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Editorial Note

A reviewarticle shouldnot lead to any major controversyevenif it often implies that the author
takessides when conflicting results or approachesexist. Yet, when it covers a delicateand topical
question, it may happenthat someimportant controversyescapesthe editor’s attention. The very
important and difficult “U( 1) problem” was reviewedby G.A. Christos in a PhysicsReportsarticle
publishedin 1984.

The presentarticle by G. ‘t Hooft is meantto be a critical supplementto this formerreview. The
editor is thankful to the presentauthorto thushelpto clarify this difficult questionfor the readersof
PhysicsReports.

M. Jacob
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1. Introduction

In addition to the usual hadronicsymmetriesthe Lagrangianof the prevalenttheory of the strong
interactions,quantumchromodynamics(QCD) shows a chiral U(1) symmetry which is not realized,
or at least badly broken, in the real world [1]. Now although it was soon establishedthat the
correspondingcurrent conservationlaw is formally violated by quantumeffects due to the Adler—
Bell—Jackiw anomaly [2] it was for sometime a mystery how effective U(1) violating interactions
could take place to realize this violation, in particular becausea less trivial variant of chiral U(1)
symmetry still seemedto exist. Indeed,all perturbativecalculationsshoweda persistenceof the U(1)
invariance.

With the discovery of instantons[3], and the form the Adler—Bell—Jackiw anomalytakesin these
nonperturbativefield configurations,this so-calledU(1) problemwas resolved[4, 5]. It was now clear
how entireunits of axial U(1) chargecould appearor disappearinto the vacuumwithout the needof
(nearly) masslessGoldstonebosons.In a world without instantonsthe ‘ri and i~’ particleswould play
the role of Goldstonebosons.Now the instantonsprovide them with an anomalouscontribution to
their masses.

In the view of most theoriststhe aboveargumentsneatlyexplain why the i~particleis considerably
heavierthan the pions (one must comparem~with m~,),and i~’ much heavierthan the kaons.

Not everyonesharesthis opinion. In particular Crewther [6] arguesthat Ward identities can be
written down whose solutionswould still require either masslessGoldstone bosonsor gauge field
configurationswith fractional winding numbers,whereasexperimentalevidencedeniesthe first and
index theoremsin QCD disfavor the second.If he were right thenQCD would seemto be in serious
trouble.

In a recentreview article this dissidentpoint of view was defended[7]. The way in which it refers
to the presentauthor’s work calls for a reaction. At first sight the disagreementseemsto be very
deep. For instancethe sign of the axial chargeviolation by the instantonis disputed;thereareserious
disagreementson the form of the effective interaction due to instantons,and the Crewtherschool
insists that chiral U(1) is only spontaneouslybroken whereaswe prefer to call this breaking an
explicit one. Now as it turns out after closerstudy anddiscussions[8], muchof the disagreement(but
not all) can be tracedbackto linguistics and definitions. The aim of this paperis to demonstratethat
using quite reasonabledefinitions of what a “symmetry” is supposedto mean for a theory, the
“standardview” is absolutelycorrect; chiral U(1) is explicitly brokenby instantons,andthe sign of
L~Q5is as givenby the anomalyequation;the effective Lagrangiandueto instantonscan be chosento
belocal andpolynomial in the mesonicfields, and the ‘q and ‘ri’ acquiremassesdueto instantonswith
integerwinding numbers.

In order to makeit clear to the readerwhat we are talking aboutwe first considera simplemodel
(section2) which we claim to be the relevanteffective theory for the mesonsin QCD (eventhoughit
is dismissedby ref. [7]). The modelshowswhat the symmetrystructureof the vacuumis and howthe
‘q particles obtain their masses.It also exhibits a curious periodicity structurewith respectto the
instanton0 angle,which was also noted in [7] but could not be cast in an easylanguagebecauseof
their refusalto consider modelsof this sort.

Now does the model of section2 reflect the symmetry propertiesof QCD properly? Since refs.
[6,7, 8] expressdoubt in this respectweshow in section3 howit reflectsthe exactlydefinedoperators
and Green’sfunctionsof the exacttheory. The calculationof the i-massis redone,but now in terms
of QCD parameters.We clearly do not pretendto “solve” QCD, so certainassumptionshaveto be
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made.The most importantof these,quiteconsistentwith all we know aboutQCD and the real world,
is

(~q)= F~0. (1.1)

Now refs. [6,7] claim that in that caseone needsgaugefield configurationswith fractional winding
numbers.Our model calculationswill clearly show that this is not the case.

How can it be thenif our calculationsappearto be theoreticallysoundandin closeagreementwith
experiment,that they seem to contradictso-called “anomalousWard identities”? To answer this
question we were faced with unraveling some problems of communication.The current-algebraic
methodsof refs. [6,7] were mainly developedbefore the rise of gaugetheoriesbut are subsequently
applied to gauge-noninvariantsectorsof Hilbert space.Their languageis quite different from the one
used in many paperson gaugetheories[4] and due to incorrect “translations”severalresultsof the
presentauthor wete misquotedin [7]. After making the necessarycorrectionswe try to analyze,in
our own language,where the problemlies.

Therearetwo classesof identitiesthat onecan write down for Greenfunctions.Oneis the classof
identities that follow from exactlypreservedglobal or local symmetries.Local symmetriesmust always
be exact symmetries.From thosesymmetrieswe get Ward identities [9] (in the Abelian case),or
more generallyWard—Slavnov—Taylor[10] identities, which also follow from the (exact) Becchi—
Rouet—Stora[11] global invariance.

On the other hand we haveidentitieswhich follow from applying field transformationswhich may
havethe form of gaugetransformationsbut which do not leave the Lagrangian(or, more precisely,
the entire theory) invariant. These transformationsare sometimescalled Bell—Treiman transform-
ations [12] in the literature, but “Veltman transformations”would be more appropriate [13]. The
identities one gets reflect to some extent the dynamics of the theory and form a subclassof its
Dyson—Schwingerequations.Thus when refs. [6, 7] perform chiral rotations of the fermionic fields,
which do not leave 0 invariant, they are performing a Veltman transformation,and their so-called
“anomalousWard identities” fall in this secondclass of equationsamongGreenfunctions.

It is in the secondderivativewith respectto 0 that refs. [6, 7] claim to get contradictionwith our
model calculations[8]: the secondderivative of an insertion of the form

iOFF, (1.2)

in the Lagrangianvanishes,whereasthe simple “effective field theory” requiresan insertion of the
form

e’°det(q~j~)+ h.c. , (1.3)

of which the secondderivative producesthe ‘n mass.So they claim that in the real theory the ~ mass
cannotbe explainedthat simply.

In section 5 we explain why, in the modernformalism this problem does not ariseat all. (1.2)
shouldnot be confusedwith ordinaryLagrangeinsertionsand afterresummationcorrectly reproduces
(1.3). The canonicalmethodsare not allowed if one tries first to quantizethe gaugefields A~and
only afterwardsthe fermion fields. The fermions haveto be quantizedand integratedout first. The
phenomenonof “variable numbersof canonical fermionic variables” resolves the dilemma. We
conclude,that the ~ massis what it should be and thereis no U(1) problem.
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There is a further linguistic disagreementon whetherthe U( 1) breakingof QCD shouldbe called
an explicit or a spontaneoussymmetrybreaking. In the effective Lagrangianmodel the symmetry is
clearlybrokenexplicitly. Severalauthorshoweverrefer to the 0 angleas a propertyof the vacuum[5]
in QCD. Of course as long as one agreeson the physical effects one is free to use whatever
terminologyseemsappropriate.We merely point out that all physical consequencesof the instanton
effectsin QCD (in particular the absenceof a physicalGoldstoneboson)coincidewith the onesof an
explicit symmetry breaking. Our 0 angle is as much a constantof Nature as any other physical
parameter,to be comparedfor instancewith the electronmasstermwhich breaksthe electron’schiral
invariance.

Only if one addsnonphysicalsectorsto Hilbert spaceone mayobtain an alternativedescriptionof
the 0 angle as a parameterinducedby boundaryeffects producinga spontaneoussymmetry break-
down. However, anyexplicit symmetrybreakingcan be turned into “spontaneous”symmetry break-
ing by artificially enlarging the Hilbert space.One gets no physically observableGoldstoneboson
however,so, the most convenientplace to draw the dividing line betweenspontaneousand explicit
global symmetry breakingis betweenthe presenceor absenceof a Goldstoneboson.

We explain this situationin section6, wherewe showthat any nonphysicalsymmetry can be forced
upon a theory this way. In section 7 we show how the spuriousU(1) symmetry that is used as a
starting point in [7], actually belongsto this class.Section 8 showsthat if one takesinto accountthe
enlargedHilbert spacewith the variable 0 angles then the effective theory of section2 neatlyobeys
the so-calledanomalousWard identities. The effective model showsthe vacuumstructureso clearly
that all problemswith “fractional winding numbers”are removed.

The decayamplitude ~—p3ir posedproblemssimilar to that of the ri mass.As explainedcorrectly
in [7] this problemis resolved as soonas the U(1) breakingis understoodsono further discussionof
this decay is necessary.It fits well with theory.

Appendix A is a commentconcerningthe sign of axial chargeviolation under various boundary
conditions.

Appendix B discussesthe instanton-inducedamplitude.The contributionfrom “small” instantons
can be computedpreciselybut the infraredcutoff is uncertain.(Rough) Estimatesof the amplitudein
a simple color SU(2) theory give quite large values,which confirms that instantonsmay affect the
symmetry structureof QCD sufficiently strongly such as to explain the known featuresof hadrons.

2. A simple model

Before really touching upon some of the more subtle aspectsof the “U(1) problem” we first
construct a simple “effective Lagrangian” model. Whether or not this model truly reflects the
symmetry propertiesof QCD (which we do claim to be the case) is left to be discussedin the
following sections. For simplicity the model of this section will be discussedonly in the tree-
approximation.

To be explicit we takethe numberof quark flavors to betwo. Generalizationtowardsanynumbers
of flavors (two and threeare the most relevantnumbersto be comparedwith the situationin the real
world) will be completelystraightforwardat all stagesin this section*. So we startwith the “unbroken
model” having global invarianceof the form

* See however the remark following eq. (2.24).
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U(L)L®U(L)R, with L=2, (2.1)

wherethe subscriptsL andR refer to left and right, respectively.We considercomplexmesonfields
with the quantumnumbersof the quark—antiquarkcompositeoperatorqRJqLI. They transformunder
(2.1) as:

= ~ (2.2)

to be written simply as

çbf=UL4U~S~t. (2.3)

Since we have no hermiticity condition on çb, there are eight physical particles o, ~, rr~and aa
(a 1, 2, 3):

~ ~(u+iq)+ ~(a+i1r).r, (2.4)

whereT1’2’3 arethe Pauli matrices.We take as our Lagrangian:

~=_Trd~4t_V(~). (2.5)

A potentialV~invariantunder (2.1) is

V(4) = _,L2 Tr 4~4~+ ~(A
1— A2)(Trc/.4t)2 + ~A2Tr(~

t)2 (2.6)

= ~ (2+2 + a2+ ~2)+ ~(~2+~2+ a2 + ~2)2 + ~((~a+~)2+(a A )2)

(2.7)

Assuming, as usual

(o)=f, o~f+s, (2.8)

we get, by taking the extremumof (2.7),

f2 = 2p?/A
1 (2.9)

= (fs + ~(s
2+ 2 + a2 + ~2))2 + ((fa + sa + ,~)2 + (a A )2) (2.10)

from which we read off:

m~=A
1f

2=2~2, m~=0, m~=A
2f

2, m~0. (2.11)

There are four Goldstone bosons, as expectedfrom the U(2)®U(2) invariance, broken down to
U(2) by (2.8).
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We now consider two less symmetricadditional terms in V:

Vm = Urn + U,;

Urn “ rn e1~~q~“ = ~rne~XTr 4 = ~me~x(o.+ in), (2.12)

and:

Va = Ua +

Ua =“ K~’~det(c~~q~)“= K e’°det4

= K e’°((cT+ iq)2 (a + uT)2). (2.13)

Here, m, x~K and 0 are all free parameters.The termsbetweenquotation marksare therejust to
show the algebraic structure,up to renormalizationconstants.Notice that V

0 still has the U(1)
invariance

or

(0~+ i~)~e
t’°(o~+ in), (a + i~’r)—~e’~’(a+ iir). (2.14)

Thereforewe are free to rotate

x—*x+w, 0—*0+2w. (2.15)

(Here the 2 would be replacedby L in a theory with L flavors.)

Considerfirst the theory with K = 0;
V=V

0+Vm~ (2.16)

Then we can choosew = IT — x~and

Vrn=~mo. (2.17)

So x is unphysical.Equation(2.9) is replacedby

f
2 = 2ji~/A

1+ 2m/A1f. (2.18)

Consequently,in (2.11) we get

m~= m~= rn/f. (2.19)

Note that with the sign choiceof (2.17),f must be the positive solution of (2.18).
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Now take the othercase,namely m = 0;

V=V~+V~. (2.20)

It is now convenientto choose

w = ~(IT - 0). (2.21)

So here the angle 0 is unphysical.

Va = _2K(o.2 + ~2 — 2 — a2). (2.22)

= 2j~2!A~+ 8K/A
1. (2.23)

The massesof the light particlesbecome

rn~= 0; rn~= 8K. (2.24)

So the K term contributesdirectly to the ~ mass andnot to the pion mass.In caseof morethantwo
flavors the determinantin (2.13) will contain higher powers of ~, and extra factorsf will occur in
(2.24). But the mechanismgeneratinga massfor the q’ will not really be different from that of the ‘q.

It is interestingto study the casewhenboth rn and K are unequalto zero. We thencannotrotate
both x and 0 independentlyand one of the two angles is physical. Since obviously the model
Lagrangianis periodic with period

2IT in 0, its physicalconsequenceswill be periodic in x with period
ii, becauseof the invariance(2.15). In the generalcasewe now also expecta nonvanishingvalue for

(~)=g. (2.25)

So we write ~ = g + h, whereg is a c-numberand h a field. The conditionsfor f and g are:

~A~f(f2+ g2) — p.2f + m cosx + 4Kf cos0 — 4Kg sin0 = 0;
(2.26)

~A~g(f2+ g2) — ~a2g— m sin x — 4Kg cos0 — 4Kf sin 0 = 0.

It will be convenienthoweverto choosew in (2.15) such that g = 0. According to (2.26) one then
must have

msinx+4Kfsino=0. (2.27)

Now we find

2 mcosx
m~,=— , (2.28)

2 mcosxm,~=— ~ —8KcosO, (2.29)
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apartfrom an i—s mixing. The effect of this mixing however goesproportionalto

16K2 sin2 0 = m2 sin2 x (2.30)

and thereforeis of higher order both in K and m.
Considernow the function

F(w)= rncos(~+ w)+2Kfcos(0+2w). (2.31)

Then (2.27) requiresw to be a solution of

F’(w) = 0 (2.32)

(after which we insert the replacement(2.15)), and (2.29) implies:

fm~= F”(w) >0. (2.33)

So, w must be chosen such that (2.31) takes its minimum value. Furthermore,the replacement
(0-4 ~) + IT switchesthe sign of the first but not of the secondterm in F(w), so, if a is chosento be
the absoluteminimum of (2.31), then indeedalso

m~>0, (2.34)

exceptwhentherearetwo minima. In that casethereis a phasetransitionwith long rangeorder(due
to the masslesspion) at the transitionpoint.

This phasetransition is at

X = IT!2,

sin 0 = —rn/4Kf, (2.35)

cos0 <0,

or, if a rotation (2.15) is performed:

x=0,

sin 0 = m!4Kf, (2.36)

0<0< IT!2.

A further critical point may occur at

x0
0=IT12 (2.37)

rn=4Kf
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wherealso m~vanishes.Of coursethesevaluesof the parametersare not believedto be closeto the
ones describingreal mesons.Phasetransitionsof this sort were indeedalso describedin ref. [7]. But
becauseno specific model such as ours was considered,the periodicity structure in x and 0 was
discussedin a somewhatuntransparentway. Although obviously in our modelwe havea periodicity
in 0 with period 2IT, ref. [7] suspecteda period4ir. Indeedif (0in (2.15)shiftsby an amount IT, then
rn e~—, — rn eIX and one might end up in an unstableanalytic extensionof the theory. Clearly the
propertiesof the minimum of the potentialF(w), eq. (2.31), can only haveperiod 2 IT in 0.

3. QCD

If QuantumChromodynamicswith L quark flavors, were to havean approximateU(L )L x U(L)
symmetryonly brokenby quark massterms, the model of the previoussectionwith V= V~+ Vm could
then convenientlydescribethe qualitative featuresof mesons,but with ~ and ii almost degenerate.
(In the caseL >2 onemerely hasto substitutethe 2 x 2 matrix cb by an L X L matrix.) That would
be the caseif somehowthe effects of instantonscould be suppressed.

Let us now considerinstantonsand write in a shorthandnotation the functional integral I for a
certainmesonicamplitude in QCD. For the easeof the discussionwe assumeall integrationsto be in
Euclideanspace-time:

I = fDA JDI~rD~exp[SA + SA* + iOFF— J~p], (3.1)

with

D~/iDçlc = fT d2~frL(x) d2~rR(x) d2~L(x) d2clIR(x), (3.2)

SA =fdx(—
4F~LJXA)),

(3.3)
SA* = —~(y~-D~+ m1)~/.i,.

FE=fdx ~ (3.4)

J~I=J~(q11$~—~I’R~I’L)+ J~PL~’R— hI/R~1L)+... (3.5)

As we will see shortly, it is crucial that the integration over ~l’is done first and the one over A
afterwards.

Since we haveno way of solving the theoryexactlycertainsimplifying assumptionsmustbe made.
We now claim that the assumptionsto be formulated next will in no way interfere with the known
symmetrypropertiesof the low-energytheory. Discussionof this claim will be postponedto sections
4—7.

An (anti-)instanton is a field configuration of the A fields with the property

f F~F~pE.~p~d
4x = (—)64ir2!g2, (3.6)
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where ~V is the volume of a space-timeregion. Outside AV we have essentiallyIF~VI= 0 but we
cannothave IA I = 0 therebecausethen (3.6) would vanish as the integrandis a total derivative.

The assumptionwe makeis that the A integralcan be split into an integralover instanton-locations
and an integral over perturbativefluctuationsaroundthoseinstantons.We do this as follows. Let us
divide space-timeinto four-dimensionalboxeswith volumesz~Vof the orderof 1(fm)4. Eachbox may
or maynot contain one instantonor one anti-instanton.(There could be more thanone instantonor
anti-instantonin a single box, but wechooseour boxesso small that suchmulti-instantonsin onebox
becomestatistically insignificant.) The essentialpoint is that since an instantonin a box ~V will do
nothing but gauge-rotateany of the fields outside ~V, the instanton-numbersin each box are
independentvariables.Notice that atthis point we do not requirethesetwisted field configurationsin
the boxesto be exact solutionsto the classicalfield configurations.This is why we haveno difficulties
confining each instanton to be completelyinside one box, with only gaugerotations of the vacuum
outside.

Let us thenwrite

A = A
1~~1+ ~A (3.7)

where A inst is dueto the instantonsonly, then the integral overM will essentiallycommutewith the
integral over the instantons.The M integral is assumedto be responsiblefor the strong binding
betweenthe quarks.The confinementproblemis not solvedthis way but is not relevantheresincewe
decidedto concentrateon low-energy phenomenaonly.

Note that the integration over A~ is more than a summationover total winding number ii.

Rather, if we write

(3.8)

then the integral overA inst closelycorrespondsto integrationover the locationsof the ~ instantons
and the a’.. anti-instantons.It is important that we restrict ourselvesto instantonswith compact
support (namely, limited to the confinesof the box~V in which theybelong).A largerinstanton,if it
occurs,should be representedas a small onein oneof the boxes,with in addition a tail that is taken
care of by integration over M. “Very large” instantonsare irrelevant becausethey would be
superimposedby small ones.In short, in eq. (3.7), ~ is definedto be a smoothfield configuration
that accountsfor all winding numbersinside the boxes,and ~A is definedto contribute to f FF by
less than one unit in eachbox.

Now consideran isolated instantonlocatedwithin one of our boxes, locatedat x = x1. What is
discussedat lengthin the literatureis the fact that the i/i integrationis now affectedby the presenceof
a zeromodesolutionof the Dirac equation.If therewereno otheranti-instantonsandno sourceterm
J then the fermionic integral, being proportional to the determinantof the operatory~(ô.,~+ igA~.),
would vanish becauseof this onezero eigenvalue.If we do add the sourceterm Ji~n/ithe integral need
not vanish. In ref. [4] it was derivedthat the instantonexactly actsas if it would containa sourcefor
every fermionic flavor. Thus with one instantonlocatedat x = x1 the fermionic integral

f D~D~[exp(SA4+ J~)] (3.9)

hasthe sarne effect as the integral
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K JD~D~[exp(S0~+ J~)] det(~R(xl)4~L(X1)), (3.10)

where K may be computedfrom all one-loop corrections[4]. Indeed it was shown that the zero
eigenmodes for all flavors which extend beyond the volume ~Wconveniently reproduce the fermionic
propagatorsconnecting x1 with the sources J. The fact that (3.9) does have the same quantum
selectionpropertiesas (3.10) can also be arguedby realizing that a gauge-invariantregulatorfor the
fermions had to be introduced,andinsteadof the lowest eigenmodesonecould haveconcentratedon
the much morelocalizedhighestfermionicstates.The correctly regularizedfermionic integralcontains
a mismatchby one unit for each flavor betweenthe total number of left handedand right handed
fermionic degreesof freedom. Since this happensboth for the fermions and the antifermions ~‘ the
determinantin (3.10) consistsof productsof L fermionic and L antifermionicfields.

Since we do requirethat the SU(L)L®SU(L)R is keptunharmedby the instantons,the determin-
ant is at first sight the only allowedchoice for (3.10) but, actually, if one doesnot suppressthe color
and spin indices, one can write down more expressionswith the required symmetry properties.

Next considerv~instantons,locatedat x = x1. Following a declusteringassumptionwhich, at least
to the presentauthor’staste,is quite naturaland doesnot requiremuch discussion,we mayassume
theseto act on the fermionic integrationsas

~ f Dt/i Dçb es{I det(~/L(x~)~R(x~)). (3.11)

Let us add the 0 dependenceand integrateover the instantonlocationsx1:

&°~fT ~ (3.12)

The denominatorv~!is due to exchangesymmetry of the instantons.
We now extendour declusteringassumptionto the anti-instantonsas well. This assumptionwas

vigorously attackedin [6—8].Indeedone might criticize it, for instanceby suggestingthat “merons”
play a more crucial role [14]. We insist howeverthat the assumptionin no way interfereswith the
symmetrypropertiesof our model. We will seein sections7 and8 that the anomalousWard identities
will be exactly satisfied by our model. To avoid confusion let us also stressthat our declustering
assumptionsrefer to the QCD part of the metric only, not to the contributionsof the fermionswhich
we denoteexplicitly. So there is no disagreementat all with the findings of ref. [15]. Indeed,our
approach here is closely analogous to theirs.

Thus, considerv anti-instantons.The completeinstantoncontributionto the functionalintegral is

~ ‘~+

ei0(fd4xdet(~L(x)~L(x))) (Jd~xdet(~R(x)~L(x))) . (3.13)
+.

The summationsare now easy to carry out:

(3.13)= expf d
4x[K e’8 det ~L(x)~R(x) + K c’°det ~‘~(x)~

1(x)], (3.14)

which is preciselythe effectiveinteraction Va of eq. (2.13). The remainingintegralsover the fermionic
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fields i/i and the perturbativefields 6A maywell result in the effective Lagrangianmodelof section2.
Notice that, before we interchangedthe A inst and its, ~frintegrations,we havemade the substitution
(3.10). This will be crucial for our laterdiscussions.Once the substitution(3.10) hasbeenmade,the
(A-field-dependent)extrafermionicdegreesof freedomhavebeentakencareof, andonly thenone is
allowed to interchangethe A and the ci, integrations.This is how (2.13) follows from (3.14).

4. Symmetriesandcurrents

Let ussplit the generatorsAL andAR for the U(L )L x U(L )R transformationsinto scalarones,A”
andA°,andpseudoscalarones,A~andA~.The infinitesimal transformationrules for the variousfields
consideredthus far are:

&~PL— — ~ir”(A”+ A~)clJL+ i(A°+ A~)(I’L, (4.1)

&~JR= — ~ir”(A’2— A~)’/’R+ i(A°— A~)~R, (4.2)

= — ~ 4~]— ~iA~{r°, 4s}~+ 2iA~, (4.3)

= A~IT,,— 2A~, (4.4)

= —A~a~+ 2A~u, (4.5)

b a 0
~ITa = CabcA IT~— A

5o +
2A

5aa, (4.6)

b a 0
= Eabcht a~+ A5’r1 — 2A5ITa5 (4.7)

~det4=4iA~det4t. (4.8)

In a theorywith L flavors the factor4 in eq. (4.8) mustbe replacedby 2L. In a classicalfield theory
the currentsare most easily obtainedby considering transformations(4.1)—(4.8) with space-time
dependentA.(x). Their effect on the total action can be written as

= f d~x(—FA,(x)— J~9,5A1(x)) (4.9)

(here i= 1,... , 8).
Since accordingto the equationsof motion ~S= 0 for all choicesof A~(x), one has

~J~(x) = I~(x). (4.10)

A Lagrangianwhich gives invarianceunderthe space-timeindependentA. must have F, = 0, so that
the currentJ’~,is conserved.

We are now mainly concernedabout the current J,~5associatedwith A~.The QCD Lagrangian
(3.1) producesthe current
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J,~5=iciry~,y59
1/, (4.11)

and, prior to quantization:

= 2irn~’y
5~’. (4.12)

As is well known, however,eq. (4.12) doesnot survive renormalization.Renormalizationcannotbe
performedin a chirally invariant way and thereforethe symmetry cannotbe maintained,unlesswe
would be preparedto violatethe local color gauge-invariance.But violation of color gaugeinvariance
would cause violation of unitarity, so, in a correctly quantizedtheory, (4.12) breaks down. A
diagrammaticanalysis [2] shows that, at least to all ordersof the perturbationexpansion,one gets

= 2irnci’y5~— 2 ~ (4.13)

with

= ~ (4.14)

We readoff that, if we mayignore the massterm, thenin a space-timevolume V with v.. instantons
and p anti-instantons

Jd~x~ = —2iL(i’~— a’j. (4.15)

Here the factor i is an artefactof Euclideanspace.Defining the chargeQ5 in a 3-volume V3 by

Q5 =j J0 d~x= if J4d
3x= QR — Q

1, (4.16)

each instantoncausesa transition*

z~Q5= 2L. (4.17)

This is called the “naive” equation in ref. [7]. Since we were working in a finite space-timevolume V
the nature of the “vacuum” hasnot yet enteredinto the discussion.Remarkson the languageused
here and in ref. [7] are postponedto appendixA.

Now let us write the correspondingequationin our effective Lagrangianmodel. Here,

J~,5=2i Tr{( ~*)~ — (4.18)

and

Apart from thedisputed sign thereare also differencesin sign conventionswith ref. [7].
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= —2rn(~cosx + u sin x) + 16K(a. — o~)cos0 +8K(fl2 + a2 — ~2 — ir2) sin0. (4.19)

Before comparingthis with eq. (4.13) of the QCD theory let uschirally rotate over an angle ~ The
mass term in the original Lagrangianthen becomes

—~rnci.’cosx—ici’rny~/sinx, (4.20)

and then (4.13) becomes

c9~J~
5= 2irnciiy5~frcosx — 2rn~Jiçfisin X — 161T

2 ~ (4.21)

Thereforethe first term in (4.19) can neatly be matchedwith the first termsof (4.21).
An issue raised in refs. [7, 8] is that thereis an apparentdiscrepancyif we try to identify the last

termsof (4.19)with the last term of (4.21). The last term of (4.21) containsthe color fields only and
there is absolutely no 0 dependencehere. But the last terms of (4.19) do show a crucial 0
dependence.It is essentially

8K Im(e’°det ~). (4.22)

Where did the 0 dependencecome from?
One way of arguingwould be that the 0 dependenceof (4.22) is obvious.Chiral transformations

are describedby eq. (2.15) and any symmetry breakingterm in a Lagrangiancan obviously not be
invariant at the sametime. So the 0 dependenceof (4.22) is as it hasto be. The symmetry breaking
in QCD is not visible in its Lagrangian but is due to the 0 dependenceof the regularization
procedure.

However,although this argumentmayexplain why (4.19) showsa 0 dependenceand (4.21) does
not, it does not explain why neverthelessthesetwo theoriescan describethe same system.This is
(partly) what the disputeis about. We claim that one can identify in the effective theory

1287r2K Im(eiO det ~)= —iF}~, (4.23)

so that, if 0 0, one mayidentify FE with the ~ field. At the sametime we would also like to put

= qRqL, (4.24)

but this 0 phaseseemsto be in disagreementwith the canonicalquantizationprocedureif A, q~, q~

and 4’ were to be considered as independent canonical variables. Another way of formulating this
problemis that the right hand side of (4.23) seemsto commutewith the chiral chargeoperatorQ

5
while the left hand side does not. -

Notice that if we could somehowsuppressinstantonsessentially FF would vanish. The left
hand side of (4.23) would vanish also, becauseK—~O. This suggestsone simple answer to our
problem: equation(4.23) violates axial chargeconservation,but that is to be expectedin a theory
where axial charge is not conserved.Unfortunately some physicists insist in consideringthe U(1)
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violation by instantons as being “spontaneous”rather thanexplicit and thereforethey rejectedthis
simple answer. A rather curious attempt to bypassthe problem was describedin [7]. They first
proposeto replaceour Va of eq. (2.13) by

= K Tr(log(4’I4’t))2. (4.25)

But this also does not commutewith the axial chargeoperatorand furthermorethe logarithm is not
single-valuedso (4.25) makesno senseat all. So then they propose

f V= Kf(~!)(8~Trlog(4’!4’t))2. (4.26)

It is not obvioushow thisexpressionshouldbe readsuchthat it doesmakesense.If it is equivalentto
(4.25) thenclearly no improvementhasbeen achieved.The problemof a multivalued logarithm has
merely beensubstitutedby the problemof an infrared divergentintegralin x space.Equation(4.26)
is thena clear exampleof linguistical gymnasticsthat should be avoided: formally it appearsto be
chirally invariant,yet it is equivalentto the local term (4.25), which is not.

We conclude in this section that the aforementionedproblem is not solved by the logarithmic
potentials V~of eqs. (4.25), (4.26). Let us call this problem the “U(1) dilemma”. The correct
resolutionof the U(1) dilemma will be given in the next sections.

5. Solution of the U(1) dilemma

We must keepin mind how and why an effectiveLagrangianis constructed.The word “effective”
is meant to imply that such a model is not intendedto describethe systemin all circumstances.
Rather, the model gives a simplified treatment of the system in a given range of energiesand
momenta.In this casewe are interestedin energiesand momentalower than,say, 1 GeV.

Now the complete theorycontainsvariablesat much higher frequencies.In as far as they play a
role at lower energies,we must assumethat they havebeentaken care of in the effective model.
Consequently,the simple identification (4.24) is not correct as it stands.It should be readas

— (ciR~L) low frequencies (5.1)

But what does “low frequency” mean? In a gauge theory the concept “frequency” need not be
gauge-invariant.Thereforethe splitting betweenhigh frequencyandlow frequencycomponentsof the
quark fields must dependin generalon the gluonic fieldsA ,~. This is why the contributionof the high
frequencycomponentsof the quark fields to the axial current J~

5may dependexplicitly on the A

fields, a fact that is correctly expressedby the so-called“anomalouscommutators”of [6, 7]. After
integratingout the high frequencymodesof the quark fields, but beforeintegratingout theA fields,
we have an expressionfor the axial current which hasthe following form:

J~5=2iTr{(8.~4’*)4’.4’*a4’}+JP(A) (5.2)

It is J~5(A)which is responsiblefor the nontrivial axial chargeof the quantity FE in (4.23).Let Q~be
the chargecorrespondingto J,~5.How does FF commutewith Q~?
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RatherthanFE itself, it is the integral over somespace-timevolume iSV,

JFE= v~- v~, (5.3)

that is relevantin (4.13). (We usethe short handnotationof eq. (3.4).) Let us take ~V sosmall that

JFF=o or ±1. (5.4)

(i) If FE=0 then we are not interestedin its quantumnumbers.
(ii) Wheneverthe right handsideof (5.3) is ±1 we havean amplitudein which ±2Lunits of axial

chargeare created.
(iii) The higher valuesof the right hand side are negligible.

- The creationor_annihilationof axial chargesoccursbecauseof the extrahigh frequencymodesof

ci~L’ ~ or ci~Land 4’~that makethe functionalintegralnon-invariant.Let uscall their contributionZ.

If v~= 1 then

Z=JHD4rL[TD4IRHDIPRHDIPL(expS), (5.5)

where the subscripts under the multiplication symbols denote the numbersof variables to be
integratedover. Then if

ci’L ULciJL — ~

(5.6)
~1R—~URcirR—e 1I1R~

we havefor all integrals over the anticommutingfields:

f D~—*&’°fD~L,

(5.7)f D~R~etwfD~R,

sothat

(5.8)

In this discussionwe only include the high frequencycomponentsof the ~‘ fields. We see two
things: the effective interaction Z due to an instantontransformsexactly as our insertion Ua of eq.
(2.13), and secondlythat, in a simplified picture whereFF takesintegervaluesonly (eq. (5.3)), the
quantity FF, after integration over the high frequencyfermionic modes,transformswith a factor

e~2”’’~, (5.9)
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so that thereis no longer any conflict* with (4.23). The transformationrules (4.1—4.8) hold for the

effective fields. The termscontainingA5°tell us how the various fields commutewith Q5:

[Q5~~~‘J= ~“L (5.10)

[Q5’~1= ~4R (5.11)

[Q5,4’]=24’ (5.12)

[Q5,~]=2i~ (5.13)

etc.

6. Fictitious symmetry

The chiral U(1) symmetry breaking in QCD is an explicit one becausethe functional measure
H Di/i fails to be chirally invariant whenregularizedin a gauge-invariantway [21]. This neatly explains
why no masslessGoldstonebosonsare associatedwith this symmetry. Yet in severaltreatizesthe
words “spontaneoussymmetry breaking” are used.How can this be?

Any broken global symmetry can formally be consideredas a “spontaneously”brokenone by a
procedureconsistingof two steps.

(i) Enlarge the physically accessibleHilbert spaceby addingall those Hilbert spacesof systems
that would be obtainedby applying the phoneysymmetry transformation:

(6.1)

where .~ is the original Hilbert space and S the spaceof physical constantsdescribingsymmetry
breaking.

(ii) Definethe symmetryoperator(s)as actingboth in S andin ~. We thenobtaintransformations
in ~‘ that obviously leave the Hamiltonian H invariant. This procedureallows one to write down
Ward identities for theorieswith symmetriesbrokenexplicitly by one or more termsin the Lagran-
gian. Since suchidentitieswereexcessivelyusedandadvocatedby Veltmanin his earlywork on gauge
theorieswith mass-insertions,we proposeto refer to the abovetransformationsas Veitman transfor-
mations[12].

Considerfor example quantumelectrodynamicswith electronmassterm

mciFLcifR— mipRcifL. (6.2)

Then S is the spaceof complex numbersrn. In this theory then,m is promotedto be an operator
ratherthan a c-number.The chiral transformation

ci~R ecitR
L L

21w (6.3)
rn—~e rn

* For the factor e’ see section 7.
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is obviously an invarianceof this theory. If in the “physical world”

(m)=m=real (6.4)

then one could arguethat the symmetry (6.3) is “spontaneouslybroken”.

The canonicalchargeoperatorQ associatedwith (6.3) is now

~=QR_QL+2(rn*~~_rn~), (6.5)

which commuteswith (6.2). Thus,~ is exactlyconserved.But, since m is not a dynamicalfield, the
new term cannotbe written as an integral over 3-space,unlesswe enlarge the Hilbert spaceonce
again.

Let us now considera Feynmandiagram in which the massterm (6.2) occursperturbativelyas a
two-prongvertex. Let therebe a diagramwith ~+ insertionsof the last term in (6.2), goingwith m,
and v of the first term, going with m*. We have

~Q
5=L~QRQL~2(V+ —v)

(6.6)
~=0.

Only by brute force onecould producea currentof which the fourth componentwould give a charge
satisfying (6.6):

= J~5+ K~
(6.7)

9~K,~~(x)= —2i(p~(x)— p(x))

wherep~(x) is the densityof the correspondingmassinsertion vertices,

p~21
I ‘~ m

/ / t
\ JR 2

L

L

R

— L s__~

Fig. 1. Propagatingelectron(solid line) with massterms.The propagatorsare expandedin in, yielding artificial particles (schizons,dottedlines)
that carry awaytwo units of axial charge, but no energy.momentum.Total chiral chargeQ, is conserved.Here Q,(t,) = Q,(t2)= 1.
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K~(x)=—2iD’~(p~—p). (6.8)

Clearly, K~,is not locally observable.There is anonobservable“Goldstoneghost” (the pole of
U - ~ It goes without saying that Q, although exactly conserved,and J,~,are not very useful for
canonicalformalism.Yet the current~5.sym andthe chargeQ~ as usedin ref. [7] arepreciselyof this
form. This will be explainedin the next section.

A neatway to implementthe symmetry (6.3) is to treatthe parameterm as a field: the “schizon”,
or “spurion”, as those auxiliary objectsare sometimescalled to describeexplicit symmetry breaking,
such as isospin breakingby electromagnetism.The schizonfield has a nonvanishingvacuumexpec-
tation value (6.4). Diagrammatically,a propagatingelectroncould be representedby a diagram (fig.
1). Defining Q = ±2for the schizonswe see that Q is absolutelyconserved.Of course ~ is also
“spontaneouslybroken”.

7. The “exactly conserved chiral charge” in a canonically quantized theory

The fictitious symmetry describedin the previoussectioncan be mimicked in a gaugetheory in a
way that looks very real. Considerinsteadof (4.11), the current

~s5,sym = J~5+ K~
2~ (7.1)

— giL Aafj Aa + 1 4’ A~’ Ac

— 16ir
2 ~sva~v’~a$ 3gJabc.n1a~~1pThen, in the limit rn~0,one has

~s~~s

5,sym = 0. (7.2)

The correspondingcharge,

Q5,sym= f ~O5,sym d
3x (7.3)

generates“exact” chiral transformations.How doesthis operatoract in Hilbert space?
To answerthis questionwe must formulatethe canonicalquantizationof the gluon field carefully.

Conceptuallythe most transparentway is to first choosethe temporalgauge:

A
0=0, (7.4)

which leavesus formally the set of all statesIA(x), 4i(x), iji(x)) at a given time t, where i/i and ~
should be seenas Grassmannnumbers.Let us call’ the Hilbert spacespannedby all thesestatesthe
“huge” Hilbert space.

Then (7.4) leavesus invarianceunder all time-independentgauge transformations11 = 0(x), so
that the Hamiltonian in this spaceis invariant under a group G composedof gaugetransformations
11(x) that may vary from point to point. This generatesan invariance at each x, according to
Noether’stheorem.Writing
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QIA, 4~ci’) = IA’ci”~cfr’~) (7.5)

where the subscript12 indicates how the fields are gauge-transformed,we have

[H,12]=0. (7.6)

We can imposethe gaugeconditionsof the secondtype:

(7.7)

for all infinitesimal 0, acting nontrivially only in a finite region of 3-space:

A~(x)= A(x) + D~A(x),

A infinitesimal, and with compactsupport.
States I~1’)satisfying (7.7) aresaid to be in the “large” Hilbert space(which is not as largeas the

“huge” one).
Finally, we considerall (1 with nontrivial winding numbera’

[l~I’~1’)=&°~W). (7.8)

These statesI ~I’) are said to constitutethe small, or physical Hilbert spaceat given 0.

Now notice that ~~
5Sym does not commutewith 11:

[~5,syrn’ 12] = D~A~a~
1~ap~ (7.9)

Therefore, ~

1L5sym cannotbe consideredto be an operatorfor statesin the “large” Hilbert space.
Acting on a statesatisfying (7.7) it producesa statenot satisfying (7.7).

Now the charge Q5sym of eq. (7.3) doescommutewith all 11 with a’ = 0, but not with the others:

[Q5,sym’ liv] = 2iLa’f2~. (7.10)

Therefore, Q5,sym does actas an operatorin the large Hubert space,but not in the physicalHilbert
space,becauseit mixes different 0 values.We can write

[Qs.sym_2~ ~ ,l2~]=0. (7.11)

We seethat in everyrespectQ5symbehavesas Q of the previoussection,and ~~~5symas J.
A Goldstonebosonwould emergein the theory if, besidesthe statessatisfying (7.8), it could be

possible to constructphysicalstatesin which 0 would dependon space-time:

0~0(x,t). (7.12)

Here it is obviousthat (7.12) would be in contradictionwith (7.7) and (7.8): If we would compare
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different f1~but with the samea’, such that the support of 11(1) would be in a region near~ and
that of (1(2) near~ then the combination

12(1)11(2)_i

would havewinding numberzero. So the secondgaugeconstraintwould excludeanystatesfor which
0(x”~)~ 0(x~2~).This is an important contrastwith systemssuch as a ferromagnet,where local
fluctuationsare allowed, which, becauseof their large correlation lengths, correspondto massless
excitations.

Becauseof the similarity between(7.11) and (6.5) we can considere’°as a “schizon” field just as
the electronmassterm. Since 0 cannothaveanyspace-timedependencethis schizonfield cannotcarry
awayany energyor momentum,just as m in the previoussection.

Although Q
5sym doesnot act in the “physical” Hilbert space,it is possibleto write Ward identities

[6,7] dueto its formal conservation,

I d4X~T(J~5(X),OP)=2Lfd4Xd~T(K~(X),OP)+fd4XT(DL(X),OP)+([QSsym,OP]),

(7.13)
whereOp standsfor anyoperator;and

DL=2imciJy5clI, (7.14)

which will vanishwhen rn —p0. K,~satisfies

o’K= g

~ 32ir
2 ~

One can take

Op=K~(0), (7.16)

and assume

[Q
5,sym’K~]= 0 (7.17)

while putting DL—+0. (7.18)

Now (7.17) is not obvious. Substituting(7.15) gives

[Q5,sym’FE] = 0. (7.19)

On the other hand we showedin section 5 that FE hasnontrivial chiral transformationproperties.
This howevercorrespondsto

[Q5,FE]~0. (7.20)
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Indeed,

([Q5,FE])~C.f
2 (7.21)

wherethe right handside follows from the substitution(4.23)and thecommutationrule (5.12). C is a
constantandf the r expectationvalue.

Equation (7.19) is a fundamentalstarting point of the discussionsin refs. [6—8].The difference
between(7.19) and (7.20) must apparentlybe madeup by the contributionof K

0 to Q5sym. Now K0
is not a physically observablefield. Assigningto it the conventionalcommutationrules to be deduced
from its compositionin termsof color gaugefields is only allowedif one worksin the “huge” Hilbert
spaceincluding the gaugenoninvariantstates.

All we haveto do to incorporatethe fictitious symmetry generatedby Q5,sym into our model of
effective fields describedin section2, is to adda schizonfield, enlargingthe Hilbert space.Let uscall
the schizonfield

S=e’~’. (7.22)

Our new identification is

- 128ir
2i

FF= L 2 Im(Sdet4’), (7.23)

-

a) instanton

JK=0

b)

Fig. 2. Effectiveinstantonactionand itsQ, symmetryproperties.(a) Due to fermionic zeromodes2L units of Q
5 areabsorbedat thesite of the

instanton.In thesametime thechargegeneratedby K0 is not conserved.(b) In theeffectivetheory thefennionsarereplacedby the4 field, and
K0 by a schizon5. The 4o carry 2 units of Q, each,and S has —2L units. Shas a nonvanishingvacuum expectationvalue.
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and if we postulate,in addition to (5.10)—(5.13)for Q5,sym also (see7.11):

[Q5,sym’ SI = —2LS, (7.24)

thenwith (5.12) we find thatFE commuteswith Q5,sym~Substitutinge’
8 det 4’ by Sdet 4’ in (2.13) we

see that indeedour effective field theory obeys the fictitious symmetry generatedby Q5,sym~ It must
thereforealso obey the so-calledanomalousWard identities. Seefig. 2.

8. Diagrammaticinterpretationof the anomalousWard identities

The conclusionof the previous sectionsis that the model of section2, with the substitution

&°—~S (8.1)

obeys all anomalousWard identities. It also exhibits in a very transparentway how the symmetries
are now spontaneouslybroken. There are two vacuum expectationvalues:

(S)=e1° (8.2)

(or)=f. (8.3)

Both break Q5,sym conservation.We can now draw Feynmandiagramsin the Wigner representation
by explicitly addingthe vacuum bubbles due to (8.2) and (8.3). See fig. 3. By summingover the
bubble insertions(geometricserieswhich are trivial to sum),one reobtainsthe Goldstonerepresen-
tation of the particles.The a’ bubblestend to makethe pionsand etamassless,but the termswith K

(and the quark massesm) contribute linearly to m2 for the various mesons.Thesediagramsclearly
visualize where the massescomefrom andhow the Q

5 ,sym chargesare absorbedinto the vacuum.
In ref. [7] an apparentproblemwas raised by their equations(4.27) and (4.28): they suggestthe

+ ,

V: ~ X2 EI~III~

• U: __
Fig. 3. Feynmanrules in the Wigner mode.The u blobs render thepion and the i~massless.But the S blob givesa mass to ii. Herewe drew
explicitly the q’ propagator(L = 3). Its masscomesfrom theinsertion at the right. Note that m ~. is linear in (5> and in (or) in Kf.
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need for field configurationswith fractional winding number a’, which would correspondwith the
breakingup of our S field into componentswith smaller Q5.sym charges.In our diagramswe clearly
see that thereis no such need. If we havea Greenfunction with an operatorthat createsonly two
chiral charges,

x0~,=2

then the sigma field can absorbthesetwo, or add2(L — 1) more and havethem absorbedby S. The

vacuum simply isn’t an eigenstateof Q5 (nor Q5sym) as it was assumed.

9. Conclusion

The disagreementsbetween the approachof the Crewther’s school to the U(1) problem, using
anomalousWard identities, and the more standardbeliefs are not as wide as they appear.Their
anomalousWard identities, if appliedwith appropriatecare, areperfectly valid for a simple effective
field theory thatclearlyexhibitsthemostlikely vacuumstructureof QCD. It is importanthoweverto real-
ize that therelevantexactlyconservedchiral chargeQ5~~mis not physicallyobservable,somethingwhich
explainsthe needfor the introductionof a spurionfield S in the effective theory. It appearsthat the
consequencesof working with an unphysicalsymmetry were underestimatedin ref. [7]. Some of the
difficulties signalled in [7] were due to the too strongassumptionthat the vacuumis an eigenstateof
Q5. That such assumptionsareunnecessaryandprobablywrong would havebeenrealizedif theyhad
takenthe effective theory more seriously.

The fact that the effective theory of section 2 displays the correctsymmetry propertiesdoesnot
haveto meanthat it is accurate.Indeedit could be that instantonstendto split into “merons” [16], a
dynamicalproperty that might be a factor in the spontaneouschiral symmetry breakingmechanism
[14]. But theseaspectsdo not affect the symmetry transformationpropertiesof the fields under con-
sideration.More fields, describinghigher resonances,could haveto be added.The baryonic degrees
of freedom are most likely to be consideredas extendedsolutions of the effective field equations
(skyrmions).That theseskyrmions[17] indeedpossessthe relevantbaryonic quantumnumberswas
discoveredby Witten [18].

The author thanks R.J. Crewther for his patience in extensive discussions,even though no
completeagreementwas reached.

Appendix A. The sign of i~Q5

In ref. [7] the presentauthor’swork was claimedto be in error at variousplaces.Although some
minor technicalcorrectionson the computedcoefficientsin the quantumcorrectionsdueto instantons
were found (seeref. [20] andappendixB) and evensomeinsignificant inaccuraciesin the notationof
a sign might occur, we stressherethat none of thoseclaims of ref. [7] were justified. In particular
thereare no fundamentaldiscrepanciesin the sign of i~Q5.

Let us hereignore the massesof the quarks. As formulatedin section4, an instantonin a finite
space-timevolume V causesa transitionwith
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~Q5=2L (Al)

where Q5 is the gauge-invariantaxial charge.Since Q5sym’ as defined in section7, is now strictly

conservedone obviously has
~Qs,sym0, (A2)

which is of courseonly definedin the “large” Hilbert spacecomprisingall 0 worlds.
Insteadof (Al—A2), we readin ref. [7]:

~Q5=0; ~Q5,sym~21~ (A3)

These are not the propertiesof a closed space-timevolume such as we described,but representthe
featuresof a Green’s function where the asymptotic states are 0-vacua. Since Q5,sym contains
explicitly the operator 9lao in the “large” Hilbert space(cf. eq. (7.11)), the 0-vacuumis not invariant
under ~ This is why (A3) is not in conflict with Q5,sym conservation.But we also see that
(A1—A2) and (A3) hold under different boundaryconditions (the reasonwhy t~Q5= 0 for Green’s
functions in a 0-vacuumis correctly explainedin ref. [7]).

Appendix B. The amplitudeof the instantoneffects

To get evena roughestimateof the size of our instanton’s contributionto an amplituderequires
lengthy calculations.A detailedaccountwould requirea completereprinting of this author’swork in
ret. [19]. As pointed out in [20] therewere someminor errorsin the first publicationwhich we will
discussbriefly here.

Let A”
55 be the field of one instanton.Then the amplitude due to one instantonin Euclidean

spacein a short hand notationis:

W= ~( I )~ f DA~~D~. . expJd~x2(Am50 + ~ ~, ~). (Bl)

We have

f d~x2(A1°~t)= —8ir21g2

and the part of the action that is quadraticin A”, ~‘, ifr, is

2(2) = —~(D,~A~”)2+ ~(D~A~.”)2 — gA ufbG 5tA’~”” — 4Jy~D,J~tJJ— + ~host +

(B3)

where D,~is the covariant derivative with respect to Ai~~5tand — ~C~is the gauge fixing term,
producinga ghost describedby

2~lIost We addeda source term for the fermions.
Now the integral (Bi) in lowestnontrivial order is Gaussianwith nontrivial coefficients.Formally

we can write the outcomeas
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W= exp(—8i~2/g2)(det~V?A)1’2det~ detW~gh (B4)

and the determinantscan be computedby diagonalization:

~IR~çb=E~4i. (B5)

It is clear that (B4) is highly divergent unless we formulate very precisely an appropriate subtraction
procedure. A convenient method is to apply first a variety of Pauli—Villarsregularizationto the fields
~ and ,fr andthenadd correctionterms to be obtainedby comparing this regularization scheme to
for instancedimensionalregularization.

It is then found that (B4) is not the completeanswer: therearezero eigenvaluesof ~ ~ and
Wlgh which haveto be consideredseparately.The correspondingeigenmodesmust be replacedby
collective coordinatesincluding an appropriateJacobianfor this transformation.Since (B4) must be
comparedwith the vacuumtransition(in absenceof instantons)the collectivecoordinateintegrationis
to be divided by a norm factor determinedby a Gaussianintegral. In our work [19] this factor was
takento be -v’~. However, the relevantGaussianintegral was

f exp(—~x2)dx =

andthe factor 2 was missed.Consequently,in the final expressions(12.1), (12.5), (13.8) and (15.1)
we must replace214 by 210.

In comparingthe Pauli—Villars regulatorswith dimensionalregularization,section 13 of ref. [19],
anothererror was made. Applying the two regulatorsto the integral

(2~ Jdflk (k2~)2 (B7)

we find

(2ir)2 (4~n—y—2log~L~,+log41T+C(4—n)+c(_~-~)), (B8)

so, if p.,~is a regulatormass,then the comparisonyields

1

log~
0—~4 —~y+~log4ir. (B9)

The integral (13.5) of ref. [19] should be replacedby

1 1 kkkk
‘d~k ~sva~ BlO(2i~)~J (k

2+.~)2

which gives

(4)24! [4~n ~
0 (Bil)
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We seethe samesubstitution(B9) can be usedandthereis no correctionterm 516 as written in [14].
Equation(B9) relatesthe two regulatorsin all circumstances.

On the otherhandthe numberof A~Ufields in dimensionalregularizationis n ratherthan4. So for
thesefields we need the substitution

—~y+~log41T—l. (B12)

The rest of the procedureto sum all contributionsof the cigenmodesof the operators~ ~

andpossible scalarcontributions~ and the contributionsof the collectivecoordinatesis all as
explainedin [19]. The result is now the effectiveLagrangian(for the casethat the color gaugegroup
is SU(2)):

2~(z)= 210+3~~~lT6+2N~g_8f ~ dp exp{— 8n~22

— ~ N5(t)C(t) — ~N~]+ A — ~ N5(t)A(t)— N~B}

(B13)

whereN~is the number of fermions in the doublet representation,p is a scalarparameterfor the
instanton, ~ is an arbitrary mass unit enablingus to obtain a renormalizationgroup invariant
expression,and N5(t) is the numberof scalarfield representationswith color t.

Defining coefficients a(t) as in table 1, we havenow:

A—a(1)+~(log4ir—y)+~7.05399l03

A(t) = —a(t)+ ~‘~(log4~r—y)C(t)

A(l/2) = 0.30869069 (B14)

A(1) 1.09457662

A(312) = 2.48135610

B —2a(112)+ ~(log4i~—y)=0.35952290.

Table 1

t C(t) 0(t)

0 0 0
1/2 1 2R—llog2—17/72

1 4 8R+ ~log2—16/9

3/2 10 20R+41og3—llog2—265/36

R= (log2sr + y)+ —~~ =0.248 754477.
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Finally, the spinors w are normalizedby

E = ~(l + y~) (B15)

and required to be smearedin color space,such that for instance

(wathp) = ~8a~s(1+y~) (B16)

and, in the caseL = N~= 2:

(n (~s~)(th~s)) = ~ - ~3Pi) s:~as(1+ y)~P1~2(1+ y5)~
2 (B17)

wheres and t are flavor indices and a,, /3. color indices.
The p integralmayseemto divergein most interestingcases(N’~>1). Note howeverthat it would

be natural to choose

/L=ilp (B18)

andsubstituteg8 by the running valueg( /.L)8. At largep onemight takeg oz p and thus improvethe
convergence.Of coursethe infraredend of the integralis quite uncertainbecausein ourperturbative
procedurethe effects of confinementetc. havenot beentakeninto account.This inhibits a precise
evaluationof the amplitude.A rough estimate(for a color SU(2) theory) is obtainedif we take at
large p

g2(1/p)—÷l6i~p2a’ (B19)

wherea’ is the string constant.Thenquarkswith color charge1/2 at a distancep from eachotherfeel
a force

a’=~g2/4irp2. (B20)

Our integral becomes,in the caseN~= 2,

= 2’61T1°e~282
1f g

8(iIp) exp — 81T2/g2(1Ip). (B21)

From (B19) we get

p dp ~ g dg/16ira’ (B22)

and using x = 1 /g2 the integralin (B21) is

32ircr J dx x2 e_81T25 213ir7o~1 (B23)
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so that

2eff = ~ eA
2Bar~2i (B24)

where 2~is the Lagrangian(B 17).
This result is uncomfortablylarge,but then the approximationsusedhere(eq. B19) could at best

only beexpectedto yield the orderof magnitudeof the expectedinteraction,which is clearlya strong
one. Note that we useda minimal subtractionschemethat includedthe term log 4ir in (B9). If weleft
it out then (B24) would be reducedby a factor (4ir) ~ = 2-6~,.~ This is just to illustrate how
sensitively the amplitudeobtaineddependsupon the assumptions.
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