as quoted in 
[4]). He gave cylindrically and axially symmetric solutions which had similar 
structure to our static case. The three-dimensional theory is the natural setting for 
those results, since here gravity has no life of its own. Staruskiewicz [S] first 
discussed this model, and obtained the one- and two-body static solutions. 

II. STATIC ,&-BODY SOLUTIONS 

Because of the identity 

R;; = P”=E,~~G;) (2.1) 

linking curvature and Einstein tensors, empty regions where GT = 0 are flat, although 
interior ones, with a non-vanishing stress tensor T,,, and 

G;j = &rGT; (2.2) 

are not. Here G is the gravitational constant, with dimensions of inverse mass in 
c = 1 units. Since we are mainly interested in the “soluble model” aspects of this 
theory, with a view towards quantization, we shall deal only with point sources which 
concentrate curvature on worldlines and so affect the exterior geometry purely in a 
global way. 

Consider the static case, where the metric decomposes into 

-go, = N*(r), gOi = O, gij = Yijtr)l \/-g=Ndi (2.3) 

where g and y are determinants of g,, and yij. 
The Einstein tensor depends on the intrinsic spatial geometry and on the 2.scalar N 

as 

-hGi=+R, G;=O, Gij=-& (DiDj-yi,jD*) N. (2.4) 

Here Di is the covariant derivative with respect to the spatial metric yij. The spatial 
components of the Einstein tensor simplify because of the identical vanishing of the 
two-dimensional Einstein tensor. The form (2.4) of the Einstein tensor follows from 
the static part of the Einstein-Hilbert action, ZEs = J‘d*x & NR. (Throughout R 
denotes the intrinsic scalar curvature of the 2-surface; we never refer to the three- 
curvature scalar to avoid confusion.) Note that fi Gi is the Euler invariant density, 
a total 2-divergence. Outside sources, R vanishes, so the spatial 2-surface is flat. 

I We thank J. S. Dowker for this reference. 
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We now consider the source to be a set of point particles at rest, with masses m, 
located at rn, and stress tensor density 

Too =x m,P(r - rn), pi = 0 = T”* (2.5) 
n 

Recall that the covariant conservation law D, T”” = 0 is equivalent, for a point 
particle, to the geodesic equation, 3’ + ~~,Pzx? = 0. For initially static bodies, this 
reduces to ii = - $g”a. g , oo, or equivalently D, Tw” = 0 reduces to r6, Too = 0. The 
acceleration will consistently vanish for our solution since, as we shall see, go, = -1. 
These results are of course in accord with the Bianchi identity on G,, since 
h[Di, Dj] D’N = ~RjajN = 4 &RaiN = 7”“aiN. We mention that the choice of 
sign of the gravitational constant G is not physically fixed a priori here, in contrast to 
four dimensions: First there is no static interaction to be made attractive and, more 
fundamentally, the gravitational field itself has no energy whose sign must be positive 
(i.e., the same as that of a particle). 

Irrespective of the spatial gauge choice at our disposal, the G, = 0 equations 
clearly imply that D2N = 0, DiDjN = 0, so that N is indeed constant; the convention 
N = 1 is just a calibration of time. We shall solve the G,, equation in isotropic coor- 
dinates yij = $8, (which are always permitted in two dimensions) and then transform 
to curvature (“Schwarzschild”) coordinates to exhibit the global aspects. In this 
frame, 1 &R reduces to - fV2 In (6, where V* is the flat Laplacian. Then, since its 
Green’s function is In r, with V* In r = 27~6*(r), our solution to the time-time 
component of (2.2) is 

lncp=--8nGx m, In ] r - rn 1 + In C (2.6) 
” 

and the metric becomes 

go, = -1, gOi = O, gij = Cd, n I r - r, 1 - 8Gm,. (2.7) 
n 

The constant C (which is neessarily positive to preserve signature) can be removed by 
a resealing of r, except in the singular case JJ m, = 1/4G, which will be discussed 
separately. The metric (2.7) represents the general static ,Y‘-body solution; the two- 
body form was first obtained in [5] by a different argument. A general geometrical 
treatment is given in Section V. There are neither particle interactions nor any hidden 
“rods” holding the particles fixed, since there is no curvature between them. 
Reassurance that this metric is indeed locally flat is provided by transforming to 
curvature coordinates. For the one-body case, this is easily carried out by explicitly 
transforming our line element 

according to 

d12 = r-8Gm[dr2 + r2 do’] (2.8a) 

f = avlra, 8’ = a& a=1-4Gm (2.8b) 
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to the flat element 

dZ* = dp* + p*(dO’)*. (2.8~) 

However, the range of 8’ is now 0 < 19’ < 27ca, and the space is a cone, the unique 2- 
space which is metrically flat except at one point-its vertex.* 

In the above we have taken a to be positive, or m < 1/4G. When m exceeds this 
limit (a < 0), the metric near the particle becomes singular, e.g., the distance from the 
particle to any other point diverges as P. This limitation on the mass may also be 
understood in terms of the formal equivalence between a +P -a and the coordinate 
inversion rtt l/r implied by (2.8). In other words, a high-mass particle at the origin 
with m > 1/4G (a < 0) is actually a particle at infinity with acceptable mass 
1/2G - m (-a > 0). The geometrical counterpart of this argument is given in 
Section V, where it is also shown that composite (many-body) sources can have a 
higher (up to 1/2G) total mass. There is no upper limit on a, hence arbitrary negative 
Gm are permitted. 

At 4Gm = 1, (a = 0), the transformation (2.8~) becomes singular. In conformal 
coordinates, (2.8b) becomes 

dl* = d(ln r)* + de*. -co<lnr<co, o<e<2n, (2.9) 

which is a periodic strip or cylinder in the “Cartesian” coordinates (In r, 0); the 
integration constant C in (2.6) is absorbed into the strip height 60 and into the 
choice of “origin” for In r. The Schwarzschild metric (2.8a) degenerates 
correspondingly. 3 

In the J-body case, the asymptotic form of the metric (for Ir 1 + Ic,, 1) reduces to 
the conical one-body form (2.8a) with M= C m,. Values of M > 1/4G actually 
represent a closed space, as we shall see in Section V. The mapping to a flat-space 
metric is now considerably more intricate. The analysis is aided by the observation 
that the n-body metric has simple form in complex notation 

d12=dxidxinIr-rnJBGmn=dzdz* IT[<z-zn)(Z*-Zn*)]~4Gm,, (2.10) 
n n 

where z =x + iy. Hence the transformation via the generalized incomplete Beta 
function, 

Z = 1’ dz’ rI(z’ - Z,,-4Gm” 

n 
(2.11) 

2 The angular measure 2na is clearly given by the ratio of circumference to radius of the cone. The 
singularity at the origin is manifest from the Cartesian form of the metric, g, = 6, + (a -’ - 1) .Y~.x~/Y’, 
whose value is not well defined there. 

3 In the frame dl’ = dr” + p’(r) do*, the field equation yields the one-body solution p = Br + C, and 
B = 0 is the degenerate case. 
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reduces the above to manifestly flat form, dl* = dZ dZ,4 but with restrictions on the 
range of the new variables dictated by the external source masses and locations. 

Finally we note that, in this classical background space, a quantized system will 
have its angular momentum altered by a factor a, i.e., the eigenvalues will be a-’ 
times an integer or half-integer value.4 A way of measuring the mass would be 
through an Aharonov-Bohm effect in which the local curvatures would be reflected .in 
the phase of a quantum system moving through the otherwise flat space. Light- 
bending would provide another way of locating the sources: A test beam impinging 
on a source would be split and reunited on the other side of the singularity (but light 
still follows a free null worldline in the process). 

These results are quite special to gravity. Two-dimensional electrodynamics (or 
Yang-Mills) is also a model without excitations, but the field strength does not 
vanish outside the charges, hence generic static many-body solutions of the coupled 
Maxwell-charged particle system are excluded. The Gauss equation for the electric 
field a(r) reads 8’ = C e, 6(x - x,). Its general solution is 8 = f C e, e(x -x,,) + gO, 
where E is the sign function and gO is a constant “background field.” For two charges 
with e, = -e,, one can always arrange 8, such that there is no force on either of the 
two initially static particles, but this clearly cannot be accomplished for three or more 
(except for special configurations such as chains of arbitrarily located alternating 
charges of equal magnitude or infinite arrays of equal charges; these constitute a 
rather trivial set compared to the gravitational case). We have taken the Lorentz 
force law on initially static particles, Z:n = -e,B(x,), to exclude the self-force. 

III. ENERGY-MOMENTUM 

We now turn to the energy. Since this model is a gauge theory, there should be a 
flux integral expression for its total “charge,” i.e., energy. But since there is also no 
asymptotic curvature, the only possible energy measure must be topological, and the 
Euler invariant is the only candidate. Indeed, fi Gi is (by (2.4)) both the sum of 
source energy densities and the Euler density, 

-fi Gi = 4 fi R = d E”E~R~, = total divergence. (3.1) 

This is another way of understanding why there is no gravitational field contribution 
to the energy: the full nonlinear & Gz is already a divergence, whereas in four 
dimensions this is only true for its linearized part about an asymptotic background, 
so the total source there is the sum of matter and (nonlinear) gravitational 
contributions. From (2.4), (3.1) we see that the energy is given by 

E= 1/16nGld*x&R =-1/16?rG$dS. Vlnyl=xm,,. (3.2) 
n 

As expected, it is just the sum of source masses. Note that a closed space with S, 

4 We thank F. Wilczek for discussions on this point. 
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topology has Euler invariant equal to 871; consequently the total mass equals 1/2G 
there. 

One may also calculate invariant (geodesic) distances between points in the usual 
way; these will be rather complicated in general, to take into account the “matching” 
of cones from the various sources, and the identification of points along the seams. 

IV. ANGULAR MOMENTUM: ROTATING SOURCES 

Whenever there are two or more moving (non-collinear) particles, the system will 
possess (orbital) angular momentum as well as energy. We shall analyze the 
geometry for moving particles in Section V; here we obtain the “Kerr” solution 
corresponding to a time independent spatially localized spinning source with no 
energy density but only angular momentum density. The metric will of course be a 
transform of the Minkowski q,,,, since exterior spacetime is still flat. However, which 
transform it is can only be understood by analysis of the time-space component of the 
Einstein equations (2.2) whose sources, the momentum densities Toi, determine 
angular momentum, here the single number J, 

J = iEijPj = fgij i d*x(xiT”j - xjpi), (4.1) 

Because there are no gravitational field contributions, our solution will be much 
simpler than the 4-dimensional Kerr metric. 

We consider the stationary (time-independent but not static) axially symmetric 
interval in circular coordinates 

ds* = dr* +f’(r) dO* + 2g,,(r) dt d0 - g,,(r) dt*. (4.2) 

For later convenience we have chosen the spatial gauge g,, = 1. (A change of radial 
coordinates would yield any other desired form, e.g., curvature coordinates: dl’ = 
dr* + p’(r) de* = (dr/dp)* dp* + p* de*.) Note that the coefficient of g,,, written in 
Cartesian coordinates (x = r cos 0, y = r sin 8) is 

dt de = dtr-*(x dy - y dx) = dt(dy 8, - dx a,) In r. (4.3) 

Since In r is the Green’s function, this part of the metric may be expected to to give 
rise, in the field equations, to a singularity appropriate to a localized spin source. 
This is a first indication that angular momentum is present. Note also that g,, has 
dimensions of length, like angular momentum itself: GJ cc (Gm) ur cc r in 
gravitational units. 

The component \/-g Go’ is identically -2Dj7cii, where in the stationary case, 

xii = -fi/2N[DiNj + DjNi - 2yijD,N’] (4.4) 
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with Ni = goi, N2 = yijNiNj - g,,; all operations are with respect to the spatial 
metric, yij. The exterior Gy equation is 

D.n” = 0. 
J (4.5) 

Our metric (4.2) implies that 

?r,l=?r**=71~=o, 

77 ,* = [2@‘/p) N, -N;] p/2N = -@-*N,)‘p3/2N, (4.6) 

where a prime denotes r-differentiation. Consequently, in this frame, Djn{ = aj7c{ and 
(4.5) reduces to an ordinary divergence equation 

a,7ri = 0, ajni = ni2 = 0 =P ?I,* = A. (4.7) 

The absence of covariant differentiation in (4.7) is characteristic of vanishing 
gravitational contribution to angular momentum. To determine the spatial metric, we 
next calculate p(r) from the Gi equation, which is 

fi R = ni.$j/fi = 2(~r,,)~ p - 3. (4.8) 

Although here there is an apparent “gravitational energy density” arising from rcb, we 
shall see that the angular defect (i.e., the energy) actually vanishes for our spinning 
model with 7”” = 0. The spatial curvature does not vanish, of course; this is due to 
our choice of spacetime slicing in terms of curved 2surfaces in flat spacetime. 
Equation (4.8) is an equation for p, 

&Re2p”=2A3pP3 (4.9) 

whose solution is 

p* = (Br + C)’ - (AZ/B’). (4.10) 

The integration constant C is just a shift of origin and may be set to zero. We set the 
scale B to unity, or else there will be a conical singularity, unrelated to our source. 
This is exemplified by going back to the case A = 0, where p” = 0 has the solution 
p = Br + C and B # 1 produces the “mass defect” in 0 as we saw in the static case.’ 
We thus have 

p2=r2-A2. (4.11) 

Finally, we must determine N from the G, = 0 equations. The latter are5 

’ The full set of equations (4.5), (4.8), (4.12), is conveniently obtained from the time-independent part 
of the Einstein action as expressed in terms of our variables 

I,,= lpx{N[& - I/fi(nijn”-n;n;)l +2N,D,,nC’t 



j-DIMENSIONAL EINSTEIN GRAVITY 

(N/2Y) Yij(jrClm ‘lrn - 77;7TE) - (2N/Y)(IcyTcmj - Xtnij) 

+ (DiDj- yijD*) N + l/~{D,(~ijNm)- ;TC~D,N~- 7C~D,Ni} = 0. 

The content of (4.12) is fully determined by its l,l-component, 

p’N’/p + A *N/p’ = 0. 

Equation (4.13) fixes N as 

N* = ,*(p” + A ‘)/p’ = 7*~*(~* -A *)-I 
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(4.12) 

(4.13) 

(4.14) 

and the constant 7 can be absorbed in a time resealing. Finally, we determine N, from 
(4.4) or (4.6) to be 

N,=A+Fp*. (4.15) 

Choosing F = 0, we therefore find that N, is a constant, which, as we shall see, is 
proportional6 to the angular momentum J. Furthermore, 

-g,,~N2-Ni’&p~2(A2+p2)-p-2A2=1. 

Our solution can now be summarized in the line element 

(4.16) 

ds* = (dr* + r* de’) - (dt* - 2A dt db’ + A* de*). (4.17) 

We may now check the singularity structure of rrij and calculate the angular 
momentum (4.1). The latter is given in terms of gravitational variables by the 
standard formula, in Cartesian coordinates 

p = - (&&-l J d2X[Xiajnkj - &,#j 

(4.18) 
=-- (871G) - ’ cj d,Sj(xirkj - xkdj), 

where we have used 8zG fi pi = \r-g Go’ = -2aj7zij. From II” = grrgoonre = 
A(? -A*)-‘, we obtain the Cartesian components zL5 by the usual circular to 
Cartesian transformation and find 

# = -A($ -A*)-’ r-*(FimXmXi + $mXmXi) 

- - A/r4(&imxmxj + @“xmxi) 
r-rm 

= fA(~~~i3~3~ + ~j~i3,3,) In r. (4.19) 

The second line of (4.19) is the asymptotic value of rrii to be inserted in the surface 

’ The II = 4 Kerr solution, evaluated in the equatorial plane, has g,, = N, -J/r at large distances. 
The extra r factor, compared to our g,, = N, NJ, is kinematical, being needed to offset the additional 
dimension in the Gaussian surface integral expression. 
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integral of (4.18). Asymptotically, a,rc”j (or airi) is ~A&km~m(V2 In r), which indeed 

represents an effective localized spin source. The value of Yk is 

p = -(4G)-’ AEfk = JEik. 

This determines the constant A to be -4GJ. 
The interval (4.17) can be recast into Minkowski form 

(4.20) 

ds2 = dr* + r* de* - dT* 

by a change of the time coordinate according to 

(4.21) 

T=t+4GJB. (4.22) 

But there is a singularity, analogous to the mass defect in the static case. Namely, at 
constant t, as 9 reaches 2x, which is identified with 13 = 0, T jumps by 8nGJ and we 
must identify times which differ by &rGJ to preserve single-valuedness. This “time- 
helical” structure may have interesting consequences in the quantized theory. 

We conclude that angular momentum yields a flat spacetime, but the coordinate 
time T has the jump property. Alternatively, in the original form (4.17) the metric is 
singular at the spatial origin and at r =A (as is also clear from the Cartesian forms 
of goi and gij) and this singularity structure has been replaced by the jump in the new 
time coordinate.’ Thus the whole effect of these calculations has again been to 
uncover anomalies in the range of the Minkowski coordinates, and to relate them to 
the source strengths. In the next Section, we shall rederive our results in a totally 
geometrical fashion. 

V. GEOMETRICAL APPROACH 

Since spacetime outside sources is locally flat, it is tempting to describe our 
various analytic solutions purely in terms of spacetime patches with Minkowski 
metric, but connected by somewhat twisted matching conditions. Henceforth we 
consider the case in which all Gmi > 0. Figure 1 shows the static spinless one-particle 
solution (2.8) in 2-space with an excised wedge (as we saw, there is no effect in the 
time direction). The matching condition is expressed by identifying points (x’, x) 
along the edges which are related by the rotation matrix 0, 

x’ = .n@) x, 

t’ = t, 

O(p)= sin 2p ) , 
cos 2p 

/3=4~Gm=n(l -a). 

’ If a nonvanishing localized 70’ were also present, there would be in addition a mass defect in 0. 
whose altered range would have to be included and would modify the eigenvalues of the quantized 
angular momentum. precisely as discussed earlier for conical geometries. 
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FIG. 1. Two-space around a static spinless particle at the origin. The shaded region is to be 
excluded. The dots (0) indicate parts of space that are to be identified with each other. The angle 2b is 
proportional to the mass: /3 = 4xGM = n( 1 - a). 

The two-particle static solution can easily be obtained by combining two of these 
spaces, as was done in 151. Alternatively this solution can be pictured as in Fig. 2. 
Mathematically the matching conditions for particles at the origin and at a consist in 
the identifications 

x’=L?,x, (52a) 

x” = L?, {a + R,(x - a)) 

=b+fi,B,(x-b), 

with 

b= 
sin /I2 

SiNA + P,> 
I2 :‘2a, QI,2 = Jw,.,>. 

(52b) 

(5.3 1 

FIG. 2. Two-particle static solution. Dots (0) must be identified with each other, as must triangles 
(A). The shaded region shows the extra missing part of space as compared with the one-particle solution 
with mass parameter j?, + p,. 
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Here (5.2a), (5.2b) refer to the loci of the dots and triangles, respectively, in Fig. (2). 
We see that this solution coincides with a one-particle solution with mass 
m’ = m, + m, located at x = b, except that a further (shaded) patch of space is 
excised. The mass of a single point source must be less than 1/4G, i.e., a > 0 in 
(2.8b). In the geometric picture (Figs. 1 and 2) this is evident. In (2.8b) positive a 
ensures that 

dp/dr > 0, (5.4) 

which is a locality requirement: the location of the source at r = 0 should correspond 
to p = 0. Formally, as we saw earlier, if a ( 0 the source is at p = co, which is hardly 
acceptable in the geometric picture. The above procedure can readily be extended to 
describe more particles. However, two (or more) particles may have a total mass 
equal or less than 1/2G. This is illustrated in Fig. 3, where m, + m, > 1/4G. The 
“effective” particle with mass m, + m2 is now a virtual one, and necessarily at least 
one other particle has appeared with total mass m3 = (1/2G) - m, - m,. The sum of 
the three masses is 1/2G and space becomes compact, since 

1/87rl d*x fi R = 1 (5.5) 

which is the value of the Euler characteristic for spaces with S, topology. 
Now consider one particle at rest and one, located at a, moving past the first with 

velocity u in the x direction. The matching condition for the second particle is then 
given by the spacetime vector relation 

X’=a+LQ*L-‘(x-a), (5.6) 

FIG. 3. Particles 1 and 2 have masses such that 8, +/3* > a. Space now necessarily closes (unless 
negative masses are allowed) with at least one new particle forming at the left. The sum of all /l’s is 2~. 
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where .R, is the rotation appropriate to a particle at rest (determined by the angle 
deficit corresponding to the rest mass of the particle as in (5.2b)), and L is a Lorentz 
boost, 

cos 2p, sin 2p, 0 
-sin 2& cos 2/I, 0 , 

0 0 1 

i 

cash y 0 sinh y 
L= 0 1 0 

sinh y 0 cash 

tanh y = U. 

The total system behaves like a single particle with the matching condition 

(5.7) 

x”=B,(a+LO,L-‘(x-a)). (5.8) 

Let us try to write this as 

x” = L,[b + .R,(L;‘x - b) + c], (5.9) 

where 0 and b are again spacelike, so that we have an “effective” particle moving 
with a Lorentz boost L,. The need for the timelike vector c will become apparent 
shortly. To determine the unknowns in (5.9) we first equate the coefficients of x in 
(5.8) and (5.9): 

Clearly, 

R,LR,L-’ a4=L,R,L,‘. (5.10) 

tr M = tr Q, = 1 + 2 cos 2fi3, (5.11) 

from which we find the solutions 

+cos p3 = cos /I, COS/?~ - sin /I, sin pZ cash y. (5.12) 

By continuity we must choose the + sign. Knowing R, gives us enough equations to 
find L, from (5.10), 

1 u3 1 z tanh y3; M,, = cosh2 y3 - sinh’ y3 cos 2/3r. (5.13) 

We shall not compute L, further because (5.12) is what we are after: it is our analog 
of the flat space relativistic mass addition formula, 

rn: = rnf + rn: + 2m,m, cash y. (5.14) 
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(Equation (5.14) follows from (5.12) for small values of /I.) To fix b and c it is 
convenient to rewrite (5.8) and (5.9) in the center of mass system. In that system 
particles 1 and 2 are Lorentz boosted by L, and L,, respectively, with distances Q i 

15) 

and a, from the origin. Let us take a, and i, to be spacelike; (5.8) then reads 

XN = a, + L,R,L;‘{-a, + u* + L,R,L;‘(x - a,)), (5. 

which we want to write as 

x” = L!jx + c. (5. 16) 

We have arrived at the center of mass system if Q, is purely spacelike and c purely 
timelike. We find 

and 

R, =L,Q,L;‘L,a,L;‘. (5.17) 

c = L,B,L;‘(u, -a,) 

= L,f2,‘L~‘(Uz - a,) 

+spacelike 

+spacelike. 
(5.18) 

If L, is a boost in the x direction with magnitude y,, as in (5.7), then the timelike 
component of c is 

c,, = 2 sinh yi sin p,(cos /3,(uz - u~)~ - sin /3, cash yi(u, - a,),). (5.19) 

We recognize that for small u and pi, the first term in the bracket is the leading one, 
and it is proportional to the angular momentum 

c, --) 2/3,(a, - a,) X v, = 8nGJ. (5.20) 

This time component in the matching condition (5.16) implies that there is a jump in 
time as one travels around the system, which is exactly what we found in Section IV. 
A possible spacelike component in c would imply that the effective spinning particle 
is not at the origin; it can be absorbed by a displacement, yielding the vector b in 
(5.9). We remark that a localized, pointlike, spinning particle would give rise to 
difficulties with causality: it would become possible to travel along a closed timelike 
contour. One can show that such closed timelike contours are not possible in a space 
with n moving spinless particles, where angular momentum is purely orbital. 

The most general boundary condition for spacetime surrounding any possible 
composite source can be written as 

x’=L?x+z, (5.21) 

where 9 is any Lorentz transformation and z any vector. Causality requires PO0 > 0, 
and if we restrict ourselves to orientable spaces, then det Y = +l. The eigenvalues of 
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9 are eizi4 and 1, corresponding to eigenvectors e, , e:, and e,. The angular 
momentum is then evidently 

.I = l/&G(e,z) (5.22) 

and the trajectory of the “effective” particle is given by 

x’ =x+ (eoz)e,. (5.23) 

We have seen in the static case (Fig. 3) that this trajectory sometimes creates a new 
physical singularity outside the original system, and it must then necessarily represent 
a physical particle that closes the universe. The causality argument tells us that this 
can only happen if J = 0. Finally, /I = 4xGMt,, > 0. 

Clearly the geometric approach gives a powerful way of understanding the global 
and topological features of this (2 + l)-dimensional world. We find it suggestive that 
quantization of angular momentum would correspond to quantization of the jumps in 
the time coordinate, but we do not yet understand how to make use of such an obser- 
vation in a quantized version of this theory. 

VI. LINEARIZED AND NEWTONIAN LIMITS 

In the full theory we have seen that particles at rest do not interact, whereas 
moving particles do interact in some sense, if only because they move in a globally 
“curled” space, although they follow free (locally straight) worldlines. The linearized 
approximation, while still dynamically trivial (vanishing of the linearized Einstein 
tensor implies that the potentials h,, = guL, - vtiL. are pure gauges) also leads to 
coupling among its conserved (prescribed) sources. In any spacetime of dimension D 
(#2), the linearized Einstein equations in harmonic gauge are 

w,,> - fir,,. h;) = -167rGT,,., i?“(h /Al - jq,,.h;) = 0. (6.1) 

The resulting source-source interaction is D-dependent: 

z . INT cc 
J 

dDxTW”O-’ (tul, - (D - 2)-’ q,,,t,“). 

The factor (D - 2))’ has the consequence for D = 3 that (as already noted in 121) 
there is no static coupling, i.e., no r,,, - t,, interaction, in agreement with our 
rigorous static results. However, there are residual, O(U’) forces. These are actually 
instantaneous because the 0-l factor in (6.2) is cancelled when the T,,, are expressed 
in terms of their three unconstrained components. This absence of retardation is in 
accord with the absence of propagating graviton modes (and occurs also in D = 2 
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electrodynamics). Conservation enables one to write al1 six components of P” in 
terms of the three quantities Too, r”;’ and T, defined by the decomposition 

P’ = P,i + MiFO,, ai P; E 0, 

Tij= (6, + naiaj) T+ )13’2aiaj~~~ + n(ai~~ + aji”;‘), 

(-v-2)d (6.3) 

The interaction then reduces to 

I INT cc d3x[2P;V-‘ty - TV2t00 - TooV-2t] (6.4) 

and clearly is of order (0’) or (v,v2). Even if one source is static there is still an 
interaction c.cTV2t,, (e.g., bending of light). This result is compatible with our full 
static metric, since the geodesic equation, fU + &l”$ = 0 will yield an 
acceleration for a moving test particle from the I’$j~k term. Conversely, an initially 
static particle will feel a force from the rb,, term in the field of a moving source, since 
the latter’s spatial stresses will generate a g,, field. Of course, this “force” is not real 
(there is no geodesic deviation between nearby test particles); nevertheless as we have 
seen, it has a counterpart in the linearized approximation where all motion is 
projected into a Cartesian coordinate description. This description corresponds to a 
(harmonic) gauge where the metric is not Minkowski. We conclude that there is no 
conflict between exterior flatness and coordinate-induced apparent forces (light 
bending is another example) in the linearized approximation. The same apparent non- 
geodesic motion is found in the full theory if one projects the worldlines on the cone 
onto a “flat” map. 

Finally, we comment briefly on the discontinuity in the full theory between the 
Newtonian limit and Newtonian gravity, implicit in the fact that g,, = -1 in the 
static solution, so that J’ = -& = 0 for slow test particles. This discontinuity was 
noted long ago [6], essentially on the basis of the absence of linearized To, - t,, 
interaction at D = 3. There is no paradox here, for Newtonian correspondence is not 
guaranteed a priori for Einstein theory. While a Newtonian theory exists in any 
dimension, being defined by V2V= -47cGp, Zi = --3’P’, only the first of these 
elements has relativistic antecedent for D = 3: The familiar D = 4 connection between 
that spatial metric component which is determined by T,, from the time-time Einstein 
equation (and hence identified with V in the Newtonian limit) and the component g,, 
relevant to the geodesic equation breaks down here. Indeed, for D = 2 neither element 
follows from a relativistic action principle, since there is no Einstein action at all: 
fi R is a total divergence, and G,, = 0. The R = 0 equation can only be obtained 
from a covariant action involving non-geometrical variables, e.g., J‘ d2x N fi R, 
where the scalar field N is a Lagrange multiplier. 

While this paper was in preparation we received two preprints 17, 8 ] also dealing 
with three-dimensional gravity. 
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