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#-functions of any field theory using different regularization schemes should obey the physical rule that they can be 
transformed into each other by a finite transformation of the renormalized coupling constants in the theory. The dimension- 
al reduction scheme does not obey this rule. The cause is that unacceptable counterterms had to be used where overlapping 
divergencies occur, so that tmitarity is violated. Supersymmetry (or at least the N = 2 and N = 4 supersymmetric gauge theo- 
ries and all supersymmetric theories not containing a vector field) turns out to be insensitive to this discrepancy, because the 
so-called "e-scalar" renormalizes the same way as the scalar, fermion and vector fields. 

1. Introduction. Let us consider a field theory with 

coupling constants X i. We take X i such that they have 
the dimensions of either a scalar field or a gauge cou- 

pling constant squared, so that the conventional per- 
turbation expansion is in single powers of X i. 

The conventional dimensional regularization 
scheme [1 ] respects unitarity and local gauge invari- 
ance but not supersymmetry. We denote this scheme 
by "minimal subtraction". [Strictly speaking a distinc- 
tion should be made on whether one takes a factor 
(2rr) -4  or (2n) - n  in n dimensions, and whether or not 
Euler's constant is added in the one-loop expressions. 
The decision taken here is not of relevance to our fur- 
ther discussion.] The number of dimensions is n = 4 
- e and the bare parameters of the theory are 

xB = xR + e-1A(1)~i + e-2A(2)~ i + . . . .  (1 . l )  

where X/R and A(/)Xi are taken to be finite for all e. At 
increasing j the A(DXi are of increasing order in X k. 
Since A(i)x are again functions of ~k R we prefer to 
write this as 

X B = X R + e - l a i ( x  R) + e-2Bi(X R) + .. . .  (1.2) 

with 

_ Ajk.~R~,R +Ajkl.~R~R.tR 
A i -  ~ i  "i "k ~ i  /'i Ak ^l + . . . .  

_ n j k l a R a R a R  
Bi - ~i  i~j '~k /~l + ....  (1.3) 
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Often we will write 

Aii = a A i / a ~  R , etc. (1.4) 

By considering the behaviour of the system under 
space-t ime scaling two important theorems were de- 
rived in ref. [2]. Let ta be the mass scale of external 
fields and/or momenta. The/3 functions are defined by 

/ad X/R =/3i(k) (1.5) 

Theorem 1. The/3 functions can be expressed in 
terms of A(1)Xi, as follows: 

/3i(2~,) = Ai(1) + 2Ai(2) + . . . .  (1.6) 

where Ai(k) are the k-loop contributions to A(])X i (the 
kth term in (1.3)). 

Theorem 2. The higher order poles in e can be ex- 
pressed in the first order poles, e.g. 

2Bi(2) = A k  (1)Aik (1) - ( 1.7) 

These theorems are derived for the case that X R and 
Ai(k) are essentially independent of e. If  X R is chosen 
to vary slightly with e, then Ai(k) must vary according- 
ly since they are functions of k 1~. 

Clearly, minimal subtraction gives just one choice 
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for the finite parts of  the infinite counter terms. Other 
subtraction schemes may correspond to redefining the 
renormalized coupling constants. Their fl functions in 
general differ from the previous ones starting at the 
two-loop level. Let us define 

: x/R + ( , .8)  

where 8X R are of  order k2: 

8X R = aii k XiX k + . . . .  (1.9) 

The coefficients a depend on the scheme used. If  we 
define 

X R = ~i(X R) (1.10) 
/1 1 

then we find, substituting (1.5), 

Theorem 3. 

( ° 
t i(x) - t3;(x) = 

+ higher orders. (1.11) 

In this [aaper we will be mainly concerned with the 
lowest non-trivial order, so, with theorem 1, we have: 

~sxR ~Ai R 
~i(X) - 13ifX) = .Ak--yi--SX ~ . (I.12) ahg u ,, k 

2. Dimensional reduction. Just like the minimal 
subtraction scheme, the dimensional reduction scheme 
prescribes a computation of  amplitudes at n = 4 - e 
dimensions. However the various polarizations of  the 
particles must be as in 4 dimensions in order to pre- 
serve supersymmetry. The following prescription [3] 
now appears to preserve supersymmetric relations, as 
was verified by explicit calculations [4]. 

(1) Consider the spinor and Lorentz indices of  an 
amplitude (with loops) to be computed. Take those 
to be 4-dimensional and do all the algebra, until only 
external indices occur and inner products of  momenta 
to be integrated over. 

(2) Express these inner products in a Lorentz-invari- 
ant way, such that now extension towards n = 4 - e 
dimensions is possible. 

(3) Do the momentum integration(s) in n dimen- 
sions. In general one then encounters poles in e. 

(4) Subtract these poles minimally, as in the mini- 

mal subtraction scheme. 
(5) Subtract the poles for the divergent subgraphs. 
Careful consideration of  what this means in practice 

reveals that, except for step (5), the difference with 
minimal subtraction can be expressed in terms of  con- 
tributions due to the so-called e-scalars. The vector 
field index/a is allowed to point into the e-dimensional 
space orthogonal to the n-dimensional space of  the in- 
tegration parameters Pv. These couple via correspond- 
ing 7 matrices with the fermions. 

Because of  these properties the field components 
Au with/a in the e direction are called "e-scalars". The 
Feynman rules for the e-scalars are just like those for 
ordinary scalars except that the multiplicity E of  these 
scalars is put equal to e. 

The e-scalars only give some contribution to the 
amplitudes where the factor e is balanced by a pole 
term of  the form 1/e. A finite piece is expected that 
depends polynomially on the external momenta and 
therefore can be seen as a redefinition of  the form 
(1.8). In the unitarity relation SS t = I the effect of  the 
e-scalars is expected to vanish proportionally with e 
and therefore one expects unitarity to be respected. 

Clearly, this argument is valid only if the interac- 
tions of  the e-scalars with the other fields and each 
other are kept finite even at higher orders. This implies 
that one must carefully choose also those counterterms 
that balance the infinities of  the interactions of  these 
unphysical particles. We now claim that that criterion 
is not met in the conventional procedure, where the e- 
scalar interactions are given counterterms as if they 
were not scalars but components of  vector particles 
A/a. 

Such an "error" is not easy to cure by simply re- 
placing the wrong counterterms by the correct ones, 
as we will argue further in section 5. 

3. Comparing the dif ferent schemes. For the sake 
of  clarity we now consider four "different" systems, 
all starting with the same gauge model lagrangian 
£(k).  The finite, renormalized coupling constants are 
all defined differently, so we call them kR(k), k = 1, 
. . . ,  4 .  

Sys tem 1. In this system, all xR(1) are defined us- 
ing conventional minimal subtraction. The lagrangian 
is written as £(k(1)).  
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System 2. In this system, the lagrangian is 

£ = £(£(2) )  + £~(£(2),  k E ) ,  (3.1) 

where £#, is the lagrangian of the e-scalars. ¢ is the e- 
scalar. However, its multiplicity is defined to be some 
number E, being unrelated to e. We then define £(2) 
and k E by ordinary minimal subtraction. Since the E- 
scalars always have finite couplings, given by £E, sys- 
tem 2 is equal to system 1 in the limit E -+ 0. We 
choose k E = k(2)  + O(~k2). 

System 3. The lagrangian in this system is just as 
(3.1). However now we choose 

E = e ,  (3.2) 

and subsequently choose the renormalized couplings 
k(3) to be e-independent. Subtraction of  the poles in 
e are done as in eq. (1.1). The result is 

X(3) 4: X(2) ,  (3.3) 

because of the extra e dependence from (3.2). 

System 4. This is the " theory"  obtained by the 
dimensional reduction prescription. It differs from 
system 3, as we will show, for the e-scalars are treated 
as if they were vectors. The difference will further be 
discussed in section 5. 

The bare coupling constant in system 1 is 

)t B = ~kR(1) °r e - IA}I) (xR(1))  + e-2B/1)(xR(1))  . . . .  

(3.4) 

and in system 2 up to the relevant orders 

X B = xR(2) + e -1 [A}2)(xR(2)) + EA}2E)(xR(2))] 

+ e -z [B~2)(~, R) + EBi(2E)(?~R)] + .... (3.5) 

We have A}I)Q0 = A}2)(X) and B}I)(x) = 8}2)(X) since 
system 2 approaches system 1 in the limit E -+ 0. 

In system 3 we rewrite this as 

~t B = xR(3) + e-IA}3)(~,R(3)) + e-2B}3)(k R) + .. . .  

(3.6) 

with 

E = e .  (3.7) 

Up to the relevant orders (one-loop correction 
terms to ~k B of  order e +1 or E +I are not relevant for 
our problem but in the general case one should be 

careful whether or not such terms may be ignored) 
this means 

xR(3) = xR(2) + A~ 2E) , (3.8) 

A}3)(xR(3)) = A}I)(xR(2)) + B}2E)(xR), (3.9) 

8} 3) =B} 1) . (3.10) 

In the limit E -> 0 we have the relation 

~tR(3) = ~./R(1) + Af2E)()Q, (3.11) 

which is a relation of  the form (1.8) considered in sec- 
tion 1. Eq. (3.11) should be the relation between the 
normalized coupling constants of  the minimal subtrac- 
tion and the dimensional reduction scheme. 

Let us check whether the other relations obey the 
theorems of section 1. Substituting (3.8) into (3.9) 
gives 

A}3)(~k R) + A}I)A~ 2E) = A}I)(x R) + B~ 2E) . (3.12) 

Now B~ 2E) follows from our theorem 2 of section 1 : 

B}2E) 1 t.~ (2E) ,~ (2) - A (2).(2E) (3.13) = ~ t k  ~tilc * ~tk ~ilc )" 

Therefore 

A(3)(kR~_ (1)( R~ +A(2)A(2E)).  i :-Ai ".~ : + ½(-A~2E)A! 2) k ik 

(3.14) 

The difference is a two-loop term. Therefore, with 
theorem 1, 

fl}3)()tR ) = ~:I)(~R) _ A (2E)~ (2) ~ (2),j (2E) 
~k  ~ik  + "ak ~ik  " (3. 1 5) 

This indeed agrees with eq. (1.11) and (3.8). Theorem 
3 applies with 

87~ R = A 2E . (3.16) 

4. The parameter shift. Our problem now is the last 
term in eqs. (3.14) and (3.15). The two-loop/3 func- 
tions were computed directly using dimensional reduc- 
tion in a toy model (see section 6), but the result was 
not in accordance with these equations. 

The index i in (3.14), (3.15) refers to a physical 
coupling constant. The coefficients Ate) vanish unless 
k is also a physical coupling constant (a physical cou- 
pling constant refers to a coupling among physical 
particles, not e-scalars). This is because A/~) is the E- 
independent part of  the coefficients. But the index k 
in the last term also refers to the new coupling constants 
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k E in eq. (3.1). Indeed this is the dominant contribu- 
tion in A~ 2E). So we need the Ak (2) for unphysical k 
values. The shift (3.16) is formally correct, but the 
term A !  2E) depends critically on the unphysical cou- 
pling constants k E. This would have been relatively 
harmless if ) 'E had the same one-loop/3 functions as 
k, but this is not the case: A(k 2) changes when k is re- 
placed by this unphysical value. 

A~ 2) refers to one-loop counterterms. The fact that 
the one-loop counterterms for the e-scalars and those 
for the vector fields A u do not coincide may not be 
obvious. After all, the e-scalars are just those compo- 
nents of  A~ which point in the e-direction. Are they 
not related by Lorentz-invariance? 

In fig. 1 two diagrams are compared. One might 
suspect that  they are equal by Lorentz-invariance but 
that is not the case. Consider the diagrams where the 
internal lines are vector or scalar lines. Then A~ may 
couple to an internal momentum p~ that is integrated 
over. But the e-scalar can only couple to Pc which is 
put equal to zero. This is most easily seen when one 
realizes that steps (1 ) - (3 )  of  the dimensional reduc- 
tion scheme displayed in section 2 correspond to the 
replacement 

f d4p -~ f d4p 8(p~), (4.1) 

ra ther than 

f d4p ~ f d4-ep , (4.2) 

as in the minimal subtraction scheme. In (4.2) the 
loop momenta  are truly 4 - e-dimensional; in (4.1) 
they are four-dimensional, implying a four-dimensional 
index algebra, except that only 4 - e components are 
integrated over, the e remaining components are put 
equal to zero. 

Indeed, for scalar and vector particles inside the 

E-Scolor 

Fig. 1. 

loop, the second diagram of  fig. 1 vanishes, whereas 
the first does not. 

The conclusion of  this section is that if we wish to 
compare system 3 with system 1 supplemented by a 
shift of  its parameters k, described by eq. (3.16) where 
the index i only refers to physical coupling constants, 
then eq. (3.14) does not imply (3.16). Instead, one 
would get (3.16) only if (3.14) were replaced by 

A(3)r~R~ _ A (1)/~R~ + 1 ( A (2E) A (2) ± A (2),~ (2E),~ 
i k ̂  ) - ~ t i  ~^ ) ~ - - ~ k  ~ i k  T ~ k  ~ i k  ! 

+ ½(A(2) . (2),~ (2E) (4.3) 
_ -- ~ k  ]"aik , 

A(_k 2) is the set of  counterterms for the physical where 
coupling constants only: the replacement of  an index 
k by k is defined by substituting all unphysical values 
(those corresponding to the coupling constants kE) by 
the associated physical values (corresponding to the 
coupling constants kk)- 

5. Sys tem 4, a discrepancy. We now ask which of 
the eqs. (3.14) and (4.3) is reproduced by the dimen- 
sional reduction recipe. The answer is neither, which 
we now explain. 

Clearly the correction terms in (3.14) or (4.3) are 
due to the presence of a loop of  e-scalars in a two-loop 
diagram. So the whole diagram has a factor E in the 
numerator. Since we are looking at the 1/e pole for 
the case E = e, we really are only interested in the 
double pole contribution. In a Feynman diagram 
double poles come about as follows. 

Consider a diagram with an overlapping divergent 
subgraph. The subgraph typically behaves as 

k - ~ / e  - 1/e (5 .1 )  

times a canonical factor, where k is a typical external 
momentum. Inserted in a two-loop integral this 
becomes one of  the type 

fda-,k/(k2 + ~2)2 (k-~le - 1/e), (5.2) 

which gives a double pole singularity 

1/2e 2 - 1/e 2 . (5.3) 

The first term of these stems from the two-loop inte- 
gral, the second from the counterterm of the one-loop 
subgraph. The latter is twice as large (and of  opposite 
sign) as the former. So the cancellation goes exactly 
half-way. This is the same of  all two-loop double pole 
expressions. 

136 



Volume 150B, number 1,2,3 PHYSICS LETTERS 3 January 1985 

We now observe that in the dimensional reduction 
scheme the choice of  the one-loop counterterm is 
dictated by Lorentz-invariance: it has the form of a 
diagram insertion, as in the unperturbed classical the- 
ory. Now it has a factor two compared with (4.3). 
The reduction scheme therefore produces 

( ~ ~ ( ~  ~ i t  ~(2E)n(2) _L A(2)A(2E)~ 
A i a ) t X R )  = A[1)[  ~'R) * ~ t - - ~ k  ~ i k  " " a k  ~ i k  ' 

+ (A(k 2) ~ ( 2 ) ~ ( 2 E )  (5.4) 
_ - ~ k  )"aik " 

The factor 2 compared to (4.3) follows from (5.3): 
the complete integral yields -~-A(k 2), the counterterm 
+A~ 2), with a relative factor - 2  as in (5.3). 

The deviation from (4.3) is obvious. Eq. (3.6) ap- 
parently will not produce the correct shift. 

This rather odd-looking factor 2 discrepancy when 
overlapping divergencies occur was indeed found to be 
the source of the mismatch in the numerical calcula- 
tions of  ref. [4]. The t e rmA~ 2) - A~ 2) is the coeffi- 
cient of  the surviving infinity in the couplings of  the 
e-scalar, causing unitarity to be violated (see section 2). 

/3red(~) _/3min(X) = (47r)-4(_224~kg2 _ ~_~g3), 

~red(Y) -- flmin(Y) = (4~')-4( 16yg2),  

/~red(g) -- Omin(g) = 0 .  (6.3) 

The last one is a general property of  all models. Using 
the notation of the preceding chapters we only need 
the following ingredients: 

A(2E)(~) = (4r0-2(12p 2 + 4/92 - 8P lP2) ,  

A (2e)(y) = 0 ,  

A (2E)(g) = (470-2(~_g2), 

A(2)(pl) = (47r)-2(4g~. - 8gy - 2g2) .  (6.4) 

It turns out that the on lyA (2) coefficient needed is 
A(2)(pl), in the limit that all unphysical parameters 
equalg. Using (5.4) this leads to 

/~redC v) - ~min(Y) = (4~') -4  [0 - ( - 2 4 " ] g 2 y )  + 2"0] 

= ( 4 n ) - a ( 1 6 y g 2 ) ,  

6. A t o y  m o d e l .  To give an example to show that 
the factor of  2 is genuine we use the toy model which 
was introduced in ref. [4]. (Here the/~-functions could 
not be transformed into each other.) 

£ = - ( 1 / 4 g ) ( G ~ v )  2 ' t D  ~ba) 2 _ ~ . _ ~ a ~ a  

~_lD ~ a 2  - i p e a b c ~ a ~ b ¢  c - ~-X[~b2] 2 - 2~ u *) 

1 2 2 1 a a 2 ~ 3 e a b c ~ a x ~ e T e f c  
- ~ O l ( X ~ ) ( ~  ) + ~ o 2 ( x , ~  ) - 

1 a a 2  
-- ~-P4 [X2] 2 + 71P5(XeXr) • (6.1) 

Here Xe stands for the e-scalar, Pi are the unphysical 
parameters (which become equal to g, the gauge cou- 
pling, at the end). Furthermore barred coupling con- 
stants have dimension fi, unbarred coupling constants 
have dimension h 2, and g = g2 ; y = 332, etc. The ~- 
functions are not hard to compute at the one-loop 
level: 

/3(~k) = (4n)-2(11~ 2 - 24gX + 24g 2 + 16y~ - 3 2 y 2 ) ,  

/3(y)= (&r) -2(16y  2 - 2 4 y g ) ,  

/~(g) = ( 4 7 r ) - 2 ( - ~ g 2 ) .  (6.2) 

The two-loop differences for the/3-functions for the 
two different schemes give [4] 

~red(~) --/~min(~) = (47r) -4  "~[16g(4gX -- 8g-y -- 2g 2) 

-- 892(22~ -- 24g + 16y) -- (--24~ + 48g)(~-g2)] 

+ 2 [16g(---~g 2) -- 16g(4gX -- 8gy -- 2g2)]} 

= (47r)-4 [g3(_-~. )  + g27,(_224)]. (6.5) 

Of course the gauge coupling renormalization is un- 
affected. 

Note the necessity of  the unitarity breaking factor 
of  2 in (5.4) to get eq. (6.5) in accordance with the 
numerical results in eq. (6.3). 

Another model we checked was scalar QED. The 
results fitted. But as this theory has only one coupling 
beside the gauge coupling (the self interaction of  the 
scalar field), it is possible to see that up to two loops, 
there exists a transformation among the coupling con- 
stants that would reproduce the/3-function computed 
by dimensional reduction from the correctly computed 
/3-function. Therefore, this model would be less suitable 
to demonstrate that dimensional reduction gives wrong 
results in non-supersymmetric theories. 

7. Discuss ions .  It has been shown that for ordinary 
gauge theories the regularization scheme by dimension- 
al reduction, proposed by Siegel [3] breaks unitarity 
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already at the two-loop level. The only way out is that 
the e-scalar renormalizes exactly the same way as the 
vector field in the theory. 

In a previous version of  this paper we claimed that 
also in supersymmetric models unitari ty is broken by 
the same mechanism discussed here. We now under- 
stand that a calculational error gave A_~ 2) ¢ A~ 2) with- 
out violating the other equations in this chapter, so 
that an apparently consistent "anomaly"  appeared. In 
agreement with findings of  other authors [5] we now 
find A~ 2) = A~ 2) for all supersymmetric models that we 
checked, such as N = 2 and N = 4 super Yang-Mil ls  
theories. 
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