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An alternative to the usual vierhein field in a (3 + l ) -d imens~a |  ( e u c I ~ a n )  ~ - t ~  h 
proposed such that the internal index takes only three values and the extem~ m a do~k~: 
e~, ,  = - e a , , u .  In flat space-time this field reduces to the self-dual gemini/zeal ~ - C M t a  
symbol ~ .  Like the vierhein field, our field determines the metr~ field gg~, ua~uePy. It 
be viewed upon as the "'cube root" of the metric field. In euclidean space t he / a t e r a~  symmeh-'~t 
group is SL(3). in Minkowski space, in a sense to he explained, the internal s-~nmmeL~ ~ p  h 
SU(3). 

The Einstein-Hiihert action takes an elegant form in terms of th/s new ~ .  

1. Introduction 

For various reasons it is sometimes useful to introduce the "square root" of the 
metric tensor gg~ in General Relativity, called the vierbein field e ~ / z ,  

gg~ = e ~ e ~ .  (I .1)  

Here the Greek indices /z and v transform as usual vector indices, whereas the 
Latin indices a are "internal" indices. 

Eq. (1.1) does not determine e~it completely since g~,~, being symmetric in/1, and 
v, has 10 independent components whereas ea~ has 16. The remaining 6 degrees 
of freedom are in the internal 0(3,1) symmetry in the a index, 

a t (e ~) =S~be b s a b s c b = s b a s b c = ~  ac (1.2) 
i t ,  

Since this is a local symmetry one often also introduces a connection field A ab ~t 

simply by demanding the covariant derivative of the e-field to vanish, 

Ditea~ = Oite~ - Fait~ea a + A a b  eb~ = o.  (1.3) 

Note that the Christoffel field Fait,, has 10 x 4 = 40 degrees of freedom and A ab /z 
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has 6 × 4 = 24 degrees of freedom. Eq. (1.3) has 4 × 4 × 4 = 64 components. It is 
not difficult to deduce unique expressions for F and A from (1.3). 

The Riemann curvature R"t3av can be expressed either in terms of the F-field or 
in terms of the A-field. This is because from (1.3) it also follows that 

where 

[ DaD~.le'~t~ = -R'~t3a,,ea,~ + F"ha,,et't3 = O, 

F ab Aab  v av=Oa -d, ,A"ba + [ A a , A v ]  ~b 

(1.4) 

so that, moving indices up and down with eOa, 

R"ba,, = F~ba,,. ( 1.6) 

It is possible now to cast Einstein's equations in a Lagrange form containing only 
the e- and A-fields, 

~¢~= ~ R = d e t ( e )  r,,b oa o,' • l a v  ~" a L" h , (1.7) 

where ea,, (Greek and Latin indices reversed) is the inverse of e" a- 
One observes that the combination of de t (e )wi th  the inverse of the e-field in 

(1.7) invites one to simpli~ things there, using 

det (e)  ( ea,,eVb - e",eat,) = ~e' a,,,,t~e,b,.de-,,e-dt3, (1.8) 

so that 

! r ' a b  a v t ~ f l  _ c  
~2 "~= ~ r  ave  e abcd e .e~. (1.9) 

One easily sees that varying (1.9) with respect to the A-field gives 

Oa a = 0  eav -- D y e  a (1.10) 

which is sufficient to determine the A-field in terms of 0 ae~v (cf. eq. (1.3)). This 
implies that the F may be identified with the R, so that the A-field may be 
eliminated, after which variation with respect to the e-field now gives the same as 
varying ~ R with respect to g~,v" the Einstein equations. 

If we use the first-order formalism where A ab and " a e a are varied independently 
then this is a beautifully simple polynomial lagrangian. 

If we take the (2 + 1)-dimensional theory instead of the (3 + 1)-dimensional one, 
the e's in eqs. (1.8) and (1.9) have one index less, so that the kinetic term in eq. 

a (1.9) is quadratic. This allows one to quantize the theory around the values e a = 0 
instead of the usual choice eaa = ~i" a. Witten [1] proposed to treat the resulting 
topological theory as a "renormalizable Chern-Simons theory". 
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It is not clear whether his proposal is any improvement in the (2 + 1)-dimensional 
theory since before this trick was applied the theory was trivial: in 2 + 1 dimen- 
sions in the absence of matter space-time is completely flat [2]. 

a In 3 + 1 dimensions one cannot perturb around the values e ~, = 0 because the 
lowest terms in .~  are cubic rather than quadratic in the fields. But could we not 
get something more interesting if we introduce a two-Lorentz-index dynamic field 
instead of e,.a 9 It would certainly be spectacular if Quantum Gravity could be 
turned into a renormalizable "topological" theory this way. 

Of course such a miracle should not be expected. In this paper we only derive 
equations that are mathematically equivalent with Einstein's equations, whereas it 
would definitely be necessary to introduce much more "'new physics" to solve 
Quantum Gravity. Nevertheless, the two-Lorentz-index field variable that we All  
define now is interesting, and may inspire one towards new ideas that do involve 
new physics. Here is how it goes. 

2. The new field variable 

a Consider first flat space-time. Here one may define an invariant tensor ~ ~ 
(a = 1, 2 or 3) in the following way [3]: 

Tla t zv  - -  - - T ' l a v l z  = E a g v  + ¢~al.LC~V4 - -  6avt~/ .L4 , ( 2 . 1 )  

where e is the three-dimensional Levi-Civita s~anbol (vanishing if one of the 
indices is given the value 4). It is self-dual, 

a ! a (2.2) 

We also define an anti-self-dual tensor, 

"~am, = - - ' ~ a v ~  = earn , - -  ~ a ~ v 4  + ~avt~lz  4 , 

~ a  ~ i ~ a  
7q ~ ~ v- e ~ ,~ ~13 "rl ~ lz " 

(2.3) 

(2.4) 

In euclidean space-time these tensors are real. It is clarifying to view them as 
mappings of the antisymmetric (6) representations of SO(4) onto the 3 L ® 1R and 

the 1L ® 3 a representations of 50(3)  L ® 50(3)  a. 
In Minkowski space r/a~,~ is complex. One then has 

= ( , 7 % ) * .  (2.5) 

More about Minkowski space in sect. 6. For the time being we will stick to 

euclidean space. 
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One has the identities 
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rtP,~t~rlP.,. = 6,~.,8t3 ,, - 8~, ,6m,  + e,~m,,, , (2.6) 

T/~U,~/b,,,~ = 6,,b6~, ,, + e~h%/cu,,, (2.7) 

and a bunch of others. 
We could now propose to introduce a field e"~,,, in curved space-time that takes 

the values rflu,, in a locally flat coordinate frame, so that in a general coordinate 
frame 

9 

e°~,,,e~,,a g,,a " 3gu,. , (2.8) 

but then there would be a difficulty. This field would have 3 × 6 = 18 components 
and the internal symmetry group 0(3) would be 3-dimensional. Since g~,,, has only 
10 independent components this leaves 5 field components too many; these 5 then 
cannot be rotated away by gauge rotations, and should then correspond to 
physically observable fields. There are no obvious candidates for such fields in 
Nature (they would correspond to a 5 L ® 1R representation of SO(3) L ® SO(3) R, 
i.e. transform like the self-dual part of the Weyl curvature tensor). 

We need a larger internal symmetry group with 8 generators. A natural candi- 
date (in euclidean space) is SL(3). Indeed it is possible to replace eq. (2.8) by an 
SL(3) invariant expression, 

e _, _b c u,.KP_24fg-ga~, abe c ~ v  e KA e po-F. (2.9) 

where the factor fg- is inserted in order to have the left- and right-hand side 
transform the same way under general coordinate transformations (see however 
sect. 5, where we choose to work with other fields that transform anomalously). 
Eq. (2.9) holds for the ~?-tensors in flat space, and it is invariant under any 
transformations of the form 

a 
e u,, =* S"bebu, ,  , (2.10) 

if det S = 1. 

As was done for the vierbein field, we introduce an SL(3) connection field 
Aab~ , (x )  by demanding 

D~, ea.t3 = a~, e".t~ - F a~,,~e",~t~ - F a~,t3e",~,~ + A " h .  eb.t3 = O . (2.11) 

We have 

A ' a ~  , = 0 ,  (2.12) 
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but no further constraints such as antisymmetry for the indices of A, therefore eq. 
(2.11) with its 4 × 3 x 6 = 72 components may determine the 40 Christoffel fields F 
and the 8 × 4 - 32 A-fields unambiguously. 

To be precise, we must assume that g~,~, as defined by eq. (2.9) from the e-fields, 
has an inverse g~'~, and furthermore that the bilinear 

K ab ! _ ~ , g ~ , A a  . .b =-f f~-  e a g e  t~v (2.13) 

has an inverse Kab. Multiplying eq. (2.11)with e"g~'e%, gives an equation for 
Aab~,K be. One then proves from eqs. (2.9) and (2.11) that D~g,~t~ = 0 ,  from which 
F a~,~ can be determined uniquely. 

3. The Riemann curvature 

Following the analogon of the vierbein field closely we deduce from eq. (2.11) 

where 

[ o., o ,le%  = Fab,  veb,,g -- RA~,, ,e"ag -- n~'t~,~e'~,~ A = 0, 

a 

Fab.,.  = O~, Aab,, - 3,. Aab~ + [ A . , A ,. ] b " (3.2) 

a Now in any point x we can use a tangent coordinate frame where e ~, = r/a~; 
in that coordinate frame at the point x, 

K ab = {~ab ,  (3.3) 

and after a little algebra (multiplying eq. (3.1)with r/~g), 

F ~ ! d R cl~v ~ 2EacdT~ Act h a t t v "  (3.4) 

from which it follows that 
(i) the curvature F of the A-field only represents the self-dual part  of the 

Riemann tensor, and 
(ii) the curvature F is ant isymmetr ic  in its internal indices a and c, which means 

that the curvature is all within an SO(3) subgroup of the internal symmetry group 

SL(3). 
This second point can be understood by realizing that there is a symmetric 

tensor K ab, eq. (2.13), which satisfies 

K = O, (3 .5)  

because the covariant derivative of ea, v vanishes (eq. (2.11)). Thus, if we fix the 
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internal gauge freedom SL(3) into an SO(3) subgroup by requiring 

Kab = gab, (3.6) 

then in this gauge the field A~b, is antisymmetric in its indices a and b. 
In the tangent coordinate frame we have also, using eq. (2.6), 

1 r , a  d -_ Rv[3 , I r',a d v_r cu~e~drl ~ = R (3.7) (3.8) ~- I~ cl.tvEacd TI ~13 ' 

so the Ricci tensor can be found from F. 
Note: eq. (3.6) contains 6 equations. They not only reduce SL(3) (which has 8 

generators) to SO(3) (which has 3 generators), but also fix the conformal factor in 
the general coordinate transformations. Under  the latter K ab transform as v/-g -, as 
we can read off from the defining equation (2.13). We get 

det K =  g3/2. (3.9) 

Since eq. (3.9) holds trivially in the tangent frame it holds in all coordinate frames 
and all SL(3) gauges. 

Eq. (2.9) gives us g,v 
Einstein action is 

4. The Einstein action 

a and ~ in terms of e ,,,, and eq. (3.8) gives us R. The 

S= f d4x ~ ( x ) ,  

with the gauge-invariant expression for ~ being 

where 

! g'a l~cb. ,  o d  ~.l.tvol~ 
~ ' - - ~ .  clzv.~. C.abdt. al3 ~ 

l~cb  - .  KCb(det K) -1/3" 

(4.1) 

(4.2) 

E l z v a f l O v ( 1 ~ c b  d a, e~bd e ~/3) = 0. (4.3) 

Varying this with respect to g,v, considering the other fields as functions of ggv 
and its derivatives, gives of course Einstein's equations. Alternatively, we could 
take Aab~ and ea,~ as the primary field variables. Keeping S stationary with 
respect to variations in A gives 

The determinant was necessary to give ~ the correct weight under conformal 
transformations. 
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This gives an equation for A which in the tangent frame (as defined in sect. 3) 
reads 

c d f d = _ O t ~ ( l ~ e e ) C a _ X f f a  (4.4) A,, eeaedrl uv-A, ,ae f~ar l  m, 

The author verified that eq. (4.4) can indeed be inverted to determine A ~  
uniquely from x~,ab. An elegant way to do this is by introducing the operator 

u a b  v = EabC ?~c~t v , (4.5) 

and writing eq. (4.4) as 

where 

UAA + UBA =X, (4.6) 

(U"A) = U% i .L a e ' A  " U ab A c = (4.7) 

Both X and A consist of the SU(2) L~a ® SU(2) night representations (2 L ® 2 R) ® 

(38 * 5R)=  2L ® (2R ~ 48 e~ 4 a ~ 6R). The first three of these can be ~ t t e n  
X~, or X~, a and are obtained by contracting the original tensor using e or 7- To 
obtain A~, and the two A~,a-fields from the correspondingly contracted X-fiel~ 
easy. One uses 

U 2= U + 2. (4.8) 

Next, one deduces that, when acting on the 2 L ® 6R representation, 

U'4U B = 1. (4.9) 

On this representation one then uses both eqs. (4.8) and (4.9) to derive 

U B + U A= - 1 .  (4.10) 

Beware that U A and U B do not commute when acting on the other representa- 
tions. 

Now we can define the Christoffel symbols FAu~ from eq. (2.11) (the fact that 
they follow uniquely from (2.11) is elementary). From sect. 3 it follows that indeed 
(4.1) is the Einstein action, and the only fields left to be varied independently are 
the e-fields. Since they determine the metric g~, via eq. (2.9), we conclude that 
(4.1) and (4.2) indeed generate Einstein's equations for the metric (2.9), i f  the fields 
e and A are used as canonical variables. F is the curvature defined by (3.1), and K 
is defined by (2.13). 

In short: variation of S with respect to the A-fields gives us the A-fields in 
terms of e and its derivatives, after which variation with respect to the e-fields 
gives us Einstein's equations. 
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5. More elegant fields 

The lagrangian (4.2), when written in full, reads 

i _KAptr_c ~b ~'a _ .~d ^l~val3/ ~(~= .~e  e rA¢: p ~ r  ctxv~-abdt: al3~, ~det K) -i/3 (5.1) 

but this can be simplified by redefining 

so that (5.1) becomes 

ea .(det K ) - , / 9  _fa~,, , ,  (5.2) 

! ~ h p ~ ¢ c  ~ b  i~a o ~ d  o p v a l 3  
~¢2= .~-¢ J KAJ p ~ s  c g v C a b d J  al3~ . (5.3) 

The transformation (5.2) is invertible, since the quantity 

W ab = -~e-'-'~aP'~'aj ,~a f ~ - -  Kab( det K )  -2/9 (5.4) 

has the determinant 

det W = (det K ) ~/3 = (5.5) 

Transformation (5.2) implies that the fields f in our lagrangian (5.3) transform 
with an anomalous weight under conformal coordinate transformations. Eq. (5.3) 
generates Einstein's equations and as such is the analogue of eq. (1.9). The 
relationship between f and the metric g is 

E 
l " a  e b  r c  /.t v K p  ~bcJ ~ J  ~al m~ e = 24ga~, (5.6) 

where the factor ~ cancelled out. 
Thus, if the conventional vierbein field eat, is called the "square root" of the 

metric tensor, our fields f may be dubbed "the cube root" of g,~. 
We did not achieve the optimistic goal mentioned in sect. 1, a bilinear la- 

grangian; the lagrangian (5.3) is quadrilinear in the fundamental fields, and 
therefore a perturbative treatment for small f ,  analogous to the small-e perturba- 
tion theory for (2 + 1)-dimensional gravity, is still not possible. 

On the other hand however, we could impose a gauge condition, 

w a b  1 = -ge~am~faaf~ ~ = $~b (5.7) 

In this gauge (which fixes SL(3) into SO(3) and fixes det g ~  = 1) the e-fields are 
identical to the f-fields. In this gauge the lagrangian is bilinear, 

1 l:i'a o cd  ottval3 (5.8) 
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however, the constraint (5.7) must be added by means of a Lagrange multiplier 

Z a b ,  

! ]:i'a ~. f d  c.lzva[3 I _KApo'ca g'b -~e.- J ,,AJ o~ )Zab (5.9) 

In a quantum version of the theory of course a gauge constraint and the 
Faddeev-Popov ghost field should be added. 

If space-space and space-time components of the f- and A-fields are considered 
separately one gets more familiar looking vector fields, and our action then 
appears to be related to the ones found in ref. [4]. 

Our lagrangian now has an interesting bilinear kinetic term (with a trilinear 
interaction part due to the bilinear term in the curvature F. But of course the 
constraint term renders the theory, non-renormalizab[e. 

6. Minkowski metric 

We call a metric g~,~, a Minkowski metric if exactly one of its eigenvalues is 
negative and the others are positive. The fact that in tangent space (the r ec t an~-  
lar local coordinate frame) the fields e or f become the self-dual T-tensor, 
defined in (2.1), implies that in a space-time with Minkowski metric it should be 
taken to be complex. This is because the i4 components of r/, in spite of having 
one time index, are real. 

a Let us take the fields f ,~, which defir.e a metric g~,,, 
define Z .~ by 

w ba~alZV ! ,,..gval3 f b 
= V c J al3 " 

according :o eq. (5.6). We 

(6.1) 

where W is as defined in (5.4). This relation has a symmetry. If, analogously to eq. 
(5.4), we take if' to be 

= - g e g w t 3 J a  J b  , (6.2) 

then it is easy to derive that if' is the inverse of W. If the hat operation (6.1) is 
always combined with the condition that upper and lower indices are interchanged, 
then we see that the hat operation is its own inverse. 

We could now take as a reality condition in the case of a Minkowski metric 

L " "  = ( f "  ,)*.  (6.3) 

Comparing with eqs. (2.1)-(2.5) we see that the r/'s obey this, 

^ g v  r/,, = ~"~,,, = ('r/"u,,)*' (6.4) 
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where the first equation holds because lowering a time index gives a minus sign in 
flat Minkowski space. If W is real, condition (6.3) tends to make the fields f 
complex because e ~ °  = - i .  Observe however that e also occurs in the definition 
of W, and that eq. (6.3)may a l s o  hold in euclidean space. 

In some sense, the condition looks like a unitarity condition on f ,  because 
scales like the inverse of f .  

We should note that the condition (6.3) is not invariant under general coordi- 
nate transformations (it compares upper with lower Lorentz indices). This means 
that a general coordinate transformation must be accompanied by a shift of the 
functional integration contour in the complex plane. The important motive for 
requiring (6.3) is that it allows a Minkowskian metric ~tr ' .z~t~i~-,r~,7-as d~fin~d 
by (5.6). 

Now we see that the transformations on the internal indices a, b, that leave eq. 
(6.3) invariant are the unitary ones. The e-tensor in eq. (5.6) restricts us to the 
internal symmetry group SU(3). 

A warning is in order. Since eq. (6.3) is not invariant under general coordinate 
transformations, we could just as well have replaced it by 

fai~ is real, r i o  is imaginary. (6.5) 

This *" . . . . . . . . .  is """  " " ,,,,,~,.,,., , , , ,  cvcn mvanant under flat space ~,_.,.---,',,*-,..,.,. transfo,~tinn%...._......_ which 
is why we prefer (6.3). Condition (6.5) would leave SL(3) as the internal symmetry 
group. 

Conversely, our reality condition (6.3) could also be imposed in euclidean space, 
yielding an internal SU(3) symmetry there. The condition that all #components  
should be real (giving SL(3) symmetry) is preferred there only for its simplicity. 

7. Conclusion 

We did not obtain a renormalizable theory. It should be stressed that such a 
thing would never be possible along the lines followed. This is because renormaliz- 
ability would require the linearized theory to be entirely topological in nature 
(because of the absence of a metric tensor), and such a theory cannot sustain any 
locally observable degree of freedom. Only if we would be able to cast all 
observables in quantum gravity in some coordinate-free language a successful 
result would be conceivable. 

Now this was exactly what Ashtekar et al. [5] were trying to do. Self-duality plays 
an important role in these theories, as it does in our approach. Perhaps our cube 
root of the metric tensor may be helpful. 

One might suggest that the constraint part of the lagrangian (5.9) has a 
dynamical origin, but then the above words of caution apply. Our main motivation 
for writing this paper was our curiosity for the use of a cube root as a fundamental 



degree of freedom, as well as the emergence of SU(3) as an internal 
group if the metric is Minkowskian. 

Using this “chiral alternative to the vierbein” in a theo 
be rather difficult, not only because products of odd nu 
are difficult to define, but also because spinorial repre 
be extended to SL(3). 
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