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Editorial Note

A review article should not lead to any major controversy even if it often implies that the author
takes sides when conflicting results or approaches exist. Yet, when it covers a delicate and topical
question, it may happen that some important controversy escapes the editor’s attention. The very
important and difficult “U(1) problem” was reviewed by G.A. Christos in a Physics Reports article
published in 1984.

The present article by G. 't Hooft is meant to be a critical supplement to this former review. The
editor is thankful to the present author to thus help to clarify this difficult question for the readers of

Physics Reports.
M. Jacob
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1. Introduction

In addition to the usual hadronic symmetries the Lagrangian of the prevalent theory of the strong
interactions, quantum chromodynamics (QCD) shows a chiral U(1) symmetry which is not realized,
or at least badly broken, in the real world [1]. Now although it was soon established that the
corresponding current conservation law is formally violated by quantum effects due to the Adler-
Bell-Jackiw anomaly [2] it was for some time a mystery how effective U(1) violating interactions
could take place to realize this violation, in particular because a less trivial variant of chiral U(1)
symmetry still seemed to exist. Indeed, all perturbative calculations showed a persistence of the U(1)
invariance.

With the discovery of instantons [3], and the form the Adler-Bell-Jackiw anomaly takes in these
nonperturbative field configurations, this so-called U(1) problem was resolved [4, 5]. It was now clear
how entire units of axial U(1) charge could appear or disappear into the vacuum without the need of
(nearly) massless Goldstone bosons. In a world without instantons the m and ' particles would play
the role of Goldstone bosons. Now the instantons provide them with an anomalous contribution to
their masses.

In the view of most theorists the above arguments neatly explain why the v particle is considerably
heavier than the pions (one must compare mfl with m2), and v much heavier than the kaons.

Not everyone shares this opinion. In particular Crewther [6] argues that Ward identities can be
written down whose solutions would still require either massless Goldstone bosons or gauge field
configurations with fractional winding numbers, whereas experimental evidence denies the first and
index theorems in QCD disfavor the second. If he were right then QCD would seem to be in serious
trouble.

In a recent review article this dissident point of view was defended [7]. The way in which it refers
to the present author’s work calls for a reaction. At first sight the disagreement seems to be very
deep. For instance the sign of the axial charge violation by the instanton is disputed; there are serious
disagreements on the form of the effective interaction due to instantons, and the Crewther school
insists that chiral U(1) is only spontaneously broken whereas we prefer to call this breaking an
explicit one. Now as it turns out after closer study and discussions [8], much of the disagreement (but
not all) can be traced back to linguistics and definitions. The aim of this paper is to demonstrate that
using quite reasonable definitions of what a “symmetry” is supposed to mean for a theory, the
“standard view” is absolutely correct; chiral U(1) is explicitly broken by instantons, and the sign of
AQ; is as given by the anomaly equation; the effective Lagrangian due to instantons can be chosen to
be local and polynomial in the mesonic fields, and the m and v’ acquire masses due to instantons with
integer winding numbers.

In order to make it clear to the reader what we are talking about we first consider a simple model
(section 2) which we claim to be the relevant effective theory for the mesons in QCD (even though it
is dismissed by ref. [7]). The model shows what the symmetry structure of the vacuum is and how the
m particles obtain their masses. It also exhibits a curious periodicity structure with respect to the
instanton @ angle, which was also noted in [7] but could not be cast in an easy language because of
their refusal to consider models of this sort.

Now does the model of section 2 reflect the symmetry properties of QCD properly? Since refs.
[6,7, 8] express doubt in this respect we show in section 3 how it reflects the exactly defined operators
and Green’s functions of the exact theory. The calculation of the m-mass is redone, but now in terms
of QCD parameters. We clearly do not pretend to “solve” QCD, so certain assumptions have to be
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made. The most important of these, quite consistent with all we know about QCD and the real world,
is

(Gq)=F#0. (1.1)

Now refs. [6,7] claim that in that case one needs gauge field configurations with fractional winding
numbers. Our model calculations will clearly show that this is not the case.

How can it be then if our calculations appear to be theoretically sound and in close agreement with
experiment, that they seem to contradict so-called “anomalous Ward identities”? To answer this
question we were faced with unraveling some problems of communication. The current-algebraic
methods of refs. [6, 7] were mainly developed before the rise of gauge theories but are subsequently
applied to gauge-noninvariant sectors of Hilbert space. Their language is quite different from the one
used in many papers on gauge theories [4] and due to incorrect “translations” several results of the
present author were misquoted in [7]. After making the necessary corrections we try to analyze, in
our own language, where the problem lies.

There are two classes of identities that one can write down for Green functions. One is the class of
identities that follow from exactly preserved global or local symmetries. Local symmetries must always
be exact symmetries. From those symmetries we get Ward identities [9] (in the Abelian case), or
more generally Ward-Slavnov-Taylor [10] identities, which also follow from the (exact) Becchi-
Rouet-Stora [11] global invariance.

On the other hand we have identities which follow from applying field transformations which may
have the form of gauge transformations but which do not leave the Lagrangian (or, more precisely,
the entire theory) invariant. These transformations are sometimes called Bell-Treiman transform-
ations [12] in the literature, but “Veltman transformations” would be more appropriate [13]. The
identities one gets reflect to some extent the dynamics of the theory and form a subclass of its
Dyson-Schwinger equations. Thus when refs. [6, 7] perform chiral rotations of the fermionic fields,
which do not leave 6 invariant, they are performing a Veltman transformation, and their so-called
“anomalous Ward identities” fall in this second class of equations among Green functions.

It is in the second derivative with respect to 6 that refs. [6, 7] claim to get contradiction with our
model calculations [8]: the second derivative of an insertion of the form

i0FF , (1.2)

in the Lagrangian vanishes, whereas the simple “effective field theory” requires an insertion of the
form

e’ det(g,4z) +h.c., (1.3)

of which the second derivative produces the n mass. So they claim that in the real theory the m mass
cannot be explained that simply.

In section 5 we explain why, in the modern formalism this problem does not arise at all. (1.2)
should not be confused with ordinary Lagrange insertions and after resummation correctly reproduces
(1.3). The canonical methods are not allowed if one tries first to quantize the gauge fields A, and
only afterwards the fermion fields. The fermions have to be quantized and integrated out first. The
phenomenon of ‘“‘variable numbers of canonical fermionic variables” resolves the dilemma. We
conclude, that the m mass is what it should be and there is no U(1) problem.
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There is a further linguistic disagreement on whether the U(1) breaking of QCD should be called
an explicit or a spontaneous symmetry breaking. In the effective Lagrangian model the symmetry is
clearly broken explicitly. Several authors however refer to the 6 angle as a property of the vacuum [5]
in QCD. Of course as long as one agrees on the physical effects one is free to use whatever
terminology seems appropriate. We merely point out that all physical consequences of the instanton
effects in QCD (in particular the absence of a physical Goldstone boson) coincide with the ones of an
explicit symmetry breaking. Our 6 angle is as much a constant of Nature as any other physical
parameter, to be compared for instance with the electron mass term which breaks the electron’s chiral
invariance.

Only if one adds nonphysical sectors to Hilbert space one may obtain an alternative description of
the 6 angle as a parameter induced by boundary effects producing a spontaneous symmetry break-
down. However, any explicit symmetry breaking can be turned into “‘spontaneous” symmetry break-
ing by artificially enlarging the Hilbert space. One gets no physically observable Goldstone boson
however, so, the most convenient place to draw the dividing line between spontaneous and explicit
global symmetry breaking is between the presence or absence of a Goldstone boson.

We explain this situation in section 6, where we show that any nonphysical symmetry can be forced
upon a theory this way. In section 7 we show how the spurious U(1) symmetry that is used as a
starting point in [7], actually belongs to this class. Section 8 shows that if one takes into account the
enlarged Hilbert space with the variable 6 angles then the effective theory of section 2 neatly obeys
the so-called anomalous Ward identities. The effective model shows the vacuum structure so clearly
that all problems with “fractional winding numbers” are removed.

The decay amplitude n— 37 posed problems similar to that of the vy mass. As explained correctly
in [7] this problem is resolved as soon as the U(1) breaking is understood so no further discussion of
this decay is necessary. It fits well with theory.

Appendix A is a comment concerning the sign of axial charge violation under various boundary
conditions.

Appendix B discusses the instanton-induced amplitude. The contribution from “small” instantons
can be computed precisely but the infrared cutoff is uncertain. (Rough) Estimates of the amplitude in
a simple color SU(2) theory give quite large values, which confirms that instantons may affect the
symmetry structure of QCD sufficiently strongly such as to explain the known features of hadrons.

2. A simple model

Before really touching upon some of the more subtle aspects of the “U(1) problem” we first
construct a simple “effective Lagrangian” model. Whether or not this model truly reflects the
symmetry properties of QCD (which we do claim to be the case) is left to be discussed in the
following sections. For simplicity the model of this section will be discussed only in the tree-
approximation.

To be explicit we take the number of quark flavors to be two. Generalization towards any numbers
of flavors (two and three are the most relevant numbers to be compared with the situation in the real
world) will be completely straightforward at all stages in this section*. So we start with the “unbroken
model” having global invariance of the form

* See however the remark following eq. (2.24).
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U(L), ®U(L)g, with L=2, (2.1)

where the subscripts L and R refer to left and right, respectively. We consider complex meson fields

with the quantum numbers of the quark—antiquark composite operator gg;q;,. They transform under
(2.1) as:

d’ = Uzk¢klUlj ) (2.2)
to be written simply as
¢’ =UPUN . (2.3)

Since we have no hermiticity condition on ¢, there are eight physical particles o, 1, 7, and a,
(a=1,2,3):

=io+in)+ (a+im) T, (2.9)
where 7">* are the Pauli matrices. We take as our Lagrangian:
£=-Trd, ¢, ¢' —V(¢). (2.5)

A potential V|, invariant under (2.1) is

Vo(9) == Tr o' + 3(A, = 1,)(Tr ¢')" + 42, Tr(¢9 ')’ (2.6)
2
=——-(a tn+a’+w )+ (a‘ +n°+a* + %) s 5 2 (g +qm) +(a A a)).
(2.7)
Assuming, as usual
(o)y=f, oa=f+s, (2.8)
we get, by taking the extremum of (2.7),
Fr=24A (2.9)
Al 17.2 2 2 2\\2 A2 2 2
V0=—2—(fs+7(s +tn ta + 7)) +?((fa+sa+mr) +(a A m)), (2.10)
from which we read off:
m;=Afr=20", mi=0, mi=M\f', ml=0. (2.11)

There are four Goldstone bosons, as expected from the U(2)®U(2) invariance, broken down to
U(2) by (2.8).
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We now consider two less symmetric additional terms in V:

V,=U +U};

U, =“me*fyq, = me* Tr = me™(o +in),
and:

V,=U,+U%;

U,=“ke” det(qpq.) "=« e’ det ¢

=k (o +in)’ - (a +iw)).

(2.12)

(2.13)

Here, m, x, x and @ are all free parameters. The terms between quotation marks are there just to
show the algebraic structure, up to renormalization constants. Notice that V, still has the U(1)

invariance
p—ed,
or
(g +in)—>e“(o+in), (a+im)>e“(a+im).

Therefore we are free to rotate
X2 xto, -0+ 2w .

(Here the 2 would be replaced by L in a theory with L flavors.)
Consider first the theory with x =0;

V=V,+tV,.
Then we can choose w = 7 — y, and

V,=—-mo.

So x is unphysical. Equation (2.9) is replaced by
FA=20%, +2miA f |

Consequently, in (2.11) we get

2 _ 2 _
m,=m,=mif.

o

Note that with the sign choice of (2.17), f must be the positive solution of (2.18).

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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Now take the other case, namely m =0;

V=V, +V,. (2.20)
It is now convenient to choose

w=%imr-9). (2.21)
So here the angle 8 is unphysical.

V.= -2k(c’+ a7’ —n" - a?). (2.22)

fr=2u%A, +8k/A, . (2.23)
The masses of the light particles become

m:=0; mf] =8K . (2.24)

So the « term contributes directly to the m mass and not to the pion mass. In case of more than two
flavors the determinant in (2.13) will contain higher powers of ¢, and extra factors f will occur in
(2.24). But the mechanism generating a mass for the n' will not really be different from that of the 7.

It is interesting to study the case when both m and « are unequal to zero. We then cannot rotate
both y and @ independently and one of the two angles is physical. Since obviously the model
Lagrangian is periodic with period 27 in 6, its physical consequences will be periodic in y with period
ar, because of the invariance (2.15). In the general case we now also expect a nonvanishing value for

(m)=g. (2.25)
So we write =g+ h, where g is a c-number and 4 a field. The conditions for f and g are:

%Alf(f2+g2)—,u,zf+mcosX+4Kfcos0—4Kgsin0=0;
(2.26)
Ing(fP+g")~ u'g—msin y —dxgcos 6 —4xfsin6=0.

It will be convenient however to choose w in (2.15) such that g =0. According to (2.26) one then
must have

msin y +4xfsin@=0. (2.27)

Now we find

2 m Cos x
m,=— ,

" f

2 mcosy
m,=-— 7 —8kcosf, (2.29)

(2.28)
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apart from an mn-s mixing. The effect of this mixing however goes proportional to
16x”sin” 6 = m” sin® (2.30)

and therefore is of higher order both in x and m.
Consider now the function

F(@) = mcos(x + w) + 2«f cos(8 +2w) . (2.31)
Then (2.27) requires w to be a solution of

F'(0)=0 (2.32)
(after which we insert the replacement (2.15)), and (2.29) implies:

fm? = F'(0)>0. (2.33)

So, w must be chosen such that (2.31) takes its minimum value. Furthermore, the replacement
»— w + 7 switches the sign of the first but not of the second term in F(w), so, if  is chosen to be
the absolute minimum of (2.31), then indeed also

2

m.>0, (2.34)

o

except when there are two minima. In that case there is a phase transition with long range order (due
to the massless pion) at the transition point.
This phase transition is at

x=ml2,

sin 8 = —m/4«kf (2.35)
cos <0,

or, if a rotation (2.15) is performed:

x=0,
sin 8 = m/4«kf , (2.36)
0<0<mw/2.

A further critical point may occur at

x=0
0=ml2 (2.37)
m = 4«kf
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where also m_ vanishes. Of course these values of the parameters are not believed to be close to the
ones describing real mesons. Phase transitions of this sort were indeed also described in ref. [7]. But
because no specific model such as ours was considered, the periodicity structure in y and 6 was
discussed in a somewhat untransparent way. Although 0bviously in our model we have a periodicity
in 6 w1th perlod 2, ref. [7] suspected a period 4. Indeed if w in (2.15) shifts by an amount 7, then
me*— —me”™ and one might end up in an unstable analytic extension of the theory. Clearly the
properties of the minimum of the potential F(w), eq. (2.31), can only have period 27 in 6.

3. QCD

If Quantum Chromodynamics with L quark flavors, were to have an approximate U(L); X U(L)y
symmetry only broken by quark mass terms, the model of the previous section with V=V + V_ could
then conveniently describe the qualitative features of mesons, but with  and « almost degenerate.
(In the case L >2 one merely has to substitute the 2 X 2 matrix ¢ by an L X L matrix.) That would
be the case if somehow the effects of instantons could be suppressed.

Let us now consider instantons and write in a shorthand notation the functional integral [ for a
certain mesonic amplitude in QCD. For the ease of the discussion we assume all integrations to be in
Euclidean space-time:

I= f DA f Dy Dy explS, + S, , +i0FF - Jy], (3.1
with

Dy Dy = [T %, (x) d e (x) 4 (x) A (x) (3.2)
5.= [ dx(-1F2, (),

i} (3.3)
Say=—0(yD +m)y,.
FF= f dx (8°F,, € ,asFap/647°) (3.4)
J‘/_"// =J-rr(¢_’LT¢R - J’RWL) + Jﬂ(‘l—’L‘/’R - JJR(IIL) +e (3.5)

As we will see shortly, it is crucial that the integration over ¢ is done first and the one over A
afterwards.

Since we have no way of solving the theory exactly certain simplifying assumptions must be made.
We now claim that the assumptions to be formulated next will in no way interfere with the known
symmetry properties of the low-energy theory. Discussion of this claim will be postponed to sections

An (anti-)instanton is a field configuration of the A fields with the property

f Fi F g€ vap d*x = (-)64m%g*, (3.6)
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where AV is the volume of a space-time region. Outside AV we have essentially IF'“,| =0 but we
cannot have |A| =0 there because then (3.6) would vanish as the integrand is a total derivative.

The assumption we make is that the A integral can be split into an integral over instanton-locations
and an integral over perturbative fluctuations around those instantons. We do this as follows. Let us
divide space-time into four-dimensional boxes with volumes AV of the order of 1(fm)*. Each box may
or may not contain one instanton or one anti-instanton. (There could be more than one instanton or
anti-instanton in a single box, but we choose our boxes so small that such multi-instantons in one box
become statistically insignificant.) The essential point is that since an instanton in a box AV will do
nothing but gauge-rotate any of the fields outside AV, the instanton-numbers in each box are
independent variables. Notice that at this point we do not require these twisted field configurations in
the boxes to be exact solutions to the classical field configurations. This is why we have no difficulties
confining each instanton to be completely inside one box, with only gauge rotations of the vacuum
outside.

Let us then write

A=A __+8A (3.7)

inst

where A, is due to the instantons only, then the integral over 8A will essentially commute with the
integral over the instantons. The 8A integral is assumed to be responsible for the strong binding
between the quarks. The confinement problem is not solved this way but is not relevant here since we
decided to concentrate on low-energy phenomena only.

Note that the integration over A, . is more than a summation over total winding number ».

Rather, if we write

v=v, — v (3.8)

inst

then the integral over A,  closely corresponds to integration over the locations of the v, instantons
and the v_ anti-instantons. It is important that we restrict ourselves to instantons with compact
support (namely, limited to the confines of the box AV in which they belong). A larger instanton, if it
occurs, should be represented as a small one in one of the boxes, with in addition a tail that is taken
care of by integration over dA. ‘“Very large” instantons are irrelevant because they would be
superimposed by small ones. In short, in eq. (3.7), A, is defined to be a smooth field configuration
that accounts for all winding numbers inside the boxes, and A is defined to contribute to [ FF by
less than one unit in each box.

Now consider an isolated instanton located within one of our boxes, located at x = x,. What is
discussed at length in the literature is the fact that the ¢ integration is now affected by the presence of
a zero mode solution of the Dirac equation. If there were no other anti-instantons and no source term
J then the fermionic integral, being proportional to the determinant of the operator v,(d, +igA,),
would vanish because of this one zero eigenvalue. If we do add the source term Jyny the integral need
not vanish. In ref. [4] it was derived that the instanton exactly acts as if it would contain a source for
every fermionic flavor. Thus with one instanton located at x = x, the fermionic integral

| Dy D fexps,,, + 70w (39)

has the same effect as the integral



G. 't Hooft, How instantons solve the U(1) problem 369

« | DY D [exp(S, , + 1] det(d(x,) v (x,) (3.10)

where « may be computed from all one-loop corrections [4]. Indeed it was shown that the zero
eigenmodes for all flavors which extend beyond the volume AV conveniently reproduce the fermionic
propagators connecting x, with the sources J. The fact that (3.9) does have the same quantum
selection properties as (3.10) can also be argued by realizing that a gauge-invariant regulator for the
fermions had to be introduced, and instead of the lowest eigenmodes one could have concentrated on
the much more localized highest fermionic states. The correctly regularized fermionic integral contains
a mismatch by one unit for each flavor between the total number of left handed and right handed
fermionic degrees of freedom. Since this happens both for the fermions and the antifermions ¢ the
determinant in (3.10) consists of products of L fermionic and L antifermionic fields.

Since we do require that the SU(L), ® SU(L);, is kept unharmed by the instantons, the determin-
ant is at first sight the only allowed choice for (3.10) but, actually, if one does not suppress the color
and spin indices, one can write down more expressions with the required symmetry properties.

Next consider v, instantons, located at x = x;. Following a declustering assumption which, at least
to the present author’s taste, is quite natural and does not require much discussion, we may assume
these to act on the fermionic integrations as

< | DD ] det(, (x) B(x) (3.11)
i=1
Let us add the @ dependence and integrate over the instanton locations x;:
L' el H d4xi . (3.12)
v,. i

The denominator »,! is due to exchange symmetry of the instantons.

We now extend our declustering assumption to the anti-instantons as well. This assumption was
vigorously attacked in [6-8]. Indeed one might criticize it, for instance by suggesting that “merons”
play a more crucial role [14]. We insist however that the assumption in no way interferes with the
symmetry properties of our model. We will see in sections 7 and 8 that the anomalous Ward identities
will be exactly satisfied by our model. To avoid confusion let us also stress that our declustering
assumptions refer to the QCD part of the metric only, not to the contributions of the fermions which
we denote explicitly. So there is no disagreement at all with the findings of ref. [15]. Indeed, our
approach here is closely analogous to theirs.

Thus, consider v_ anti-instantons. The complete instanton contribution to the functional integral is

DIEDIRS

v,=0v_=0 V+!V,_!

vy tv_ v_

e[ atr aet( 0 () ([ ¢ dette i) (3.13)

The summations are now easy to carry out:
(3.13)=exp f d*x[x e” det ¢y (x) e (x) + k €7 det ¢ (x) ¥ (¥)] (3.14)

which is precisely the effective interaction V, of eq. (2.13). The remaining integrals over the fermionic



370 G. 't Hooft, How instantons solve the U(1) problem

fields ¢ and the perturbative fields 34 may well result in the effective Lagrangian model of section 2.
Notice that, before we interchanged the A, , and ¢, ¢ integrations, we have made the substitution
(3.10). This will be crucial for our later discussions. Once the substitution (3.10) has been made, the
(A-field-dependent) extra fermionic degrees of freedom have been taken care of, and only then one is
allowed to interchange the A and the ¢ integrations. This is how (2.13) follows from (3.14).

4. Symmetries and currents
Let us split the generators A, and Ay for the U(L), X U(L)y transformations into scalar ones, A”

and A°, and pseudoscalar ones, A? and A2. The infinitesimal transformation rules for the various fields
considered thus far are:

B = — 3T (A" + Ay +i(A° + Ay, (4.1)
B = — 3 (A" = A +1(A° = A, (4.2)
8¢ = —3iA"[1%, ¢] - 3iAS{r", §}, +2iA5H, (4.3)
do = Alm, — 24, (4.4)
dn=—Ala, +2A0, (4.5)
dm, = g, A’m, — Alo +2A%0, , (4.6)
da, = ¢, Ao, + Alp - 2Am, (4.7)
ddet ¢ =4iAldet § . (4.8)

In a theory with L flavors the factor 4 in eq. (4.8) must be replaced by 2L. In a classical field theory
the currents are most easily obtained by considering transformations (4.1)-(4.8) with space-time
dependent A,(x). Their effect on the total action can be written as

38 = f d*x(=F,A,(x) - 1.3, A(x)) | (4.9)

(here i=1,...,8).
Since according to the equations of motion 85 =0 for all choices of A,(x), one has

d,1,(x) = F(x). (4.10)

A Lagrangian which gives invariance under the space-time independent A; must have F, =0, so that
the current J,, is conserved.

We are now mainly concerned about the current J, s associated with A]. The QCD Lagrangian
(3.1) produces the current
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Js =ity v, (4.11)
and, prior to quantization:

9,05 = Zimpysyp . (4.12)

As is well known, however, eq. (4.12) does not survive renormalization. Renormalization cannot be
performed in a chirally invariant way and therefore the symmetry cannot be maintained, unless we
would be prepared to violate the local color gauge-invariance. But violation of color gauge invariance
would cause violation of unitarity, so, in a correctly quantized theory, (4.12) breaks down. A
diagrammatic analysis [2] shows that, at least to all orders of the perturbation expansion, one gets

.y 2
Lg" o fo (4.13)

3
167~ * *

9,15 = 2impysp -
with

F,, =3%¢,,.5Fu- (4.14)

uy

We read off that, if we may ignore the mass term, then in a space-time volume V with », instantons
and v_ anti-instantons

f d% 4,7 5= —2L(v, —v_). (4.15)
A%

Here the factor i is an artefact of Euclidean space. Defining the charge Q. in a 3-volume V, by
Q,= j J,dx =i f I dx=0,.-0,, (4.16)
Vs Vs
each instanton causes a transition*

AQ,=2L. (4.17)

This is called the “naive” equation in ref. [7]. Since we were working in a finite space-time volume V
the nature of the “vacuum” has not yet entered into the discussion. Remarks on the language used
here and in ref. [7] are postponed to appendix A.

Now let us write the corresponding equation in our effective Lagrangian model. Here,

Jus=2Tr{(d,¢6%)d - ¢*9,¢} (4.18)

and

* Apart from the disputed sign there are also differences in sign conventions with ref. [7].
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3,J,s=—2m(ncos x + osin y) + 16x(a - 7 — on) cos § +8k(n° +a’— o’ —w*)sing. (4.19)

Before comparing this with eq. (4.13) of the QCD theory let us chirally rotate over an angle 3 y. The
mass term in the original Lagrangian then becomes

—gmy cos y — ibmyypsin y (4.20)

and then (4.13) becomes

2

- - iL .
3,Js = 2imfry,s cos x — 2miay sin y — —o5 F° F2 . (4.21)

2
lom” * *

Therefore the first term in (4.19) can neatly be matched with the first terms of (4.21).

An issue raised in refs. [7, 8] is that there is an apparent discrepancy if we try to identify the last
terms of (4.19) with the last term of (4.21). The last term of (4.21) contains the color fields only and
there is absolutely no 6 dependence here. But the last terms of (4.19) do show a crucial 6
dependence. It is essentially

8« Im(e" det ¢) . (4.22)

Where did the 6 dependence come from?

One way of arguing would be that the 8 dependence of (4.22) is obvious. Chiral transformations
are described by eq. (2.15) and any symmetry breaking term in a Lagrangian can obviously not be
invariant at the same time. So the 6 dependence of (4.22) is as it has to be. The symmetry breaking
in QCD is not visible in its Lagrangian but is due to the 6 dependence of the regularization
procedure.

However, although this argument may explain why (4.19) shows a 8 dependence and (4.21) does
not, it does not explain why nevertheless these two theories can describe the same system. This is
(partly) what the dispute is about. We claim that one can identify in the effective theory

1287 - cpa fa
_ZEZ_ Im(e” det ¢) = —iF, F,,, (4.23)

so that, if § =0, one may identify FF with the 7 field. At the same time we would also like to put

¢ = qrdy » (4.24)

but this  phase seems to be in disagreement with the canonical quantization procedure if A, g, q;
and ¢ were to be considered as independent canonical variables. Another way of formulating this
problem is that the right hand side of (4.23) seems to commute with the chiral charge operator Q.
while the left hand side does not.

Notice that if we could somehow suppress instantons essentially FF would vanish. The left
hand side of (4.23) would vanish also, because «— 0. This suggests one simple answer to our
problem: equation (4.23) violates axial charge conservation, but that is to be expected in a theory
where axial charge is not conserved. Unfortunately some physicists insist in considering the U(1)
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violation by instantons as being “spontaneous” rather than explicit and therefore they rejected this
simple answer. A rather curious attempt to bypass the problem was described in [7]. They first
propose to replace our V, of eq. (2.13) by

V! =k Tr(log(¢/d")) . (4.25)

But this also does not commute with the axial charge operator and furthermore the logarithm is not
single-valued so (4.25) makes no sense at all. So then they propose

f V=g f (5—1)(,9“ Trlog(¢/d ")) . (4.26)

X

It is not obvious how this expression should be read such that it does make sense. If it is equivalent to
(4.25) then clearly no improvement has been achieved. The problem of a multivalued logarithm has
merely been substituted by the problem of an infrared divergent integral in x space. Equation (4.26)
is then a clear example of linguistical gymnastics that should be avoided: formally it appears to be
chirally invariant, yet it is equivalent to the local term (4.25), which is not.

We conclude in this section that the aforementioned problem is not solved by the logarithmic
potentials V! of egs. (4.25), (4.26). Let us call this problem the “U(1) dilemma”. The correct
resolution of the U(1) dilemma will be given in the next sections.

5. Solution of the U(1) dilemma

We must keep in mind how and why an effective Lagrangian is constructed. The word “effective”
is meant to imply that such a model is not intended to describe the system in all circumstances.
Rather, the model gives a simplified treatment of the system in a given range of energies and
momenta. In this case we are interested in energies and momenta lower than, say, 1 GeV.

Now the complete theory contains variables at much higher frequencies. In as far as they play a
role at lower energies, we must assume that they have been taken care of in the effective model.
Consequently, the simple identification (4.24) is not correct as it stands. It should be read as

(5 = (q-RqL)low frequencies * (51)

But what does “low frequency” mean? In a gauge theory the concept “frequency” need not be
gauge-invariant. Therefore the splitting between high frequency and low frequency components of the
quark fields must depend in general on the gluonic fields A, . This is why the contribution of the high
frequency components of the quark fields to the axial current J ; may depend explicitly on the A
fields, a fact that is correctly expressed by the so-called “anomalous commutators™ of [6,7]. After
integrating out the high frequency modes of the quark fields, but before integrating out the A fields,
we have an expression for the axial current which has the following form:

J,s=2Tr{(d,¢%) ¢ — ¢*9, 0} + J.s(A). (5.2)

It is J; ;(A) which is responsible for the nontrivial axial charge of the quantity FF in (4.23). Let Q; be
the charge corresponding to J,;. How does FF commute with Qs?
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Rather than FF itself, it is the integral over some space-time volume AV,

[ Fr=vi-va, (53)

AV

that is relevant in (4.13). (We use the short hand notation of eq. (3.4).) Let us take AV so small that

fFﬁ=o or *1. (5.4)

AV

(i) If FF=0 then we are not interested in its quantum numbers.
(ii) Whenever the right hand side of (5.3) is =1 we have an amplitude in which 2L units of axial
charge are created.
(iii) The higher values of the right hand side are negligible.
The creation or annihilation of axial charges occurs because of the extra high frequency modes of
U, (//R or ¢, and yy that make the functional integral non-invariant. Let us call their contribution Z.
If vy, =1 then

Z= f l;[D«lfL I1 DwRHDwR H Dy (exp S), (5.5)

N+1

where the subscripts under the multiplication symbols denote the numbers of variables to be
integrated over. Then if

o Uy = e_iw‘l'L )

iw (5.6)
(pR_) Rl)l’R =¢ ¢‘R ?
we have for all integrals over the anticommuting fields:
thpL—wi"’ JD!/IL ,
(5.7)
fD:[tR—>e_i‘”J'D¢/R ,
so that
7 se toly (5.8)

In this discussion we only include the high frequency components of the ¢ fields. We see two
things: the effective interaction Z due to an instanton transforms exactly as our insertion U, of eq.
(2.13), and secondly that, in a simplified picture where FF takes integer values only (eq. (5. 3)) the
quantity FF, after integration over the high frequency fermionic modes, transforms with a factor

et2iwL , (5.9)
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so that there is no longer any conflict* with (4.23). The transformation rules (4.1-4.8) hold for the
effective fields. The terms containing A3 tell us how the various fields commute with Q.:

(s, %]=% (5.10)
[Qs, Y] = —¥r (5.11)
[Qs, #]1=2¢ (5.12)
[Qs, o] =2in ‘ (5.13)

etc.

6. Fictitious symmetry

The chiral U(1) symmetry breaking in QCD is an explicit one because the functional measure
[ Dy fails to be chirally invariant when regularized in a gauge-invariant way [21]. This neatly explains
why no massless Goldstone bosons are associated with this symmetry. Yet in several treatizes the
words “spontaneous symmetry breaking” are used. How can this be?

Any broken global symmetry can formally be considered as a “spontaneously” broken one by a
procedure consisting of two steps.

(i) Enlarge the physically accessible Hilbert space by adding all those Hilbert spaces of systems
that would be obtained by applying the phoney symmetry transformation:

P =9xS (6.1)

where 9 is the original Hilbert space and S the space of physical constants describing symmetry
breaking.

(ii) Define the symmetry operator(s) as acting both in S and in §. We then obtain transformations
in ' that obviously leave the Hamiltonian H invariant. This procedure allows one to write down
Ward identities for theories with symmetries broken explicitly by one or more terms in the Lagran-
gian. Since such identities were excessively used and advocated by Veltman in his early work on gauge
theories with mass-insertions, we propose to refer to the above transformations as Veltman transfor-
mations [12].

Consider for example quantum electrodynamics with electron mass term

—m*l/_fL‘l’R - m‘/_’R‘/’L . (6.2)

Then S is the space of complex numbers m. In this theory then, m is promoted to be an operator
rather than a c-number. The chiral transformation

.
e Yy
L L

(6.3)

m— e2iwm

* For the factor e see section 7.
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is obviously an invariance of this theory. If in the “physical world”
(m)=m=real (6.4)

then one could argue that the symmetry (6.3) is “spontaneously broken”.
The canonical charge operator Q associated with (6.3) is now

- d d
-0u- 0 s2lm o m2) .
Q QR QL 2 m dm* m im ’ (6 5)
which commutes with (6.2). Thus, Q is exactly conserved. But, since m is not a dynamical field, the
new term cannot be written as an integral over 3-space, unless we enlarge the Hilbert space once
again.

Let us now consider a Feynman diagram in which the mass term (6.2) occurs perturbatively as a
two-prong vertex. Let there be a diagram with »™ insertions of the last term in (6.2), going with m,
and v~ of the first term, going with m*. We have

AQs=AQy —AQ =2(v" —v")

AQ=0.

(6.6)

Only by brute force one could produce a current of which the fourth component would give a charge
satisfying (6.6):
jn = J#S + K#
) (6.7)
9K, (x)==2i(p"(x) = p (x)

where p“(x) is the density of the corresponding mass insertion vertices,

Fig. 1. Propagating electron (solid line) with mass terms. The propagators are expanded in m, yielding artificial particles (schizons, dotted lines)
that carry away two units of axial charge, but no energy-momentum. Total chiral charge Q; is conserved. Here Qs(1,) = Q(t,) =1.
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— Al + -
K,(x)==2i0"9,(p" —p7). (6.8)

Clearly, K, is not locally observable. There is a nonobservable “Goldstone ghost” (the pole of
o). It goes without saying that Q, although exactly conserved, and J are not very useful for
canonical formalism. Yet the current J- u5.sym and the charge QF as used in ref [7] are precisely of this
form. This will be explained in the next section.

A neat way to implement the symmetry (6.3) is to treat the parameter m as a field: the “schizon”,
or “spurion”, as those auxiliary objects are sometimes called to describe explicit symmetry breaking,
such as isospin breaking by electromagnetism. The schizon field has a nonvanishing vacuum expec-
tation value (6.4). Diagrammatically, a propagating electron could be represented by a diagram (fig.
1) Defining Q = +2 for the schizons we see that Q is absolutely conserved. Of course Q is also

“spontaneously broken”.

7. The ‘‘exactly conserved chiral charge’’ in a canonically quantized theory

The fictitious symmetry described in the previous section can be mimicked in a gauge theory in a
way that looks very real. Consider instead of (4.11), the current

s =dus + K,

uS,s5ym

(7.1)

K =— g1L

M 16 Tz 2 EuvaﬁA (aaAg+ fbc a B)

Then, in the limit m— 0, one has

9 s m=0. (1.2)

npS,sym

The corresponding charge,

QS,sym = I JOS,sym d3x (73)

generates “‘exact” chiral transformations. How does this operator act in Hilbert space?
To answer this question we must formulate the canonical quantization of the gluon field carefully
Conceptually the most transparent way is to first choose the temporal gauge:

A,=0, (1.4)

which leaves us formally the set of all states |A(x), ¢(x), ¢(x)) at a given time ¢, where ¢ and ¢
should be seen as Grassmann numbers. Let us call'the Hilbert space spanned by all these states the
“huge” Hilbert space.

Then (7.4) leaves us invariance under all time-independent gauge transformations {2 = £2(x), so
that the Hamiltonian in this space is invariant under a group G composed of gauge transformations
{)(x) that may vary from point to point. This generates an invariance at each x, according to
Noether’s theorem. Writing
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014, 4, 9) =|A""") (7.5)
where the subscript (2 indicates how the fields are gauge-transformed, we have
[H, 2]=0. (7.6)
We can impose the gauge conditions of the second type:
0¥)=|¥), (7.7)
for all infinitesimal (), acting nontrivially only in a finite region of 3-space:
2
A, (x)=A(x) + D, A(x),
A infinitesimal, and with compact support.
States |¥) satisfying (7.7) are said to be in the “large” Hilbert space (which is not as large as the
“huge” one).
Finally, we consider all £ with nontrivial winding number »

QF)=e"|¥). (7.8)

These states |¥) are said to constitute the small, or physical Hilbert space at given .
Now notice that J does not commute with 2:

©S5,5ym
iLg’
[Jp.S,sym’ ‘Q] = 1677. DVA ’ guvaBFa{B . (79)
Therefore, J ;5 ,, cannot be considered to be an operator for states in the “large” Hilbert space.

Acting on a ‘state satisfying (7.7) it produces a state not satisfying (7.7).
Now the charge Q.. of eq. (7.3) does commute with all £ with » =0, but not with the others:

(Qs.qym» 2,]=2L22, . (7.10)

Therefore, Qs ., does act as an operator in the large Hilbert space, but not in the physical Hilbert
space, because it mixes different 6 values. We can write

[stsym %L ,nv] =0. (7.11)

We see that in every respect Q5 ., behaves as 0 of the previous section, and J 5 . as T.

A Goldstone boson would emerge in the theory if, besides the states satisfying (7.8), it could be
possible to construct physical states in which § would depend on space-time:

0 2 O(x, 1). (7.12)

Here it is obvious that (7.12) would be in contradiction with (7.7) and (7.8): If we would compare
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different {2, but with the same », such that the support of 0" would be in a region near xV

that of 2 near x'¥, then the combination

, and

M-t

would have winding number zero. So the second gauge constraint would exclude any states for which
8(xV)# 6(x®). This is an important contrast with systems such as a ferromagnet, where local
fluctuations are allowed, which, because of their large correlation lengths, correspond to massless
excitations. .

Because of the similarity between (7.11) and (6.5) we can consider ¢" as a “schizon” field just as
the electron mass term. Since 6 cannot have any space-time dependence this schizon field cannot carry
away any energy or momentum, just as m in the previous section.

Although Q. does not act in the “physical” Hilbert space, it is possible to write Ward identities
[6,7] due to its formal conservation,

fd“x 9,T(J,s(x),0p) =2L fd“x 3,T(K,(x),0p) + f d*c T(D,(x),0p) + {[Qs sy OPI) ,

(7.13)

where Op stands for any operator; and

D, =2imyry sy, (7.14)
which will vanish when m—0. K, satisfies

9K, = —j—iz F F° . (7.15)

K72

One can take

Op=K,(0), (7.16)
and assume

[Qs.5ym> K] =0 (7.17)
while putting D, —0. (7.18)

Now (7.17) is not obvious. Substituting (7.15) gives
[Qs sym» FF]=0. (7.19)

On the other hand we showed in section 5 that FF has nontrivial chiral transformation properties.
This however corresponds to

[Qs, FF]#0. (7.20)
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Indeed,
([Qs, FF)=C-f* (7.21)

where the right hand side follows from the substitution (4.23) and the commutation rule (5.12). Cis a
constant and f the o expectation value.

Equation (7.19) is a fundamental starting point of the discussions in refs. [6-8]. The difference
between (7.19) and (7.20) must apparently be made up by the contribution of K, to O, . ... Now K,
is not a physically observable field. Assigning to it the conventional commutation rules to be deduced
from its composition in terms of color gauge fields is only allowed if one works in the “huge” Hilbert
space including the gauge noninvariant states.

All we have to do to incorporate the fictitious symmetry generated by Q. into our model of
effective fields described in section 2, is to add a schizon field, enlarging the Hilbert space. Let us call
the schizon field

S=¢". (7.22)
Qur new identification is

2.
FF = 125; ! fm(S det 6), (7.23)

a)

b)

Fig. 2. Effective instanton action and its Q; symmetry properties. (a) Due to fermionic zero modes 2L units of Q, are absorbed at the site of the
instanton. In the same time the charge generated by K is not conserved. (b) In the effective theory the fermions are replaced by the ¢ field, and
K, by a schizon S. The ¢ carry 2 units of Q each, and § has —2L units. § has a nonvanishing vacuum expectation value.
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and if we postulate, in addition to (5.10)-(5.13) for Q,  , also (see 7.11):
[QS,sym’ S] = _2LS ’ (7.24)

then with (5.12) we find that FF commutes with Q 5.sym- Substituting ' det ¢ by S det ¢ in (2.13) we
see that indeed our effective field theory obeys the fictitious symmetry generated by Q.. It must
therefore also obey the so-called anomalous Ward identities. See fig. 2.

8. Diagrammatic interpretation of the anomalous Ward identities

The conclusion of the previous sections is that the model of section 2, with the substitution
e’— S (8.1

obeys all anomalous Ward identities. It also exhibits in a very transparent way how the symmetries
are now spontaneously broken. There are two vacuum expectation values:

(§)=¢" (8.2)

(o)=f. (8.3)

Both break @, conservation. We can now draw Feynman diagrams in the Wigner representation
by explicitly adding the vacuum bubbles due to (8.2) and (8.3). See fig. 3. By summing over the
bubble insertions (geometric series which are trivial to sum), one reobtains the Goldstone represen-
tation of the particles. The o bubbles tend to make the pions and eta massless, but the terms with «
(and the quark masses m) contribute linearly to m” for the various mesons. These diagrams clearly
visualize where the masses come from and how the Q. , charges are absorbed into the vacuum.

In ref. [7] an apparent problem was raised by their equations (4.27) and (4.28): they suggest the

U,n)a’"

o R

U

jpap T 392

Fig. 3. Feynman rules in the Wigner mode. The o blobs render the pion and the m massless. But the S blob gives a mass to n. Here we drew
explicitly the n' propagator (L =3). Its mass comes from the insertion at the right. Note that m, is linear in (S} and in (o): m>. = «f.
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need for field configurations with fractional winding number », which would correspond with the
breaking up of our § field into components with smaller O . charges. In our diagrams we clearly
see that there is no such need. If we have a Green function with an operator that creates only two
chiral charges,

X0p=2

then the sigma field can absorb these two, or add 2(L — 1) more and have them absorbed by S. The
vacuum simply isn’t an eigenstate of Qg (nor Q5 ) as it was assumed.

9. Conclusion

The disagreements between the approach of the Crewther’s school to the U(1) problem, using
anomalous Ward identities, and the more standard beliefs are not as wide as they appear. Their
anomalous Ward identities, if applied with appropriate care, are perfectly valid for a simple effective
field theory that clearly exhibits the most likely vacuum structure of QCD. It is important however to real-
ize that the relevant exactly conserved chiral charge Q; . is not physically observable, something which
explains the need for the introduction of a spurion field § in the effective theory. It appears that the
consequences of working with an unphysical symmetry were underestimated in ref. {7]. Some of the
difficulties signalled in [7] were due to the too strong assumption that the vacuum is an eigenstate of
Q;. That such assumptions are unnecessary and probably wrong would have been realized if they had
taken the effective theory more seriously.

The fact that the effective theory of section 2 displays the correct symmetry properties does not
have to mean that it is accurate. Indeed it could be that instantons tend to split into “merons” [16], a
dynamical property that might be a factor in the spontaneous chiral symmetry breaking mechanism
[14]. But these aspects do not affect the symmetry transformation properties of the fields under con-
sideration. More fields, describing higher resonances, could have to be added. The baryonic degrees
of freedom are most likely to be considered as extended solutions of the effective field equations
(skyrmions). That these skyrmions [17] indeed possess the relevant baryonic quantum numbers was
discovered by Witten [18].

The author thanks R.J. Crewther for his patience in extensive discussions, even though no
complete agreement was reached.

Appendix A. The sign of AQ;

In ref. [7] the present author’s work was claimed to be in error at various places. Although some
minor technical corrections on the computed coefficients in the quantum corrections due to instantons
were found (see ref. [20] and appendix B) and even some insignificant inaccuracies in the notation of
a sign might occur, we stress here that none of those claims of ref. [7] were justified. In particular
there are no fundamental discrepancies in the sign of AQ;.

Let us here ignore the masses of the quarks. As formulated in section 4, an instanton in a finite
space-time volume V causes a transition with



G. ’t Hooft, How instantons solve the U(1) problem 383
AQ,=2L (A1)

where Q; is the gauge-invariant axial charge. Since Qs ., as defined in section 7, is now strictly
conserved one obviously has

AQ;s ym =0, (A2)

which is of course only defined in the “large” Hilbert space comprising all 6 worlds.
Instead of (A1-A2), we read in ref. [7]:

AQ;=0; AQ,.=-2L. (A3)

These are not the properties of a closed space-time volume such as we described, but represent the
features of a Green’s function where the asymptotic states are §-vacua. Since Q, . contains
explicitly the operator 3/46 in the “large” Hilbert space (cf. eq. (7.11)), the -vacuum is not invariant
under Q5 .. This is why (A3) is not in conflict with O, conservation. But we also see that
(A1-A2) and (A3) hold under different boundary conditions (the reason why AQ.=0 for Green’s
functions in a #-vacuum is correctly explained in ref. [7]).

Appendix B. The amplitude of the instanton effects

To get even a rough estimate of the size of our instanton’s contribution to an amplitude requires
lengthy calculations. A detailed account would require a complete reprinting of this author’s work in
ref. [19]. As pointed out in [20] there were some minor errors in the first publication which we will
discuss briefly here.

Let A;™ be the field of one instanton. Then the amplitude due to one instanton in Euclidean
space in a short hand notation is:

W= ol )= DA Dy - exp [ a'r 8(A™ + 4%, 4, ) (B1)
We have
jd“x LA™ = -87Yg* (B2)

and the part of the action that is quadratic in A%, y, ¢, is

8 = —3(D,AY") + §(D, ALY - gAL ™ 10 Go ™ AL ™ — §y, D, ¢~ 1CT+ 28 + 4y,

(B3)
where D, is the covariant derivative with respect to A™ and —1C7 is the gauge fixing term,
producing a ghost described by 28"***. We added a source term for the fermions.

Now the integral (B1) in lowest nontrivial order is Gaussian with nontrivial coefficients. Formally
we can write the outcome as



384 G. 't Hooft, How instantons solve the U(1) problem

W=exp(—8n%/g”)(det M ,)~""* det M, det M, (B4)
and the determinants can be computed by diagonalization:

My=Ey. (BS)

It is clear that (B4) is highly divergent unless we formulate very precisely an appropriate subtraction
procedure. A convenient method is to apply first a variety of Pauli-Villars regularization to the fields
A% and ¢ and then add correction terms to be obtained by comparing this regularization scheme to
for instance dimensional regularization.

It is then found that (B4) is not the complete answer: there are zero eigenvalues of I ,, M, and
M, which have to be considered separately. The corresponding eigenmodes must be replaced by
collectlve coordinates including an appropriate Jacobian for this transformation. Since (B4) must be
compared with the vacuum transition (in absence of instantons) the collective coordinate integration is
to be divided by a norm factor determined by a Gaussian integral. In our work [19] this factor was
taken to be v7@. However, the relevant Gaussian integral was

f exp(— ix*)dx = V2, (B6)

and the factor 2 was missed. Consequently, in the final expressions (12.1), (12.5), (13.8) and (15.1)
we must replace 2" by 2"°.

In comparing the Pauli~Villars regulators with dimensional regularization, section 13 of ref. [19],
another error was made. Applying the two regulators to the integral

1 f " 1
any ) 9k (K + p) (B7)
we find
7 i () Bs
Qm)? \4- p: (B8)
s0, if p, is a regulator mass, then the comparison yields
log uoﬁz—i—;—%'y+%log41r. (B9)
The integral (13.5) of ref. [19] should be replaced by
1 fd" k“k,kak (B10)
2m)* (=

which gives

1 2 1
(4’”)2.4! I 7 2log p, +logdm + 0’(4—n)+0’( )](8‘“ 8 t0,,0,5+ 8,59,q) -
(B11)
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We see the same substitution (B9) can be used and there is no correction term 5/6 as written in [14].
Equation (B9) relates the two regulators in all circumstances.

On the other hand the number of A}" fields in dimensional regularization is n rather than 4. So for
these fields we need the substitution

logy,—»—l———%y+%log4'n'—1. Bi2
© "4-n

The rest of the procedure to sum all contributions of the eigenmodes of the operators I ,, M,
M, and possible scalar contributions M, , and the contributions of the collective coordinates is all as
explained in [19]. The result is now the effective Lagrangian (for the case that the color gauge group
is SU(2)):

2

[gr (W]’

+log( ;up)[23—2 - é E': N()C(¢) - %Nf] + A- Z N(t)A(t) - NfB}

ﬁeff(z) =21o+3~‘ﬂ_6+2~‘g—s f p3Nf—5 dp exp{—

f

x<ﬁ ((/;sw)(a3¢5)> +hec., (B13)

where N is the number of fermions in the doublet representation, p is a scalar parameter for the
instanton, u is an arbitrary mass unit enabling us to obtain a renormalization group invariant
expression, and N°(¢) is the number of scalar field representations with color .

Defining coefficients a(#) as in table 1, we have now:

A =—q(1)+ 4(logdm—y)+ 1 =7.053991 03
A(t) = —a(t) + s (log 4w — y) C(t)
A(1/2) =0.308 690 69 (B14)
A(1) =1.094 576 62

A(3/2) =2.481356 10
B =-2a(1/2) + }(log 47 — y) = 0.359 52290 .

Table 1
t C(r) a(t)
0 0 0
172 1 2R-1log2-17/72
1 4 8R+4log2-16/9
3/2 10 20R +4log3 - 3 log2 —265/36

_1 1 o logs
R= 5 (log2m +y)+ 55 5 =5~ = 0.248754471.
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Finally, the spinors @ are normalized by
2 0,6, = 3(1+7%) (B15)
and required to be smeared in color space, such that for instance

(@, “_’a> = %611[3(1 +%) (B16)

and, in the case L =N'=2:
’ 1
<H («lw)(@%)) = 57 (26082 - 8285 U (1 + YYD (1 + %) (B17)
s=1

where s and ¢ are flavor indices and @, B; color indices.
The p integral may seem to diverge in most interesting cases (N' > 1). Note however that it would
be natural to choose

w=1/p (B18)

and substitute g ~* by the running value g(u)~® At large p one might take g « p and thus improve the
convergence. Of course the infrared end of the integral is quite uncertain because in our perturbative
procedure the effects of confinement etc. have not been taken into account. This inhibits a precise
evaluation of the amplitude. A rough estimate (for a color SU(2) theory) is obtained if we take at
large p

g’(1/p)—16mp’e (B19)

where ¢ is the string constant. Then quarks with color charge 1/2 at a distance p from each other feel
a force

o=1g%4mp?. (B20)

Our integral becomes, in the case N'=2,

M =2710e4728 f e )exp 87%g*(1/p). (B21)
From (B19) we get
pdp=gdg/16mo (B22)

and using x = 1/g* the integral in (B21) is

3_1_ f dx x2 —81r x 1377—70.-1 (B23)
0
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so that
L =87’ e* o7, (B24)

where £, is the Lagrangian (B17).

This result is uncomfortably large, but then the approximations used here (eq. B19) could at best
only be expected to yield the order of magnitude of the expected interaction, which is clearly a strong
one. Note that we used a minimal subtraction scheme that included the term log 47 in (B9). If we left
it out then (B24) would be reduced by a factor (4w)>=27°r">. This is just to illustrate how
sensitively the amplitude obtained depends upon the assumptions.

References

[1] S.L. Glashow, in: Hadrons and their interactions, Erice 1967, ed. A. Zichichi (Acad. Press, New York, 1968) p. 83;
S.L. Glashow, R. Jackiw and S.-S. Shei, Phys. Rev. 187 (1969) 1916;
M. Gell-Mann, in: Proc. Third Topical Conf. on Particle Physics, Honolulu 1969, eds. W.A. Simonds and S.F. Tuan (Western Periodicals,
Los Angeles, 1970) p. 1, and in: Elementary Particle Physics, Schladming 1972, ed. P. Urban (Springer-Verlag, 1972); Acta Physica
Austriaca Suppl. IX (1972) 733;
H. Fritzsch and M. Gell-Mann, Proc. XVI Intern. Conf. on H.E.P., Chicago 1972, eds. J.D. Jackson and A. Roberts, Vol. 2, p. 135, and
Phys. Lett. 47B (1973) 365.
[2] S.L. Adler, Phys. Rev. 177 (1969) 2426,
J.S. Bell and R. Jackiw, Nuovo Cim. 60A (1969) 47;
S.L. Adler and W.A. Bardeen, Phys. Rev. 182 (1969) 1517.
[3] A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Yu.S. Tyupkin, Phys. Lett. 59B (1975) 85.
[4] G. 't Hooft, Phys. Rev. Lett. 37 (1976) 8; Phys. Rev. D14 (1976) 3432;
R. Jackiw and C. Rebbi, Phys. Rev. Lett. 37 (1976) 172;
C.G. Callan Jr., R.F. Dashen and D.J. Gross, Phys. Lett. 63B (1976) 334; Phys. Rev. D17 (1978) 2717.
[5] S. Coleman, in: The Whys of Subnuclear Physics, Erice 1977, ed. A. Zichichi (Plenum Press, New York, 1979) p. 805.
[6] R. Crewther, Phys. Lett. 70B (1977) 349; Riv. Nuovo Cim. 2 (1979) 63;
R. Crewther, in: Facts and Prospects of Gauge Theories, Schladming 1978, ed. P. Urban (Springer-Verlag, 1978); Acta Phys. Austriaca
Suppl. XIX (1978) 47.
[7} G.A. Christos, Phys. Reports 116 (1984) 251.
[8] R. Crewther, private communication.
[9] J.C. Ward, Phys. Rev. 78 (1950) 1824;
Y. Takahashi, Nuovo Cim. 6 (1957) 370.
[10] A. Slavnov, Theor. and Math. Phys. 10 (1972) 153 (in Russian), transl. Theor. and Math. Phys. 10, p. 99;
J.C. Taylor, Nucl. Phys. B33 (1971) 436.
[11] C. Becchi, A. Rouet and R. Stora, Comm. Math. Phys. 42 (1975) 127; Ann. Phys. (N.Y.) 98 (1976) 287.
[12] M. Veltman, Nucl. Phys. B7 (1968) 637; Nucl. Phys. B21 (1970) 288.
[13] There is no paper by Bell or Treiman on this particular subject. See ref. [12].
[14] A.R. Zhitnitsky, The discrete chiral symmetry breaking in QCD as a manifestation of the Rubakov~Callan effect, Novosibirsk preprint 1986.
[15) C. Lee and W. Bardeen, Nucl. Phys. B153 (1979) 210.
[16] C.G. Callan Jr., R.F. Dashen and D.J. Gross, Phys. Lett. 66B (1977) 375; Phys. Rev. D17 (1978) 2717; Phys. Lett. 78B (1978) 307.
[17] TH.R. Skyrme, Proc. Roy. Soc. A260 (1961) 127.
[18] E. Witten, Nucl. Phys. B223 (1983) 422; 433.
[19] G. ’t Hooft, Phys. Rev. D14 (1976) 3432.
[20} F.R. Ore, Phys. Rev. D16 (1977) 2577;
G. 't Hooft, Phys. Rev. D18 (1978) 2199;
A. Hasenfratz and P. Hasenfratz, Nucl. Phys. B193 (1981) 210.
[21] K. Fujikawa, Phys. Rev. Lett. 42 (1979) 1195; Phys. Rev. D21 (1980) 2848.



