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Abstract 

The quantum properties of black holes are compared with those of elemen- 
tary and composite particles. As argued before by this author, it is desirable 
to search for a theory of black holes in which quantum mechanical “informa- 
tion” is not drained away by the horizon, but such a theory requires a 
drastically new approach in formulating general coordinate transformations 
with horizons in a quantum theory. It is subsequently shown that a closed 
string with string tension T = 1/8xG reproduces in a remarkable way the 
horizon fluctuations so that a new geometric interpretation of strings is 
suggested. 

1. Introduction 

The motivation behind the present activities in superstring 
theory is the desire to understand physics at the Planck length 
scale (TI = c = G = 1). Usually it is considered to be under- 
stood that once we have a set of dynamical variables and 
some functional integral, with an action and a properly 
defined measure, such that at the low energy limit not only 
matter fields but also gravitational fields are reproduced, then 
a “Theory Of Everything” is in sight. 

Although the “Superstring” seems to be on its way to do 
just that, one must be prepared for a complication that has 
not yet properly been taken care of: the gravitational col- 
lapse. Assume a large amount of matter, whatever it is made 
of, somewhere in space, so densely concentrated that gravita- 
tional collapse will occur. The length scale of the system may 
be taken to be large enough so that the details of the Planck 
length theory appear to be irrelevant. The formation of a 
“black hole” will be inevitable. 

For an accurate description of this black hole, as seen by 
an outside observer, we need not consider its singularity at 
r + 0 because this is well hidden behind the horizon. “Stan- 
dard physics” applied to the relatively smooth space-time 
surrounding the horizon seems to be sufficient to formulate 
the black hole’s properties, but if we do this we get an 
alarming result: black holes do not even approximately 
behave as either elementary or composite objects, which 
would contribute in the usual way to the Hamiltonian of the 
world. Since quantum mechanical waves disappear into the 
horizon there is a drainage of information, having the effect 
of a heat bath and this makes it appearently impossible to set 
up a Hilbert space with pure states. The only stationary state 
that is found for the black hole is a density matrix, as was first 
described by Hawking [l] which suggests strongly that a 
continuous and completely random radiation is emitted at a 
temperature 

TH = 1/8nM (1.1) 
where M is the black hole mass. This property, and the fact 
that the size and mass parameters may be arbitrarily small, 
makes the black hole quite different from any “soliton”-like 
object in ordinary field theories. 

Quantum mechanically this solution must be seen as a 
run-away solution into an infinite dimensional Hilbert space, 
even though the finite value [2] for the black hole entropy S 
suggests that only a very special and much smaller linear 
subspace of this Hilbert space can ever be reached [3]. We 
shall explain this situation further in Section 2. 

We conclude that a theory that generates an arbitrary 
curved space-time filled with matter fields with only locally 
defined dynamical variables will in general necessarily produce 
a much too large Hilbert space. Suppose that we require black 
holes to behave like particles, then this corresponds to restric- 
tions independent of our local dynamics. 

Most physicists would argue that such restrictions would 
therefore be irreconcilable with local dynamics. However it 
has always been such apparently paradoxical requirements 
that have led to new fundamental theories of nature. It is 
therefore worthwhile to stretch our imagination as far as we 
can before giving up this road of inquiry. 

If we follow a black hole during a time interval of order 
M log M in Planck units we see that the horizon fluctuates 
with the in- and outgoing particles. We will discover in this 
lecture that these oscillations are surprisingly reproduced by 
a closed dual string amplitude. If indeed a superstring 
manages to commit the delicate conspiracy needed to keep 
quantum mechanically pure black hole radiation amplitudes 
then this may point us the way towards a better theory: black 
holes should be “unified” with the other elementary particles. 

2. Run-away 

For the Schwarzschild metric we take 

(l  - 
E) dt2 + (1 - r 

d o  = sin28dq2 + de2. 

g ) ’ d r 2  r + r2d(t2, 

If we replace the coordinates r and t by the Kruskal 
coordinates x and y defined by 

and 

9 (2.4) 
then the metric is regular at the points r = 2M and 
x = y = 0. As usual, we define the regions I-IV as in Fig. 1. 

It is natural to attribute to regions I1 and IV not more than 
a formal significance, representing the analytic continuation 
of the “physical” regions I and 111. This is because if we take 
into account the collapsing amount of matter that produced 
the black hole at some instant in the past, then the metric is 

- eUrM 
XiY = 
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, 

Fig. 1. Schwarzschild black hole in the Kruskal coordinate system. 

different: regions I and I11 are still there but curvature due to 
matter removes I1 and IV (see Fig. 2). 

In a quantum theory we should be more careful however. 
In a description where we want to make use of time-reversal 
invariance (PCT), expected in any theory with only pure 
quantum mechanical transitions, region IV has as much 
raison-d'i3re as region 111. 

Temporarily keeping Fig. 2 as representing our black hole, 
it is sometimes more convenient to picture it as in Figs. 3(a) 
or 3(b). The latter shows that although the r = 0 singularity 
is space-like as seen by a local observer, it looks rather 
time-like as seen from the outside. 

The difficulty as described in the Introduction can easily be 
seen to occur in every theory where gravity is "quantized" 
more or less conventionally. We must choose some gauge 
condition. Suppose we took the gauge 

g,  = -1; 

goj = 0 ( i  = 1, 2, 3) 

I d  

I 
I 
I 
I T I 

(temporal gauge), then the metric of Figs. 2 and 3 would have 
the singularity at a finite time. The foliation (choice of equal- 
time slices) is shown in Fig. 4. 

Now there is a way to choose a gauge that avoids the 
singularity. Take some large S, spheres at space-like infinity 
such that time is fixed to a definite value on each sphere. A 

Fig. 3. Coordinate transformations of Fig. 2. 

foliation inside the spheres is then defined by requiring the 
volume of 3-space inside each sphere, as defined by the 
induced 3-metric, to be maximal: 

6V = 0. (2.7) 
Here, indices from the middle of the Latin alphabet run from 
1 to 3. One easily convinces oneself that, in Minkowski space, 
V has a uniquely defined maximum, whereas in Euclidean 
space one would have a unique minimal 3-volume. 

Equation (2.7) amounts to 

guaogi j  = 2 g ~ a i g o j .  (2.8) 
If furthermore we choose the spacelike coordinates x i  to be 
fixed by 

goi = go' = 0, (2.9) 

gijaog, = 0, (2.10) 

we have 

d;t (3gij) I$=, = det (3gij) l x o =  -" (2.1 1) 

which we can choose to be one. So, 

d;t ('gv) = 1 = det ('g"), 
1J 

(2.12) 

Fig. 2. A physical black hole, including imploding matter, has the Kruskal 
metric outside, but the regions I1 and IV are sealed off. 

I \ '  
Fig. 4.  Time as defined in gauge (2.5). 
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3 
2 
1 
0 

Fig. 5 .  Time as defined in maximal-volume gauge (2.12). 

Further investigations show that this gauge is ghost-free. 

r l 0  (2.13) 

(indeed also charged and rotating black holes only have 
singularities in the subspace r = 0). 

The factor in the determinant due to the term r2 d@ in the 
metric insures that the induced 3-volume tends to zero near 
the singularity. This is why our foliation will avoid the singu- 
larity (a fact we have checked by explicitly computing the 
surfaces generated by eq. (2.12)). The foliation is sketched in 
Fig. 5. 

We do see in Fig. 5 however that, as time goes on, a larger 
and larger fraction of the 3-volume will occupy the region 
within the horizon, out of which no information can escape 
to infinity. Pictorially, the shape of space-time is sketched in 
Fig. 6 .  As time goes on, a larger and larger “bubble” is blown 

In the black hole the singularity develops at 

a )  t = l  

in 3-space: a black hole is an instability in the theory against 
this bubble-formation. Since essentially all of this bubble is 
hidden behind the horizon (dotted line), we notice nothing of 
it from the outside, at least according to standard general 
relativity. 

For a quantum theory however, this situation is a disaster. 
Hilbert space inside the bubble is enormous, and indeed any 
formulation in terms of a Hilbert space would require all 
these nearly invisible bubbles to correspond to large sets of 
orthogonal basis elements, in particular if many forms of 
matter are allowed to live inside these bubbles. 

What we actually want is a truncation of Hilbert space. 
Somehow, we want to characterize the states by the details at 
the horizon, rather than the included volume. This is also 
suggested by the value of the entropy of the black hole as 
found from its Hawking temperature applying standard 
thermodynamics [2]. 

In all respects our bubble behaves as an illegal run-away 
solution of the quantum theory. Very little physics was used 
to derive the existence of this run-away solution. Therefore 
we expect that any cure of this problem requires a rather 
drastic revision of our views on space-time. 

3. The black hole scattering matrix 

Hawking’s result seems to imply that the quantum state of the 
outgoing matter does not exactly follow from the quantum 
state of the infalling matter: it is in a “density matrix”: one 
single initial state results in a wide (thermal) distribution of 
final states, unless one keeps track of all states in an ever 
growing Hilbert space. 

Of course one could elaborate on a theory of the world in 
which indeed such transitions between pure states and distri- 
butions of states (density matrices) take place [4]. However 
we choose to take the opposite point of view: because the 
entropy in a given volume seems to remain bounded we 
postulate the exact validity of a quantum mechanical descrip- 
tion within a much more limited Hilbert space, and require 
that a quantum mechanical evolution of a black hole is 
determined by a well-defined Hamiltonian. 

Consider now the complete history of a black hole. In the 
beginning there is a “star” or any other form of highly 
concentrated matter. An implosion (collapse) takes place and 
a black hole is about to be formed. In principle the black hole 
is only an asymptotic solution of the Einstein equations, and 
deviations from the metric occur close to the event horizon. 
But these deviations shrink exponentially with Schwarzschild 
time t ,  namely as e-‘’“‘‘, so that at times 

t > 4 M l o g M  = t ,  (3.1) 
in Planck units, these deviations become essentially undetect- 

Then the well-known phenomenon of Hawking radiation 
sets in [l], whose temperature is presumably,* given by eq. 
(1.1). The energy loss per unit of time is determined by the 
surface of the horizon times T4, and also a numerical factor 
depending on the details of the radiated particles. One easily 
deduces that, unless further matter is accumulated by the 
black hole, it will radiate away all its mass at a time scale 

- - -ho r i zon  able. 

t = 6  ;;:;’ w t;, = o ( ~ 3 ) .  

Fig. 6 .  Artist’s impression of gravitational collapse in the maximal-volume 
gauge. * See, however, [SI. 

- 
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The final state is not known, but it is reasonable to assume, 
from time reversal invariance, that this final state consists of 
particles not more exotic than the ones that made the black 
hole in the beginning. One expects all existing particle types 
to occur roughly in equal amounts. 

Thus we have particle states 1 { P } ) ~ "  going into the black 
hole, that evolve into particle states I { P ' } ) ~ " ~  leaving it. Our 
philosophy now corresponds to assuming that there exist a 
unitary scattering matrix S ,  such that 

(3.3) 
just as in any decent quantum mechanical scattering, so that 
the black hole should be nothing out of the ordinary. 

Now an average particle spends an amount of time of 
order 4 M  log M = t ,  near the horizon before it comes closer 
to the horizon than the Planck length. As we shall explain 
later in more detail, we therefore expect cross-talk between 
in- and outgoing particles at that time scale. But since t ,  4 t ,  
if M 9 1 we may approximate M to be constant. Con- 
centrating on the situation at times t with 

t ,  6 t 6 t ,  

we represent the metric there by Kruskal coordinates. The 
state I { P > ) ~ ,  could be specified by giving the particle occu- 
pation numbers for all inward waves in regions I and I11 of 
the Kruskal world. Since we are mainly interested in large 
values of the inward momentum we will not worry for the 
moment about how to distinguish inward from outward 
particles. Regions I1 and IV should be left empty essentially 
because according to co-moving observers those regions do 
not exist. They are screened by matter that fell in long ago. 
See Fig. 7(a). 

are defined on regions I and IV (see 
Fig. 7(b)), whereas for them regions I1 and I11 do not exist. 
Our scattering matrix is now supposed to link the world of 
Fig. 7(a) to that of 7(b). Clearly this proposal cannot be 
understood in terms of standard physics applied in the 
regular metric of Kruskal space. Why should Figs. 7(a) and 
7(b) be related? 

According to by now standard arguments [l] the trans- 
formation from Kruskal coordinates to Schwarzschild coor- 
dinates does produce outgoing particles in Fig. 7(a) and 
ingoing particles in Fig. 7(b). Let us write for instance a scalar 
field q ( x ,  t )  in Schwarzschild coordinates as 

q ( x ,  t )  = C (a(k)  qk(x)e-iwk' + a+ (k)  q:(x)eiwkr) (3.5) 

where q k ( x )  are frequency eigen modes, and in Kruskal space 

(3.4) 

The states I { 

k 

~ ( x ,  y ,  e, = (m +,(e,  e, + h.c.1 if e > 0, 
S 

(3.6) 

Fig. 7. (a) When all ingoing particles are included, regions I1 and IV dis- 
appear. (b) In the frame of outgoing particles regions I1 and 111 disappear. 

@ = x - y  

5 = x s y  

and $, are (properly normalized) Fourier transforms of sol- 
utions to the Kruskal Klein-Gordon equation with respect to 
5 .  The normalization is chosen such that the operators a, al 
and a, satisfy the usual commutation rules.* 

It is well known that one finds 

(3.9) 

(3.10) 

where o stands for w,, and where A,  and B, are linear in a and 
satisfy the usual commutation rules for annihilation operators. 

The mixing between creation operators ( A ,  B )  and anni- 
hilation operators ( A + ,  B + )  in the expressions for a, and a, 
is typical for a Bogolyubov transformation and is the reason 
why a state containing no outgoing particles for the Kruskal 
observer does have outgoing particles as seen by the Schwarzs- 
child observer. For further details we refer to [l]. 

Unfortunately this does not give us the scattering matrix 
we want because the out state does not depend on the in state 
and vice versa. 

As argued in earlier publications by this auther [3] there is 
a natural place to look for a cure to this problem. Most of the 
matter in Figs. 7(a) and (b) is collimated against the hori- 
zons. These particles have been boosted to such tremendous 
energies that their gravitational effects on the metric may no 
longer be ignored. In the next section we briefly resume how 
these gravitational effects may be calculated. 

4. Hard particles 

Consider a particle at rest with a tiny rest mass m,. At a 
distance r 9 m, the surrounding metric (see eq. (2 .1))  can be 
simplified as 

ds2 = dx2 + - 2m0 (udx), + - 2% dr2, 
r r 

where we write for the 4-velocity 

up = (1, 0, 0, 0) 

and 

r2 = x2 + (xfiuU,)'. (4.3) 
Now that we have written the metric in a Lorentz covariant 
way it is easy to boost the particle to tremendous velocity [6]: 

u p  9 1 (4.4) 

r N lxul (4.5) 

* Deviations from these rules are to be expected since the Hamiltonian 
depends explicitly on z. These are not important for our present argu- 
ments. 
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(4.6) 4m0 ds2 N dx2 + - ( ~ d x ) ~ .  
r 

Let us keep 

moup = p p ,  fixed, 

then the limit ma 1 0 exists when (xp) # 0. 
When (xp) = 0 the transverse metric from eq. (4.1) is 

easily seen to be flat in this limit. Let us furthermore define 
Fig. 8. Change in the metric of a black hole, induced by a single, originally 
soft particle falling in: (a) Two half Kruskal spaces are connected via a shift. 
Two geodesics are shown. (b) Coordinates can be deformed such that geo- 
desics are continuous. Future and past horizon are seen not to coincide. 

y$ = xp _+ 2p''log r. 

Then we see that where 
(4.8) 

(xp) > 0: ds2 + dy: , (4.9) 
and 

(xp) < 0: ds2 4 dy!. 

On the boundary (xp) = 0 we have 

where p is the momentum of the "proton" directed inwards 
and the sign of Ay is defined such that Ay > 0. The constant 

(4.10) C depends on the units used for p .  
The Kruskal metric affected by the particle is pictured in 

Fig. 8. Earlier matter falling in (including the material that 
gave birth to the black hole) is here being ignored, hence the 
past singularity. 

Equation (4.15) can be solved using spherical harmonics: 

[1(1 + 1) + 1]Aylm = Cf'l,,,. (4.16) 

Taking the 

2PP log Y?r (4.11) J$ - yf G - B p  

vi: = v: - yopp/p0 ,  i fypep = 0. (4.12) 

ref. [6]. e(f4 = B 2 ( W ,  (4.17) 

= 

where ytr = xt, are the transverse coordinates: 

It is important that eq. (4.8) contains log r and not log (xul. 
A more precise treatment of this derivation can be found in 

Note that the shift By" in eq. (4.1 I )  satisfies the two- 
dimensional Laplace equation one finds: 

a;r(B,V) = - 87~p'B'( yLr). (4.18) I + :  
i l(1 + I )  + 1 (4.13) Ay(0,  cp) = K P,(cos e), 

Particles whose rest mass m, is negligible but Gpp not (G 
is Newton's constant, mostly put equal to one) will be referred 
to as "hard particles". We see that the gravitational field of 
a hard particle is very simple: a flat space with Minkowski 
coordinates y + ,  at y:p, > 0, is glued against another flat 
space with Minkowski coordinates y'p, < 0, shifted accord- 

Where K is related to C. 
Using 

1 f'dx)f' = (1 - 2xf + f 2 ) - 1 ' 2 ,  
'=O 

(4.19) 

(4.20) ing to eqs. (4.1 1)-4.13). rx e-""+12) ($3 ) I + +  
COS -S ds = Now consider a particle such as a proton in the vicinity of J o  l(1 + I )  + I '  

a black hole, about to fall in. Its world line could be expressed 
in terms of the Kruskal coordinates x and y of eqs. (2.3) and 
(2.4). After a certain amount of time At we could again look 
at its Kruskal coordinates, but now with t replaced by t + At 
in eq. (2.4). We see that 

.y + x e'' 4 M  

Y + Y e  3 

so the x coordinate expands and the y coordinate shrinks, Ay = K'  j:-' dz(cos 8 - cos z)-""(~'"~'', (4.22) 
which we recognize as a Lorentz transformation in terms of 
the spacelike coordinate and the timelike coordinate in these expressions K and K' are certain numerical constants. 
x + y .  The Lorentz boost grows exponentially with At/4m, We see that Ay 

mated against the past horizon I.' = 0. What will its gravita- we conclude that this shift has everywhere the same sign: the 
tional field be? horizon expands [6]. 

This turns out to be a soluble problem [6].  One first guesses 
that the solution consists of two half Kruskal metrics, shifted 
with respect to each other at the past horizon y = 0. The 
amount of the shift is Ay(8, cp), where t3 and cp are the trans- 
verse angles on which Ay depends. By substituting this Ansatz 
in the Einstein equations it was found that the Ansatz is 
correct if Ay satisfies the equation 

we find 

(4.21) 

Shifting the integration contour to imaginary values of s we 
can reexpress Ay in terms of the discontinuity of the square 

cos (J3/2) ds  
= IC j" 0 (e' - 2 cos e + 

- A /  4M (4.14) root. This gives: 

- 
for e. 

so very quickly the proton becomes a hard particle, calli- Since AY represents the horizon shift due to infalling matter, 

5. Hilbert space 

The horizon shifts computed in the previous section could 
well turn the black hole Hilbert space into a finite one (that 
is, one might be able to produce a microcanonical ensemble 
in the vicinity of a black hole, located in a large box). We shall 
now show how this might work. 

Figure 9 shows a black hole in the representation of Fig. (4.15) a 2  
Ay - Ay = - Cpd2(R - a), 

Physica Scripta TI5 



148 

- -  

G. ’t Hooft 

- -  

I 

I 

I 

\ 

,.‘part i c le  

Fig. 9. Soft particles at i,, i2 may be hard particles at 0, producing horizon 
shifts. Some geodesics (wavy lines) are shown. 

3(b). The broken line is a foliation at a time t ,  2 4 M  log M 
after the black hole’s formation, in a gauge that avoids the 
singularity as described in Section 2. Clearly it looks as if the 
volume of such a foliation would increase indefinitely with 
time. But are all possible particle and/or field configurations 
on the broken line allowed? 

Imagine that a detector at r = r ,  > 2M and time t detects 
either the presence or the absence of a particle. This would 
give us a state whose particle content is counted by the 
annihilation operator a, of eq. (3.9). If we follow the evol- 
ution of this state back to the past we see that certain particles 
occur at the point 0 where the horizon started. Here however 
it is operators of the type A and B of eqs. (3.9) and (3.10), or 
the operators a of eq. (3.5), which count the number of 
particles. Because the transformation linking these operators 
is of the Bogolyubov type (mixing creation with annihilation) 
the particle number at 0 is ill determined. 

It is now not hard to convince oneself that for larger values 
of t ,  the particles at 0 have been boosted to tremendous 
energies: they are “hard” particles as discussed in Section 4. 
If we describe their effects on space-time in such a way that 
creation of these particles does not directly effect curvature of 
space-time everywhere, then it is natural to use coordinates 
such that geodesics are shifted at their respective shock 
waves, which all occur essentially only along the horizon: 
creating a particle at 0 causes a horizon shift. 

The shifts in the geodesics is indicated by a few examples 
in Fig. 9 (wavy lines). The shift grows exponentially with 
negative time. Close to 0 the shift will be so large that no 
geodesic can enter a certain region inside the horizon, from 
outside. This region is indicated by shading in Fig. 9. In fact, 
if t ,  increases with r ,  fixed, then the boundary of the shaded 
region will move at a fixed distance from t , .  Thus, the “use- 
ful” part of the volume at t , ,  on its broken line, will remain 

constant as time goes on. We may speculate that only particle 
states in this useful part are acceptable in a physically mean- 
ingful Hilbert space, because only these particles could have 
originated in a collapsing star before the black hole was 
formed. 

The above arguments suggest that there are essentially 
three ways to formulate a basis Hilbert space: 

(i) Specify the particle wave packets at t = - oc, before the 
black hole was formed. Thus we prescribe exactly what goes 
into the black hole, but nothing of what comes out. This is a 
basis of in-states: { I  $)in}. 

(ii) Specify all particles that come out of the black hole, 
including its final explosion. This is the time-reverse of the 
previous picture: { I $ ),,, 1. 

(iii) Specify particles that miss the black hole, and those 
that traverse a certain point r N 2M + E ;  E > 0, where 
ingoing particles enter at time t > tin(O, cp) and outgoing 
particles at t leave earlier than tOut(O, 40). The function 
ti,(8, cp) depends on the outgoing particles and vice-versa. 

This situation of course resembles what we have in conven- 
tional field theories. Picture (iii) corresponds to the charac- 
terization using interacting fields. There however we are free 
to vary time t ,  relating I$(t))  at different t using a Hamil- 
tonian. This in turn would enable us to compute an S-matrix 
that relates the bases (i) and (ii). Apparently we do not yet 
have a Hamiltonian or an S-matrix for a black hole. 

Yet a black hole scattering matrix can be suggested. This 
we do in the next section. 

6. The oscillating horizon and strings 

In this section we propose that indeed the horizon reflects 
ingoing particles into outgoing ones, or rather, ingoing states 
into outgoing states, because no conservation of any additive 
particle quantum number is expected. A simplification we 
perform is that we replace the angles 8, cp by transverse 
coordinates xt, = (x, y ) ,  which is probably reasonable for 
large black holes. 

Assuming, as in Section 3, that t2 B t , ,  we now may 
approximate space-time surrounding the horizon by Rindler 
space [7]. The more daring assumption we make is that we 
can characterize entirely by giving the momentum 
distribution 

as a function of the transverse coordinates, and possible 
charges Q,,<X,,), which will all leave behind a gauge field 
configuration that is in principle measurable (we shall make 
little use of these charges in our present theory but they will 
probably be needed in a later perfection). Similarly, the out- 
going states may be given by specifying 

~&t(xtr), Qout(xtr)- (6.2) 

The momenta are defined in units generated by the 
Minkowski (or Kruskal) coordinates, as opposed to the 
Rindler (or Schwarzschild) ones. This makes the present 
assumption rather odd: the in-momenta will increase 
exponentially with Schwarzschild time and the out-momenta 
decrease exponentially. We are not specifying what kind of 
particles contribute to pi~,out and how many of them there are. 
Yet this attitude will not be so crazy as we will see. In any 
case, the curvature of the metric will only depend on these 
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distributions (and the surrounding gauge fields depend on Q 
distributions). 

At infinity both the future and the past horizons are well 
defined. They are null-surfaces that are asymptotically flat. 
Close to the origin however they are not flat because space- 
time itself is curved due to the particles present. 

If we had a Minkowski vacuum the points where future 
and past horizons intersect would form a flat 2-surface (or an 
S2 sphere in the case of a finite-size black hole). But with 
particles present the intersection points form a complicated 
curved two-dimensional subspace of space-time. Let us call 
this intersection surface the space-like horizon. 

What is the shape of the space-like horizon? Let us for a 
moment assume that the effects of in and out particles can be 
linearly added (an assumption which is not correct but will 
not be needed in our later, more careful analysis). 

The ingoing particles produce a shift of the coordinate x- 
of the horizon. The equation is (see eq. (6.11)) 

a:,.? = 8nGpi ,  (6.3) 
where G is Newton’s constant and the sign is such that for the 
future horizon x-  = 0. The x-  in eq. (6.3) is the coordinate 
of a geodesic that still has to penetrate the stream of ingoing 
particles. 

The outgoing particles produce a shift x+ with 

i 3 ; r ~ +  = - 8nGp&,. (6.4) 

({~2ut(xir), Qout(xtr)> l {~ i (x tr> ,  Qm(xtr)>> (6.5) 

Pfx(xtr) = (p i  3 -P2ut)> (6.6) 

Lfrx” = 8nGpfX. (6.7) 

Now let us define the external momenta of an amplitude 

as 

then we have 

This fundamental equation for the oscillations of a black hole 
horizon can be seen to correspond to extremizing the action 

(6.8) S = C 5 d2~l,(+(a,rx”)2 + 8~Gp:~(x, , )  x”) 

against variations of the variable ~ ” ( x , , ) .  Of course we have 
that x” points into 0, 3 directions only, whereas x,, are in the 
1, 2 directions. 

We now make a simple but tantalizing observation. If we 
rewrite the transverse coordinates as 

x = o ;  y = r ,  (6.9) 

and substitute in eq. (6.8) 

C - 1/8nG (6.10) 

then, up to an innocent looking sign, our action resembles the 
string action to be used in describing Veneziano amplitudes: 

S = J do dr (  - 4 T ( ~ , x ” ) ~  + pfx(ci ,  T )  x”). (6.11) 

The Veneziano amplitude is* 

5 D ~ P  exp i s ,  (6.12) 

- 
* Note added: eq. (6.12) is Minkowskian, whereas eq. (6.1 I )  is Euclidean. 

Presumably therefore the i in the following equations is superfluous. A 
more precise treatment will presumably involve functional integrations in 
complex x-space. 

although still a precise formalism for the measure of this 
functional integral is required. 

It is tempting to conclude that black hole physics is related 
to string theories provided that the string constant equals to 

T = 1/8nG. (6.13) 

There are some minor and some more subtle obstacles. 
First: usual string theories are often put in a gauge such that 
a and T correspond to the coordinates xo and x3, whereas the 
dependent variables are the transverse X I ,  x2. In our case it is 
the other way around. Presumably two Wick rotations, one 
in the a-T plane and one in the xo, x3 plane relate our unusual 
gauge with the more standard one. Secondly, comparison 
between eq. (6.11) and eq. (6.8) at first sight suggests that a 
minus sign went astray. However, there is nothing wrong 
with identifying not x” but - x” with the string coordinates. 
In fact this is probably what we really want: - x” is what an 
outside observer sees when he looks at an ideal surface 
through the “gravitational lens” of the ingoing particles. 
Thus, the image of an ideal surface distorted by the fields of 
ingoing particles is to be identified with the presently popular 
“string”. 

We are now in a position to formulate our theory for the 
black hole scattering matrix more precisely: in the approxi- 
mation where 8 and cp are replaced by a = x ‘  and r = x2 we 
have 

(PO,,, QoutlPin, Q i n )  = / D x +  Dx-  

x exp i i ( -  T ~ , , x +  d,,x- - P ~ ~ , X -  + pix’) d a d r ,  

(6.14) 

where the measure is to be defined as in string theory, so that 
the amplitudes eventually may satisfy the unitarity require- 
ments as derived in superstring models. The charges Qin, eo,, 
may perhaps correspond to compactified dimensions, although 
as yet we have not included those in the right hand side of eq. 
(6.14). 

Our dependent variables being x +  it is easy to integrate 
one of these, say x + :  

= exp - i p&,x- {pin} d o  dr, (6.15) 

where . - (pin} is the solution of the Laplace equation 
generated by the delta function. We obtain: 

(6.16) 

which of course is the same outcome if we had first integrated 
over x-  . 

The intermediate result (6.15) is most significant. It sug- 
gests that if we look at a state where only p i  (x,,) is specified 
then the “standard” black hole theory gives no outgoing 
particles at all in the Minkowski frame. We now however 
suggest that the outgoing particles are determined, and in fact 
given by probing the shifted horizon x- using all waves p& for 
hypothetical outgoing objects. We see that this corresponds 
to eq. (6.3) only, and that it makes sense to ignore here the 
effects of outgoing particles directly on the metric. So our 
problem of non-linear interference between in- and outgoing 
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Fig. 10. Formation and destruction of a black hole. Can the amplitudes be 
obtained from strings theories? 

particles may perhaps be irrelevant. On the other hand, time 
reversal invariance is built into the theory. 

The new aspect of our theory is a prediction of the string 
constant (6.13). The curvature of space surrounding a straight 
string section is known to produce a conical singularity with 
a certain deficit angle. With our value (6.13) for the string 
constant this angle would be exactly one radian! 

to guess that if we look at finite size black holes with curved 
horizons, they must be described by a single closed string 
amplitude (Fig. 10). However, much care will be needed to 
express the transition towards asymptotically flat coordinates 
properly. This we have not yet understood in a satisfactory 
way. 

Now the string amplitude preserves pure quantum states. 
If black holes are to be identified with closed strings then 
somehow their thermal properties should be reproduced. We 
suspect this to happen for sufficiently large black holes just 
because the shift of the horizon is correctly given by eq. (6.3), 
but the mechanism is not yet exactly understood. 

Finally let us keep in mind that some of the ideas presented 
in these lectures are only very recent, as is often the case with 
young theories, their chances for survival should not be 
overestimated. 
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