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Abstract

Both the Standard Model of elementary particle physics
and the classical theory of General Relativity ore observed to
obey the fundamental requirements of causality and locality.
Most of the recent attempts at reconciling these two theories
into one, assume the standard axioms of quantum mechanics as
well as those of general coordinate invariance without further
question, whereas the demands of locality and even causal-
ity are often compromised upon. Background independence
is usually sought for. There are reasons to suspect that this
will not yield a comprehensive formalism. In particular, black
holes lead to conceptual difficulties, in view of the holographic
nature of the horizon. The author advocates more imaginative
scenarios. The most extreme possibility is an “underlying the-
ory”, with neither general relativity nor quantum mechanics
in its basic equations, both having an “emergent” nature.
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1 Quantum Gravity as a non-renormalizable

gauge theory

Quantum gravity is usually thought of as a theory, under construction,
where the postulates of quantum mechanics are to be reconciled with
those of general relativity, without allowing for any compromise in either
of the two. As will be argued in this contribution, this ‘conservative’
approach may lead to unwelcome compromises concerning locality and
even causality, while more delicate and logically more appealing schemes
can be imagined.

The conservative procedure, however, must first be examined closely.
The first attempt (both historically and logically the first one) is to for-
mulate the theory of “quantum gravity” perturbatively[1], as has been
familiar practice in the quantum field theories for the fundamental parti-
cles, vis. the Standard Model. In perturbative quantum gravity, one takes
the Einstein-Hilbert action,

S =

∫
d4x

√−g
(R(x)

ε
+ Lmatter(x)

)
, ε = 16πG , (1.1)

considers the metric to be close to some background value: gµν = gBg
µν +√

ε hµν , and expands everything in powers of ε , or equivalently, Newton’s
constant G .

Invariance under local coordinate transformations then manifests itself
as a local gauge symmetry: hµν → hµν + Dµuν + Dνuµ , where Dµ is the
usual covariant derivative, and uµ(x) generates an infinitesimal coordi-
nate transformation. Here one can use the elaborate machinery that has
been developed for the Yang-Mills theories of the fundamental particles.
After imposing an appropriate gauge choice, all desired amplitudes can
be characterized in terms of Feynman diagrams. Usually, these contain
contributions of ‘ghosts’, which are gauge dependent degrees of freedom
that propagate according to well-established rules. At first sight, there-
fore, quantum gravity does not look altogether different from a Yang-Mills
theory. It appears that at least the difficulties of reconciling quantum
mechanics with general coordinate invariance have been dealt with. We
understand exactly how the problem of time, of Cauchy surfaces, and of
picking physical degrees of freedom, are to be handled in such a formal-
ism. Indeed, unitarity is guaranteed in this formalism, and, in contrast to
‘more advanced’ schemes for quantizing gravity, the perturbative approach
can deal adequately with problems such as: what is the complete Hilbert
space of physical states?, how can the fluctuations of the light cone be
squared with causality?, etc., simply because at all finite orders in per-

1



turbation expansion, such serious problems do not show up. Indeed, this
is somewhat surprising, because the theory produces useful amplitudes at
all orders of the perturbation parameter ε .

Yet there is a huge difference with the Standard Model. This ‘quan-
tum gauge theory of gravity’ is not renormalizable. We must distinguish
the technical difficulty from the physical one. Technically, the ‘disaster’ of
having a non-renormalizable theory is not so worrisome. In computing the
O(εn) corrections to some amplitude, one has to establish O(εn) correc-
tion terms to the Lagrangian, which are typically of the form

√−g Rn+1 ,
where n + 1 factors linear in the Riemann curvature Rα

βµν may have
been contracted in various possible ways. These terms are necessary to
cancel out infinite counter terms of this form, where finite parts are left
over. At high orders n , there exist many different expressions of the form
Rn+1 , which will all be needed. This is often presented as a problem, but,
in principle, it is not. It simply means that our theory has an infinite se-
quence of free parameters, not unlike many other theories in science, and
it nevertheless gives accurate and useful predictions op to arbitrarily high
powers of GE2 , where E is the energy scale considered. We emphasize
that this is actually much better than many of the alternative approaches
to quantum gravity such as loop quantum gravity, and even string theory
presents us with formidable problems when 3-loop amplitudes are asked
for. Also, claims[2] that quantum gravity effects might cause ‘decoherence’
at some finite order of GE2 are invalid according to this theory.

Physically, however, the perturbative approach fails. The difficulty
is not the fact that the finite parts of the counter terms can be freely
chosen. The difficulty is a combination of two features: (i) perturbation
expansion does not converge, and (ii) the expansion parameter becomes
large if center-of-mass energies reach beyond the Planck value. The latter
situation is very reminiscent of the old weak interaction theory where a
quartic interaction was assumed among the fermionic fields. This Fermi
theory was also “non-renormalizable”.

In the Fermi theory, this problem was solved: the theory was replaced
by a Yang-Mills theory with Brout-Englert-Higgs mechanism. This was
not just ‘a way to deal with the infinities’, it was actually an answer to an
absolutely crucial question[3]: what happens at small distance scales?. At
small distance scales, we do not have quartic interactions among fermionic
fields, we have a local gauge theory instead. This is actually also the
superior way to phrase the problem of quantum gravity: What happens at,
or beyond, the Planck scale? Superstring theory[4] is amazingly evasive
if it comes to considering this question. It is here that Loop Quantum
Gravity[5] appears to be the most direct approach. It is an attempt to
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characterize the local degrees of freedom, but is it good enough?

2 A prototype: gravitating point particles

in 2 + 1 dimensions

An instructive exercise is to consider gravity in less than four space-time
dimensions. Indeed, removing two dimensions allows one to formulate
renormalizable models with local diffeomorphism invariance. Models of
this sort, having one space- and one time dimension, are at the core of
(super)string theory, where they describe the string world sheet. In such
a model, however, there is no large distance limit with conventional ‘grav-
ity’, so it does not give us hints how to cure non-renormalizable long-
distance features by modifying its small distance characteristics. There is
also another reason why these 2-dimensional models are uncharacteristic
for conventional gravity: formally, pure gravity in d = 2 dimensions has
1
2
d(d − 3) = −1 physical degrees of freedom, which means that an addi-

tional scalar field is needed to turn the theory into a topological theory.
Conformal symmetry removes one further degree of freedom, so that, if
string theory starts with D target space variables, or ‘fields’, Xµ(σ, τ),
where µ = 1, · · · , D , only D − 2 physical fields remain.

For the present discussion it is therefore more useful to remove just one
dimension. Start with gravitationally interacting point particles in 2 space
dimensions and one time. The classical theory is exactly solvable, and
this makes it very interesting. Gravity itself, having zero physical degrees
of freedom, is just topological; there are no gravitons, so the physical
degrees of freedom are fust the gravitating point particles. In the large
distance limit, where quantum mechanical effects may be ignored, the
particles are just point defects surrounded by locally flat space-time. The
dynamics of these point defects has been studied[6], and the evolution laws
during finite time intervals are completely understood. During very long
time intervals, however, chaotic behavior sets in, and also, establishing
a complete list of all distinguishable physical states turns out to be a
problem. One might have thought that quantizing a classically solvable
model is straightforward, but it is far from that, exactly because of the
completeness problem. 2 + 1 gravity without point particles could be
quantized[7], but that is a topological theory, with no local degrees of
freedom; all that is being quantized are the boundary conditions, whatever
that means.

One would like to represent the (non-rotating) point particles by some
scalar field theory, but the problems one then encounters appear to be
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formidable. Quite generally, in 2+1 dimensions, the curvature of 2-space
is described by defect angles when following closed curves (holonomies).
The total defect angle accumulated by a given closed curve always equals
the total matter-energy enclosed by the curve. In the classical model, all
of this is crystal clear. But what happens when one attempts to ‘quantize’
it? The matter Hamiltonian density does not commute with any of the
particle degrees of freedom, since the latter evolve as a function of time.
Thus, anything that moves, is moving in a space-time whose curvature is
non-commuting. This is an impediment against a proper formulation of
the Hilbert space in question in the conventional manner. Only eigenstates
of the Hamiltonian and the Hamiltonian density can live in a 2-space with
precisely defined 2-metric. Consequently, if we wish to describe physical
states in a 2-space with precisely defined metric, these states must be
smeared over a period of time that is large compared to the Planck time.
We repeat: in a perturbative setting this situation can be handled because
the deviations from flat space-time are small, but in a non-perturbative
case, we have to worry about the limits of the curvature. The deficit angles
cannot exceed the value 2π , and this implies that the Hamilton density
must be bounded.

There is, however, an unconventional quantization procedure that seems
to be quite appropriate here. We just noted that the Hamiltonian of this
theory is unmistakably an angle, and this implies that time, its conjugate
variable, must become discrete as soon as we quantize. Having finite time
jumps clearly indicates in what direction we should search for a satisfac-
tory quantum model: Schrödinger’s equation will be a finite difference
equation in the time direction. Take that as a modified picture for the
small-distance structure of the theory!

How much more complicated will the small-distance structure be in our
3 + 1 dimensional world? Here, the Hamiltonian is not limited to be an
angle, so, time will surely be continuous. However, if we restrict ourselves
to a region where one or more spatial dimensions are taken to be confined,
or compactified, taking values smaller than some scale L in Planck units,
then it is easy to see that we are back in the 2 + 1 dimensional case, the
Hamiltonian is again an angle, and time will be quantized. However, the
2 + 1 dimensional Newton’s constant will scale like 1/L , and the time
quantum will therefore be of order 1/L in Planck units. This suggests
the following. In finite slabs of 3-space, time is quantized, the states are
‘updated’ in discretized time steps. If we stitch two equal sized slabs
together, producing a slab twice as thick, then updating happens twice as
fast, which we interpret as if updating happens alternatingly in one slab
and in the other. The total time quantum has decreased by a factor two,
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but within each slab, time is still quantized in the original units. The
picture we get this way is amazingly reminiscent of a computer model,
where the computer splits 3-space into slabs of one Planck length thick,
and during one Planck time interval every slab is being updated; a stack
of N slabs thus requires N updates per Planck unit of time.

3 Black holes, causality and locality

The 2 + 1 dimensonal theory does not allow for the presence of black
holes (assuming a vanishing cosmological constant, as we will do through-
out). The black hole problem, there, is simply replaced by the restriction
that the energy must stay less than the Planck value. In our slab-stack
theory (for want of a better name), we see that the energy in every slab
is restricted to be less than the Planck value, so any system where one of
the linear dimensions is less than L , should have energy less than L in
Planck units, and this amounts to having a limit for the total energy that
is such that a black hole corresponds to the maximally allowed energy in
a given region.

Clearly, black holes will be an essential element in any quantum gravity
theory. We must understand how to deal with the requirement that the
situation obtained after some gravitational collapse can be either described
as some superdense blob of mass and energy, or as a geometric region
of space-time itself where ingoing observers should be allowed to apply
conventional laws of physics to describe what they see.

One can go a long way to deduce the consequences of this requirement.
Particles going into a black hole will interact with all particles going out.
Of all these interactions, the gravitational one happens to play a most
crucial role. Only by taking this interaction into account[8], can one un-
derstand how black holes can play the role of resonances in a unitary
scattering process where ingoing particles form black holes and outgoing
particles are the ones generated by the Hawking process.

Yet how to understand the statistical origin of the Hawking-Bekenstein
entropy of a black hole in this general framework is still somewhat myste-
rious. Even if black hole entropy can be understood in superstring theories
for black holes that are near extremality, a deep mystery concerning lo-
cality and causality for the evolution laws of Nature’s degrees of freedom
remains. Holography tells us that the quantum states can be enumerated
by aligning them along a planar surface. The slab-stack theory tells us
how often these degrees of freedom are updated per unit of time. How do
we combine all this in one comprehensive theory, and how can we reconcile
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this very exotic numerology with causality and locality? May we simply
abandon attempts to rescue any form of locality in the 3 + 1 dimensional
bulk theory, replacing it by locality on the dual system, as is done in the
AdS/CFT approach[9] of M -theory?

4 The only logical way out: deterministic

quantum mechanics

It is this author’s opinion that the abstract and indirect formalisms pro-
vided by M -theory approaches are unsatisfactory. In particle physics, the
Standard Model was superior to the old Fermi theory just because it pro-
vided detailed understanding of the small-distance structure. The small
distance structure of the 3 + 1 dimensional theory is what we wish to
understand. The holographic picture suggests discreteness in space, and
the slab-stack theory suggests discreteness in time. Together, they suggest
that the ultimate laws of Nature are akin to a cellular automaton[10].

However, our numerology admits far fewer physical states than one
(discrete) degree of freedom per unit of bulk volume element. We could
start with one degree of freedom for every unit volume element, but then a
huge local symmetry constraint would be needed to reduce this to physical
degrees of freedom which can be limited to the surface. This situation
reminds us of topological gauge theories. How will we ever be able to
impose such strong symmetry principles on a world that is as non-trivial
as our real universe? How can we accommodate for the fact that the vast
majority of the ‘bulk states’ of a theory should be made unphysical, like
local gauge degrees of freedom?

Let us return to the 2 + 1 dimensional case. Suppose that we would
try to set up a functional integral expression for the quantum amplitudes.
What are the degrees of freedom inside the functional integrand? One
would expect these to be the defects in a space-time that is flat every-
where except in the defects. A defect is then characterized by the element
of the Poincaré group associated with a closed loop around the defect,
the holonomy of the defect. Now this would force the defect to follow a
straight path in space-time. It is not, as in the usual functional integral,
an arbitrary function of time, but, even inside the functional integral, it is
limited to straight paths only. Now this brings us back from the quantum
theory to a deterministic theory; only deterministic paths appear to be
allowed. It is here that this author thinks we should search for the clue
towards the solution to the aforementioned problems.
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The topic that we dubbed “deterministic quantum mechanics”[11] is
not a modification of standard quantum mechanics, but must be regarded
as a special case. A short summary, to be explained in more detail below,
is that our conventional Hilbert space is part of a bigger Hilbert space;
conventional Hilbert Space is obtained from the larger space by the ac-
tion of some projection operator. The states that are projected out are
the ones we call “unphysical”, to be compared with the ghosts in local
gauge theories, or the bulk states as opposed to the surface states in a
holographic formulation. In the bigger Hilbert space, a basis can be found
such that basis elements evolve into basis elements, without any quantum
mechanical superposition ever taking place.

One of the simplest examples where one can demonstrate this idea is
the harmonic oscillator, consisting of states |n〉, n = 0, 1, · · · , and

H|n〉 = (n + 1
2
)|n〉 . (4.1)

If we add to this Hilbert space the states |n〉 with n = −1, −2, · · · , on
which the Hamiltonian acts just as in Eq. (4.1), then our ontological basis
consists of the states

|ϕ〉 =
1√

2N + 1

N∑
n=−N

e−inϕ|n〉 , (4.2)

which evolve as

|ϕ〉 −→
t=T

|ϕ + T 〉 , (4.3)

provided that (2N + 1)T/2π is an integer. In the limit N → ∞ , time
T can be taken to be continuous. In this sense, a quantum harmonic
oscillator can be turned into a deterministic system, since, in Eq. (4.3)
the wave function does not spread out, and there is no interference. A
functional integral expression for this evolution would only require a single
path, much as in the case of the 2 + 1 dimensional defects as described
above. Since ϕ is periodic, the evolution (4.3) describes a periodic motion
with period T = 2π . Indeed, every periodic deterministic system can be
mapped onto the quantum harmonic oscillator provided that we project
out the elements of Hilbert space that have negative energy.

In general, any deterministic system evolves according to a law of the
form

d

dt
qa(t) = fa (~q(t)) (4.4)
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(provided that time is taken to be continuous), and in its larger Hilbert
space, the Hamiltonian is

H =
∑

a

fapa , pa
def
= − i

∂

∂qa
, (4.5)

where, in spite of the classical nature of the physical system, we defined
pa as quantum operators. In this large Hilbert space, one always sees as
many negative as positive eigenstates of H , so it will always be necessary
to project out states. A very fundamental difficulty is now how to con-
struct a theory where not only the negative energy states can be projected
out, but where also the entire system can be seen as a conglomeration of
weakly interacting parts (one may either think of neighboring sectors of
the universe, or of weakly interacting particles), such that also in these
parts only the positive energy sectors matter. The entire Hamiltonian is
conserved, but the Hamilton densities, or the partial Hamiltonians, are
not, and interacting parts could easily mix positive energy states with
negative energy states. Deterministic quantum mechanics will only be
useful if systems can be found where all states in which parts occur with
negative energy, can also be projected out. The subset of Hilbert space
where all bits and pieces only carry positive energy is only a very tiny
section of the entire Hilbert space, and we will have to demonstrate that
a theory exists where this sector evolves all by itself, even in the presence
of non-trivial interactions.

What kind of mechanism can it be that greatly reduces the set of
physical states? It is here that our self-imposed restriction to have strictly
deterministic Hamilton equations may now bear fruit. In a deterministic
system, we may have information loss. In a quantum world, reducing
the dimensionality of Hilbert space would lead to loss of unitarity, but
in a deterministic world there is no logical impediment that forbids the
possibility that two different initial states may both evolve into the same
final state.

This gives us a new view on what was once introduced as the ‘holo-
graphic principle’. According to this principle, the number of independent
physical variables in a given volume actually scales with the surface area
rather than the volume. This may mean that, in every volume element,
information concerning the interior dissipates away due to information
loss, while only the information located on the surface survives, possibly
because it stays in contact with the outside world.

Information loss forces us to assemble physical states in ‘equivalence
classes’. Two states are in the same equivalence classes if, in due time,
they eventually evolve into the same final state. Equivalence classes may
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play the role of gauge equivalence classes, and thus we might arrive at a
plausible scenario in which the degrees of freedom inside the bulk of some
region are reduced to being gauge degrees of freedom, while the physical
degrees of freedom are limited to reside on the surface.

Note that, if such a theory can be constructed, the ‘primordial’ laws of
physics may be completely local and causal, but the physical states that
figure in the evolution equation (4.4) appear to have a non-local definition.
This may be the reason why more direct attempts to interpret quantum
mechanical phenomena in terms of realistic theories tend to lead to a
mysterious, invisible kind of non-locality, as laid down in the well-known
Einstein-Podolsky-Rosen paradox.

5 Information loss and projection

How could information loss act as a mechanism to select out only those
states where all energies are non negative? How exactly this works is not
understood; however, we do have an instructive but admittedly vague ar-
gument, and it is the following. Consider several regions or systems in our
universe that are only weakly interacting with one another. With the in-
teraction switched off, they all obey deterministic evolution equations, and
therefore, their Hamiltonians, which are of the form (4.5), have positive
energy eigenvalues E(i)a and negative energy eigenvalues −E(i)a , where
(i) enumerates the systems and a the eigenvalues. The combination of
these systems will again have positive eigenvalues Etot =

∑
i E(i)a(i) and

negative energy eigenvalues −Etot , but interactions must be arranged in
such a way that all states where some energies are positive and some are
negative are suppressed. The reason why we do allow all energies to be
negative is that this might describe the physical situation equally well; we
then happen to be dealing with the bra states 〈ψ| rather than the kets
|ψ〉 .

Let us examine more closely the (weak) interaction between two of
such systems. Consider a time interval δt1 for system (1) and δt2 for
system (2). As argued earlier, both systems must be spread over many
Planck time units. According to the uncertainty relation, let us assume
that

1
2
(E(1) + E(2)) ≈ 1

2(δt1 + δt2)
;

1
2
|E(1)− E(2)| ≈ 1

2|δt1 − δt2| . (5.1)
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Now, according to Eq. (4.3), unvertainty in time directly reflects un-
certainty in the position ϕ of the system in its periodic orbit. Demanding
E(1) E(2) > 0 corresponds to

(E(1) + E(2))2 > (E(1)− E(2))2 , so that

(δt1 + δt2)
2 < (δt1 − δt2)

2 , or

(δϕ1 + δϕ2)
2 < (δϕ1 − δϕ2)

2 . (5.2)

The details concerning the relative position δϕ1 − δϕ2 wash away after a
sufficiently large average time interval 1

2
(δt1 + δt2) . We read off:

δt1 δt2 < 0 . (5.3)

Thus, the states that we expect to dissipate away due to information
loss, are all those states where a positive time lapse δt1 for one state
is associated with a positive time lapse δt2 for the other state. This
may mean that the two states each carry an internal clock. The relative
clock speed is controlled by the gravitational potential between the two
systems. This potential apparently fluctuates. These fluctuations wash
out all information concerning the relative configurations, but the relative
clock speeds are always positive.

6 The vacuum state and the Cosmological

Constant

We see that if we have a set of different systems which mutually interact
only weakly, such as a set of free particles, or a set of disconnected pieces
of the universe, either all energies must be selected to be positive, or
they all are negative. This means that there is one very special state
where all energies are zero: the vacuum state. Identifying the vacuum
state is particularly difficult in our theory, but it seems that the vacuum
also poses problems in other approaches. In loop quantum gravity, it is
notoriously difficult to say exactly what the vacuum state is in terms of
the fundamental loop states that were introduced there. In superstring
theory, there are many candidates for the vacuum, all being distinctly
characterized by the boundary conditions and the fluxes present in the
compactified part of space-time. String theory ends up leaving an entire
‘landscape’ of vacuum states with no further indication as to which of
these to pick. It is of crucial importance in any viable theory of Planck
length physics to identify and describe in detail the vacuum state. It
appears to be associated with very special fluctuations and correlations of
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the virtual particles and fields that one wishes to use to describe physical
excited states, and the particles in it.

There exists an important piece of information telling us that the vac-
uum is not just the state with lowest energy. There must exist an ad-
ditional criterion to identify the vacuum: it is flat — or nearly so. In
perturbative gravity, this cannot be understood. The cosmological con-
stant should receive a large finite renormalization counter term from all
virtual interactions in the very high energy domain. A superior theory
in which the cosmological constant vanishes naturally (or is limited to
extremely tiny values) has not yet been found or agreed upon[12]. This
should be a natural property of the vacuum state. To see most clearly
how strange this situation is, consider the Einstein-Hilbert action,

S =

∫ √−g
( 1

16πG
R +

Λ

8πG

)
, (6.1)

Here, the first term describes the response of the total action to any defor-
mation causing curvature. This response is huge, since Newton’s constant,
which is tiny, occurs in the denominator. In contrast, the second term de-
scribes the response of the total action upon scaling. This response is
very tiny, since the cosmological constant Λ is extremely small — indeed
it was thought to vanish altogether until recently.

Figure 1: The “fabric of space-time”, with tiny cosmological constant.
Explanation: see text.

In Fig. 1, a piece of fabric is sketched with similar properties in ordi-
nary 3-space. Globally, this material allows for stretching and squeezing
with relatively little resistance, but changing the ratios of the sides of the
large triangle, or its angles, requires much more force. One could build
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more elaborate structures from these basic triangular units, such that
their shapes are fixed, but their sizes not. An engineer would observe,
however, that even if the hinges and the rods were made extremely strong
and sturdy, resistance against changes of shape would still be rather weak.
In the limit where the sizes of the structures are very large compared to
those of the hinges, resistance against changes of shape would dwindle.

Comparing this with the situation in our universe shows in a more tan-
gible way how odd it is that, a term with dimensions as low as the cosmo-
logical constant, can nevertheless be so tiny (120 factors of 10) compared
with the much higher dimensional Einstein-Hilbert term. This oddity is
the main reason why all attempts to find a natural explanation of this fea-
ture have failed. Unless one is prepared to accept the anthropic argument
(“the universe is like this because all other universes are uninhabitable
for intelligent beings”), a more drastic approach will be needed. Here
again, we emphasize that, in any more advanced theory for Planck length
physics, the definition of what exactly the vacuum state is, will have to re-
quire special attention. It could be that one has to define that the vacuum
state is the one in which 3-space is as flat as it can be. One then again is
confronted with the problem to understand why all other physical states
have not only positive energy, but also energy densities that are bounded
from below.

Note that, in conventional quantum mechanics, the Hamiltonian plays
a dual role: on the one hand it is simply the operator that generates the
equations for evolution in time, while on the other hand it stabilizes the
ground state, or vacuum. Energy conservation prevents small fluctuations
to grow, because there are no other states where the total energy van-
ishes. One-particle states are also stable because there are no other states
with matching energy and momentum, and this situation is guaranteed
only because all energies are bounded from below. This is why the lower
bound on energy is an absolutely vital feature of conventional quantum
mechanics. It must be reproduced, whenever an ‘underlying’ theory is
proposed.

7 Gauge- and diffeomorphism invariance as

emergent symmetries

Most likely, however, the hideously tiny value of the cosmological constant
is pointing towards a deeper kind of misunderstanding concerning diffeo-
morphism invariance in gravity. A remote possibility is suggested by our
theory where quantum mechanical effects are generated as an emergent
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phenomenon in a world that is deterministic at the Planck scale. Infor-
mation loss leads to a description of physical states forming equivalence
classes. As stated, the equivalence classes are very large; when black holes
are formed, the equivalence classes assemble on the surface area of the
horizon, while the original ontological states are defined in the bulk of 3-
space. If information loss forces two states to evolve identically, the states
are said to sit in one equivalence class.

Even if one would not buy the idea that there is an underlying deter-
ministic theory, one could suspect that these equivalence classes can be
described as gauge-equivalence classes. The transition from one element to
another element of an equivalence classes is a local gauge transformation.
If so, then local gauge invariance will not be a property of the underlying
theory, but an emergent phenomenon.

This naturally begs us to question: could diffeomorphism invariance be
also just such a symmetry? Could it be that two states that differ from one
another just by a local coordinate transformation, sit in one equivalence
class, which would mean that they could evolve into the same final state?
This might be possible. It would mean that the original, deterministic
theory might require a preferred coordinate frame, which however would
wash away due to information loss. The preferred coordinate frame might
naturally select a flat space-time as a ground state solution, and thus
a curvature-free configuration would be selected as the natural vacuum
state.

Needless to say, this argument is hopelessly inadequate to solve the
cosmological constant problem, but it could serve to shed a different light
on it. It illustrates that there may be more, unconventional directions
to search for a solution to the problem of reconciling quantum mechanics
with general relativity.
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