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Abstract: Gauge field theories can be described by many different sets of Feynman rules, de- 
pending on the particular gauge chosen. In this paper a prescription for obtaining the 
Feynman rules in different gauges is given. A rigorous combinatorial proof of the inde- 
pendence of the S-matrix of the chosen gauge is presented. The proof is general and 
applies to Yang-MiUs type theories as well as to gravitation. For renormalizable Yang- 
Mills type theories it is shown that the renormalized theory is invariant with respect to 
renormalized gauge transformations. 

1. INTRODUCTION 

A gauge field theory is defined to be any quantum field theory which has a local 
gauge invariance [1]. The local gauge group may be any (compact or non compact)  
Lie group. Examples are: 

(i) Massless Yang-MiUs fields [2]; 
(ii) Massive Yang-MiUs fields if the mass o f  the vector bosons is due to the Higgs- 

Kibble mechanism [3, 4, 5]; 
('di) Quantum theory of  gravitation. 
It appears that a gauge field theory can be described by many different sets o f  

Feynman rules corresponding to different gauges. One of  these sets will only con- 
tain internal lines that correspond to physical particles (that is, no ghosts). In such a 
set, unitarity of  the S-matrix is relatively simple to prove. It will be called the phy- 
sical gauge from now on. On the other hand, some gauge field theories turn out to 
have also a manifestly renormalizable set of  Feynman rules [4].  I f  indeed these dif- 
ferent sets of  Feynman rules describe the same S-matrix, and if this remains true 
after renormalization then we have unitary and renormalizable vector field theories. 

The fact that the S-matrix is gauge independent has only been shown in avery formal 
way, based on path integrals (apart from some special cases [2, 5]). This "proof"  has 
the shortcoming that it ignores all infinities, and it is precisely those infinities which 

* Postal address: Maliesingel 23, Utrecht, the Netherlands. 
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can cause the wellknown anomalies. These anomalies can invalidate the whole 
theory [8, 9]. Moreover we have no insight in the renormalization procedure and 
the properties of the renormalized theory. 

In this paper a rigorous combinatorial proof is given of the equivalence of many 
different gauges, for a large variety of gauge field theories. We limit ourselves to 
those cases for which a gauge invariant regularization procedure is known which makes 
all diagrams occurring in the proof finite. Indeed, such a procedure exists for a large 
class of gauge field theories [ 10, 11 ]. The condition which the theory then should 
fulfill is the following: parity changing transformations in the gauge-group are only 
admitted if the Bell-Jackiw-Adler anomalies that then arise in diagrams with one 
fermion loop, cancel [ 11 ]. If now the theory posesses a renormalizable gauge, then 
renormalization may be carried through in the usual way. It is essential that the re- 
normalized theory still possesses gauge invariance since this is needed to show that 
the theory is unitary. Due to the occurence of ghost particles the renormalization 
procedure is not trivial, and it will be shown that in fact the renormalized theory is 
invariant with respect to gauge transformations that are different from those of the 
unrenormalized theory. One would expect that the group associated with the re- 
normalized gauge transformations is the same as the group associated with the unre- 
normalized gauge transformation. If then the original Lagrangian is the most general 
for the given fields involving only renormalizable type vertices, the renormalized 
Lagrangian will contain just as many free parameters as the original Lagrangian. 

2. PRELIMINARIES 

Let the fields in our model be denoted by Az(x) and an infinitesimal gauge trans- 
formation be described by Aa(x) (indices i,/, k . . .  count all possible fields, indices 
a, b, c . . .  can have as many values as there are generators in the group, and/a, v are 
Lorentz indices). 

Infinitesimal gauge transformations are given by 

A~ =Ai+ gRia(A) A a + ~'a Aa (2.1) 

Here g is the coupling constant with respect to which we expand. The ~ia may de- 
pend on the fields. The hat on both g and E symbolizes the fact that derivatives may 
occur. Some explicit examples are: 

(i) Quantum electrodynamics of photons and electrons. See appendix C. 
(ii) The model of ref. [4], sect. 6. This model resembles most closely the pure 

massive Yang-Mills theory. There is one more physical particle, called the Z-particle, 
and a triplet of Higgs-Kibble ghosts, called the C a. The Lagrangian ref. [4], eq. (6.6) 
is invariant for the transformations 

lq n'~ = W ~ -  g eab c W ba A c -  O A a , 
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Z'=Z+ gCA a , 

~a, = g/a _ ½ g e abc ~b Ac _ ½ g Z A a - M A a 

In general fields that do have a non-zero ~ in their transformation law are unphys- 
ical: the longitudinal W-mesons and the ~b field in this example. 

Let the Lagrangian of the model, Lin v, be invariant under the transformation 
(2.1). We first give a prescription how to obtain Feynman rules for such a model in 
a permissible gauge, that is a non-singular gauge in the sense defined below. Next we 
will prove that the S-matrix so defined is the same in all continuously connected 
non-singular gauges as defined at the end of this section. In practice this means all 
non-singular gauges. 

The gauge is fixed by choosing a function Ca(x ) of the fields Al(x ). The index a 
has as many values as there are generators in the group. Let Ca(x ) transform under 
(2.1) as 

C (x) = cgx) ÷ g  b(A) Ao(x) + Agx) (2.2) 

Again, the hat indicates the possible presence of derivatives. C a specifies a permis- 
sible or non-singular gauge if the operator r~ab has an inverse rha-b 1 (in k-space non- 
singular for Euclidean k). 

The prescription is to remove the gauge invariance of the Lagrangian by subtract- 
ing q: 

a C 2 (2.3)  L= L i n v - ~  a 

and adding a Faddeev-Popov ghost Lagrangian L~ 

- * rh + g lab(A)) ~o b L~-  ~0a( ab (2.4) 

The Faddeev-Popov ghost occurs only in closed loops and obeys Fermi statistics, i.e. 
there is a - 1  for each closed ~0-1oop. Furthermore the S-matrix is defined in terms 
of these rules with the additional prescription that all external lines are provided 
with a factor called Ze  I in the following. This factor is (1 + F ) - "  where F is the 
wave renormalization factor due to self energy insertions. It is needed both to make 
the S-matrix gauge invariant and unitary, even for finite F 1" 

Examples of possible C a are: 

(Feynman gauge for q.e.d.) , C = a A  

co-a  (FeYnman gauge for the massless Y-M theory), 

(Landau gauge) , 

(Physical gauge for the model of ref. [4], sect. 6) , 

1" This point, which is also pertinent to quantum electrodynamics was emphasized by Bialynicki- 
Birula [12]. We are indebted to J.S. Bell for bringing this paper to our attention. 
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Ca = - au lCau + M C a (Renormalizablegauge for the model ofref. [4], sect. 6) 

The particles are divided into physical and unphysical ones. The Faddeev-Popov 
ghost is always unphysical; for the other fields this division is defined in terms of 
sources. A source contribution is added to the Lagrangian 

L = Lin v -  ~ +  L + J r 4  i (2.5) 

and a source J i ( x )  is said to be a physical source t if 

Ji  (0[e go ~°a + t'/a ~k0) = 0 (2.6) 

and I~o) denotes an incoming Faddeev-Popov ghost on or off-mass-shell. In zeroth 
order of perturbation theory this means that Ji  tia must be zero for all a i f J  i is physi- 
cal; in most cases occurring in practice the matrix element in (2.6) is simply propor- 
tional to t~a or a linear combination of the t~a, and the zeroth order definition re- 
mains valid to all orders. 

From the Lagrangian (2.5) the Feynman rules can be obtained. The bilinear 
terms in this Lagrangian now have an inverse; minus this inverse is by definition the 
A-field propagator. The remaining terms describe the vertices. 

Suppose now that we choose another gauge function C a, with C a =- C a + e R a, 
e infinitesimal. Let R a transform as 

R a R a + rab A b + g Pab(A) A b (2.7) 

Here also rab is independent of  the fields A i, and the field dependent terms are of 
higher order in g. 

We see that the Lagrangian then changes by an amount 

A L = - e CaR a + e ~oa(~ab + g ~ab(A)) ~o b (2.8) 

Equivalence of the gauges C a and C a follows if in the gauge C a a change in the 
Lagrangian proportional to z~ L does not change S-matrix elements between physical 
states. We can formulate this condition in terms of a Ward identity, which we have 
written in terms of diagrams in fig. 2. 

The vertices have been defined in fig. 1. The + signs in the blobs denote the fact 
that an arbitrary number of Faddeev-Popov ghost loops may occur. All additional 
external lines must be connected to a physical source on mass shell, as defined be- 
low. We have written explicitly the minus sign for the ghost closed loop (Fermi 
statistics). 

Instead of fig. 2 we will prove another Ward identity which differs from that of 
fig. 2 in that one of the loop momenta,  k, is not integrated over and furthermore all 
external lines have been replaced by sources J~li, J~i ,  etc, to which field combina- 
tions Rli ,  R 2i, etc. are coupled. These field combinations are taken to transform 

~" Sources that emit or absorb only physical particles satisfy (2.6), but the converse is not neees- 
saxily true. 
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under a gauge transformation as 
S ^ 

Rii= Rij + g ~i/a (A) A a + rij a A a 

The Rij may be linear,  quadratic etc. in the fields. We will then prove the generalized 
Ward identity of  fig. 3. 

Suppose that fig. 3 is true. Then we may fold the C-source and the R 1 source to- 
gether to get fig. 4. 

Next we take for R 2, R 3, . . .  sources that emit physical particles and, moreover, 
put them on the mass shell. For simplicity we only consider stable particles at the 
external lines, but  this is no limitation. Thus we multiply by k 2 + m 2 (where m is 
the mass o f  the emitted particle) and take the limit k 2 + m 2 = 0. We get contribu- 
tions from those diagrams in fig. 4 that can be decoupled from RibY  cutting one 
(dressed) propagator. They are represented in more detail in fig. 5a-e. Fig. 5b and c 
only contribute if the ghost mass happens to be m also. 

However, the set of  diagrams contained in figs. 5b-e cancel, because of  the con- 
dition that we have a physical source, see fig. 6. I f  now we assume that fig. 7 corres- 
ponds to the change of  the factor Z e associated with the external line, then we get 
precisely fig. 2 (the blob in fig. 7 is taken to be irreducible). This assumption can 
easily seen to be correct: in fig. 2 the sources are connected through a dressed pro- 
pagator to the rest of  the diagram. Therefore the correct definition of  the S-matrix 
amounts to a factor 

k 2 + m 2 k 2 
X/I + F k2 + m2 + E(k2 ) +m2=0 

where 

m 2 = m 0  2 + E ( - m  2) , 

Fig. 6. Condition for a source J to be physical. 

Fig. 7. 
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F -  E(k2--~) ~ E ( - m 2 )  k 2 
k2 + m2 +m 2 =0 

The factor Z e in fig. 2 is defined to be ~ + F. The residue of the pole of the dressed 
propagator (fig. 8a) is (1 + F) -1 = (Ze)-2. The blob in fig. 8a contains all self energy 
insertions including the repeated insertions of irreducible self-energy graphs, i.e. fig. 
8a is the completely dressed propagator. The effects of a change in gauge, taking into 
account that both sources are physical, are given in fig. 8b. 

Thus the change in the residue of the propagator at the pole k 2 = - m 2 is 
2a/(1 + F), where a is by definition the graph of fig. 7. (In general, a is a matrix 
that needs not be diagonal; we shall ignore this complication). Hence,/5(1 + F ) - 1  = 
2a(1 + F ) -  1, or 

6Z 
e 

ze 
So now we have shown that if we prove the generalized Ward identity of fig. 8b 

then we have proven that infinitesimally different gauges give the same S-matrix be- 
tween physical states. It is clear then that two non-singular gauges Cal and Ca2 will 
give the same S-matrix if there exists a continuous set of non-singular gauges Cax 
that connects these two gauges. 

The Ward identity of fig. 3 will be proven by induction. Our proof differs slightly 
from ref. [2]; we follow more closely the method of ref. [13]. 

3. WARD IDENTITIES FOR DIAGRAMS WITHOUT THE INCLUSION OF 
FADDEEV-POPOV GHOSTS 

First we consider the "field theory" defined by the Lagrangian (2.3) without the 
Faddeev-Popov correction (2.4), but with sources that emit particles: 

L = Linv- 2LC2+JRiRi(A)a (3.1) 

The jR may be anything, and Ri(A ) may be any linear or nonlinear combination of 
fields A. 

The trick of ref. [13] is to add a free particle field B a, with arbitrary mass ma: 

l 2 1 ( 3 . 2 )  L = Lin v - ~ C a + JtRi(A) - ~ (0 Ba)2 _ 51 ma'- 2 °an2 

Now we make a redefinition of our fields A i by performing an infinitesimal gauge 
transformation: 

Ai ~ Ai  + e g gia(A) B a+ e ~iaB a (3.3) 

with e infinitesimal, and g and ~ are the matrices as defined in eq. (2.1). The Lagrang- 
Jan (3.2) now becomes 
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- '  Ca2 + JtRz(A) - '  _ ½ m 2 B 2 L = Lin v ~ ~ (aBa)2 a 

- -  e Ca(~ lab(A) + rnab ) B b + e Ji(~ib + g ~ib(A)) B b (3.4) 

with l, rh, P and f3 as defined in eqs. (2.2) and (2.7). 

Now this redefinit ion (3.3) of  the fields A i does not  alter the fact that  the B- 

fields are free fields, whether on or off  the mass shell, even in the presence of  the 

sources Ji, hence the contr ibut ion of  the " in terac t ion"  terms in (3.4) must  cancel 

in the amplitudes.  Precisely: according to the L.S.Z. formalism we have 

out(A • " A I B ,  A . . .  A)in = out(A " "" AIBout lA"  "" A)in 

+ out(A • . . . .  AIB, A .  A)inBC°nnected 

with 

out(A A[B, A A.~  "c°nnected = - / 'd 4 x etpx (17 - m 2) 
. . . . . .  m J 2P0 V 

o u t ( A . . .  AIB(x) IA  . . .  A)in (3.5) 

Thus, because B obeys the free field equation of  mot ion ,  we have 

out(A • • • AIB, A . . .  A ~  c°nnected = 0 (3.6) 

as a functional o f J  i. "B-connected"  means that  we select the diagrams where the 
B-line is connected.  Note that out(A - • • AIBoutlA •. • A)in need not  be zero because 
the A fields contain a small admixture  of  B-fields. Fig. 9 is a graphical no ta t ion  for 
eq. (3.6), where all B-vertices are writ ten down. 

4. IDENTITIES F O R  TREE DIAGRAMS 

In sect. 5 we shall prove fig. 3 up to all orders, but  it is illustrative to consider 
first tree diagrams. Of course, as fig. 9 is correct  for all orders in g, it  holds  in parti- 
cular for tree diagrams alone (fig. 10). 

Now let us define a B propagator  and vertices as in fig. 1 c, d. The ver tex fig. lk  
then satisfies the ident i ty  of  fig. 11 t .  Inserting fig. 11 into the second graph of  

fig. 10 we find that we can iterate.  The result of  the i terat!0n procedure is given in 
fig. 12. After  mult ipl icat ion with the ghost propagator  - m -1  this is precisely fig. 3 
for tree diagrams. 

t Note that fig. 11 only holds if the sign ofie in the ghost propagator is the same as that of the 
fields that have the same mass as the ghost and occur in C. 
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5. THE CASE OF CLOSED LOOPS 

If we want to prove fig. 3 up to higher orders in g, we must take the Faddeev- 
Popov ghosts that circulate in the blob into consideration. The "field theory" for 
which we proved fig. 9 is now changed into a real gauge field theory by adding the 
ghosts with the propagators and vertices of fig. lc, d, and Fermi-statistics. The ghosts ^ , ,  

are coupled to the quantity lab(A ). These coupling are not gauge invariant and' there- 
fore cannot be included into /-inv" Nevertheless, we can use fig. 9 if we treat all 
couplings of A-fields with ghosts as additional source contributions. This may be 
done by replacing J-rR/(A) in eq. (3.1) by Ja lab Jb, and treating Ja Jb' Ja ata Jb, etc. 
as sources. 

We get new vertices by considering the transformation properties of lab(A):. 

Tab (A') = ~ab (A) + g aabc(A) Ac + eabc Ac " (5.1) 

Note that the new auxiliary vertices fig. lp and q are not symmetric under inter: 
change of the B and ~0 lines. Clearly, by introducing blobs "+" which differ from the 
blobs " - "  by the inclusion of all possible ghost loops and their associated minus 
signs, fig. 13 may be rewritten as fig. 14. (also we substituted fig. 11), So now we 
acquired the analogue of fig. 9 for complete gauge field theories. 

From this equation we prove fig. 3 by induction with respect to powers of the 
coupling constant g. Suppose fig. 3 holds up to gN. Consider the blob in the graph 
denoted by A in fig. 14. We may apply fig. 3 by the induction assumption, because 
one power o fg  has been extracted by the explicitly written vertex. One of the ar- 
bitrary Riin fig. 3 must now be taken to be I. Thus we get fig. 15. 

Now let us call the vertices fig. ld and q "principal" vertices because they con- 
rain A fields, and let us sort those terms in fig. 15 which contain an explicitly drawn 
ghost loop into groups according to the number of principal vertices they contain. 
Then we can apply an amusing identity (fig. 16) (c.f. eq. (4.11), ref. [2]). 

This identity is proven in appendix A. It may be derived from the group proper- 
ties of the gauge transformations or from the tree-graph Ward identities of fig. 12. 
If we take the lines with an * to be part of the closed loops shown in fig. 15, we see 
that each of the above mentioned groups of diagrams contains the full combination 
of fig. 16 and therefore vanishes, except for the group with no principal vertex. This 
group contains the ghost in a tadpole and is absent in most models, but anyway this 
group vanishes automatically when it is regularized properly. This is also shown in 
appendix A. And thus the equation of fig. 15 reduces to fig. 3 now up to order 
gN+l, which completes our ptoof by induction. 

6. THE TREE-LOOP THEOREM 

In the previous sections the procedure was to start from a Lagrangian with known 
invariance properties and then to derive identities among diagrams. Now we will 



338 G. 't Hooft, M. Veltman, Combinatorics of  gauge fields 

do roughly the opposite. Suppose there is a Lagrangian of which no symmetry pro- 
perties are known, but where on the other hand the following properties hold for 
the diagrams associated with that Lagrangian: 

(i) there exists a function Ca(A ) of the fields Ai(x) ,  and there exist matrices 
Sia(A), tia, lab( A ) and mab, such that 

C (A i + g + 

= C + g lab(A) A b + rhab A b + O(A 2) (6.1) 

for all A (compare eqs. (2.1) and (2.2)). 
(ii) The Ward identity fig. 12 holds for tree diagrams, if we use the transforma- 

tion law 

A~ = A i + g sia Aa + ~.a Aa (6.2) 

for the external sources, and furthermore use the rh and l of (6.1) as ghost propaga- 
tor and vertex respectively. (Note that here it is not a given fact that the infinite- 
simal transformation law of eq. (6.2) corresponds to a gauge transformation group). 

From (i) and (ii) we shall deduce that t 
(a) The Lagrangian can be written in the form 

' C 2 (6 .3)  L = L 1 - 2  a ' 

where L 1 is invariant under the infinitesimal transformation (6.2). 
(b) Fig. 3 holds for diagrams with closed loops, provided that Faddeev-Popov 

ghosts with propagators - ~h -1 and vertices lare included in the Feynman rules. 
This theorem will be called the tree-loop theorem, and it is of importance in 

studying the renormalization counterterms (sect. 7). 
Statement (a) is proven by going backwards through sects. 4 and 3. From fig. 12 

fig. 10 follows, which is then fig. 9 for tree graphs. 
As we only work with tree graphs, the fields may be considered as unquantized, 

and there is a one to one correspondence between the Lagrangian and the vertices 
and propagators of the tree diagrams. 

Fig. 9 implies that to the Lagrangian 

1 B a ) 2 _ l  2 2 I + J i l l ( A )  - ~ (a u ~ m B a (6.4) 

one may add 

- e Ca(g lab(A) + mab) Bb + e Si(;ib * g ~ib(A)) B b (6.5) 

without changing the vacuum-vacuum transition amplitude in the presence of 
sources (cf. eq. (3.4)). 

Redefming the fields A i in eq. (6.4) just as in sect. 3 

J" Our proof does not cover all cases, but it applies to renormalizable theories. See appendix B. 
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A i -+A i - e g g i a B a  - e ~iaBa (6.6) 

does not change the fact that B is a free field. Next substituting (6.3) and (6.1) and 
using (6.5), we find that if the replacement is done in L 1 alone: 

El(A) ~ L I(A - e g ~ a B  a - e t i a B  a ) (6.7) 

the B-field remains a free field, even in the presense of the sources Ji" This implies 
that none of the off-ma:s shell amplitudes are altered by the replacement (6.7), 
which is only true if L 1 is invariant. 

Statement (b) follows from (a) except for the fact that the group property of the 
transformation law (6.2) is not known. Here we have an argument that works for 
many models, see appendix B. Otherwise this must be verified separately. 

7. RENORMALIZATION 

In the previous sections we have proved equivalence of the S-matrices for dif- 
ferent gauges. Essential in this context are the generalized Ward identities of fig. 3. 
However, the graphs are still divergent, or, in the language of ref. [10], they still con- 
tain poles for n = 4. If  for a given theory a so-called renormalizable gauge exists we 
may try to subtract the infinities, that is, renormalize the theory. This requires the 
introduction of counter terms in the Lagrangian, and it is not clear that those 
counter terms will not spoil the symmetry. For instance, there will be counter terms 
associated with the Faddeev-Popov self energy diagrams, and a priori such terms 
could certainly spoil the symmetry of the theory. 

Thus we must investigate the structure of the counter terms, and establish what 
the Ward identities are in the presence of these terms. It will become clear that we 
obtain new Ward identities, the renormalized Ward identities, and the theory will 
be invariant for certain gauge transformations that are in general different from the 
gauge transformations of the unrenormalized theory. Thus not only mass, charge 
etc. but also Ward identities and gauge transformations are renormalized. 

We will work within the framework of the continuous dimension method of ref. 
[10]. Suppose for a given Linv we have found a renormalizable gauge. Order by 
order one may fred counter terms that have to be introduced in the Lagrangian so' 
that the S-matrix becomes finite. For instance, one will have counter terms associated 
with ghost self-energy diagrams. Having introduced those counter terms we must in- 
vestigate if there still exists some gauge invariance; even if this gauge invariance need 
not be the same as the original gauge invariance one nevertheless needs some kind of 
gauge invariance in order to be able to show equivalence to a physical gauge. That is, 
we must have Ward identities as in fig. 3 but now for the subtracted theory. As input 
for our considerations we have that fig. 3 holds for the unrenormalized theory, in 
particular fig. 3 holds separately for poles of any given order in (n - 4 ) -  1. That is 
not enough, because as is well known the subtraction procedure corresponding to 
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the introduction of  local counterterms in the Lagrangian is not  equivalent simply to 
disregarding poles and their residues in the S-matrix. As is emphasized in ref. [ 1 0], 
the correct subtraction procedure is to consider amplitudes order by order in the 
perturbation expansion. Subdivergencies in a diagram are then cancelled by lower 
order counter terms, and the remaining overall divergencies in a diagram can then 
always be subtracted by local counter  terms. 

In other words, according to ref. [10], the Lagrangian can be written in the form 

L(~) = L(0 ) + 77 L(1)+ r/2 L(2 ) . . . .  (7.1) 

where L(o ) is the complete Lagrangian that describes the propagators and vertices of  
the unrenormalized theory,  including those of the ghosts; r/is an expansion param- 
eter. L(k ) are counter terms that contain poles for n = 4 t ,  which are at most of degree 
k. The L(k ) are obtained from the requirement that all amplitudes with k loops 
should remain finite as n -+ 4 and 7/= 1. 

In order to keep the discussion transparant we will make the simplifying restric- 
tion that C a is a simple field, i.e. C a contains linear biJt not quadratic or higher 
terms in the fields A i. Also we will consider only sources that are coupled to simple 
fields, so that also l" should be simple as is generally true for renormalizable theories. 
This restriction avoids the necessity of renormalizing C and R,  for which one should 
have to introduce counter terms involving the sources R and the source that emits 
C in fig. 3. After renormalization one may go over from this simple C a to any other 
C a , without changing the S-matrix between physical states. 

Let us now consider the Ward identity of fig. 3, and apply the procedure sketched 
above to make all diagrams occurring there finite. Then we find that apart from the 
counter terms described by the L(k ) from eq. (7 .1)we also need counter  terms to 
cancel those infinities where source vertices are involved. See fig. 17. These counter 
terms correspond to a change in the quantities ~ and ~ in fig. 3, or ~ and ~in eq. 
(2.1): 

$('q) = 5(0) + 7"/S(1) + 1"/2 $(2) . . . .  (7.2) 

t(r/) = t(0) + r/ t(1)+ r/2't(2 ) . . . .  

In this section we now prove the following. Suppose the counter terms L(1 ), s(1), 
?(1), L(2), 2(2) . . . .  are constructed so as to make all diagrams occurring in the Ward 
identities finite, order by order in the perturbation expansion. To be precise, l (k) ,  s(K 
~(k) are the counter terms associated with the overall divergencies of  diagrams with k 
closed loops. Then the Lagrangian L(r/) of eq. (7.1) can be written in the form 

L(rl) = Linv(~)- } C 2 + L ( r / )  , (7.3) 

with Linv07) invariant under the infinitesimal transformation 

A~ = A i+  g Sia (7"/' A) A a + t/a (~/)Aa (7.4) 

I Finite renormalizations can always be considered afterwards, 
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"A P~ 

l~lg. i 7. Possibly divergent diagrams which necessitate renormalization of ~' and ~ in eq. (2.1). 

for arbitrary r/, while C a is the same C a as in the unrenormalized Lagrangian. The 
quantity L~@) is derived in the usual way by considering the behaviour of C a under 
the transformation (7.4) According to the work of the previous sections this implies 
that the renormalized S-matrix is the same in different gauges. 

This assertion is proved by treating 77 in eqs. (7.1) and (7.2) as a separate expan- 
sion parameter, to be distinguished from the coupling constant. The proof goes as 
usual by induction. Suppose the assertion is true up to order r/k, that is, all 
necessary Ward identities hold up to order r/k. Now consider 

(i) diagrams described by L(o ) alone, with k + 1 closed loops. These diagrams ex- 
hibit poles up to degree k + 1, and satisfy Ward identities as in fig. 3; 

(ii) diagrams of the same order in g containing the counter terms L(I ~ S(l~ t(1), 
etc. but with at least one closed loop. They are of order 77, 1./2 . . . . .  r/K. From our in- 
duction assumption we have that also these diagrams satisfy Ward identities as in fig. 3 
(note that Ward identities hold between diagrams of a fixed order in 77). 

(iii) The diagrams of order r/k+l. These diagrams contain no closed loops. 
Now from ref. [10] we know that (i) + (ii) + (iii) are finite n ~ 4 and r/-~ 1. On 

the other hand (i) and (ii) satisfy the Ward identities. We conclude that the residues 
of the poles in (iii) must satisfy the Ward identities. The diagrams (iii) are tree dia- 
grams and therefore contain the dimension n only in terms of poles. Therefore also 
(iii) satisfies the Ward identities. Next we wish to apply the tree-loop theorem, using 
the same C a however with l(r/) and rh(r/) as given by the renormalized ghost vertices 
and propagators. Of course we must then verify that the requirements of  the tree 
looi9 theorem are met. First, taking for the R i the  fields A i themselves we may deter- 
mine the quantities s(r/) and t(r/) by considering the poles in n = 4 of the diagrams of 
the unrenormalized theory. Next we must allow also for linear combinations of the 
fields, and assure that the overall divergencies as in fig. 17 associated with linear com- 
binations of the fields are the same linear combination of the overall divergencies of 
the single fields A i. This is trivially true if we observe that any linear combination of 
the  A i coupled to one source can be written as a sum of terms each containing one 
field coupled to one source with a certain strength. Finally we must convince our- 
selves of the property (6.1) with our choice of C, l'and r~. This is most easily seen 
to be correct by substituting C for one of the R in the Ward identities and consider- 
ing the divergencies of the unrenormalized theory. 

Since the Ward identities hold for tree diagrams up to order r/k+l we have, accord- 
ing to the tree-loop theorem that the Lagrangian Linv(r/) occuring in L(r/) of eq. (7.3) 
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is invariant under the transformation (7.4) up to order r/k+l, while L~ describes up 
to order ~k+l the correct Faddeev-Popov ghost Lagrangian. This completes our 
proof by induction. 

The result is: the renormalized theory satisfies the Ward identities of fig. 3 with 
the same C and R as for the unrenormalized theory id the C and R are simple fields, 
but the quantities g and ? in the transformation law (2.1) require higher order counter 
terms, infinite for n ~ 4. 

In the renormalized theory one may go over from simple to other C thereby in- 
troducing infinities in the non-physical sector of the S-matrix. The S-matrix between 
physical states is however not changed. 

8. CONCLUSIONS 

If our prescription for obtaining the Feynman rules is followed one can prove for 
all types of gauge field theories, by pure combinatorics, that the unrenormalized S- 
matrix is independent of the gauge chosen. 

As outlined in sect. 7, the renormalization procedure of ref.,[10] leads to a uni- 
tary renormalized S-matrix if 

(i) a gauge, specified by a C a = c~an, exists such that the resulting rules are renor- 
malizable by power counting; 

(ii) a gauge, specified by a C a = C phys, exists such that the resulting rules contain 
no longer ghosts, and the propagators of massive vector particles are of the form 
(~uv + ktaku/M2)/(k2 + M2 - ie); 

(iii) a continuous set of gauge functions as for instance 

C a = X Caren + (1 - X) CaPhys 

exists in such a way that the operator rh defined in sect. 2 has an inverse for all X 
between 0 and 1; 

(iv) no anomalies of the Bell-Jackiw-Adler type occur. 
All these requirements are met with in many models [4, 5, 9]. 
It is of importance to note that the renormalization counterterms given by 

L(r/) - L(O) need not be gauge invariant. The reason is that L(r/) and L(O) are both 
invariant, but under different gauge transformations. 

The assumptions of appendix B in particular do not hold in the case of quantum 
gravity. It may well be that the invariance properties, if any, of an eventual renorma- 
lized theory of gravity are very different from those of the unrenormalized theory. 

The authors are indebted to the participants of the Marseille Colloquium, June 
1972, for their criticism on a preliminary version of this article. In particular they 
are indebted to J.S. Bell and R. Stora for their remarks concerning the treatment of 
external lines as well as the renormalization problem. 
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NOTE ADDED IN PROOF 

Several preprints that deal with the subject of this paper have recently been circu- 
lated. See ref. [ 14]. 

APPENDIX A. 

Group property 
Fig. 16 is an identity containing the vertices of fig. lp and q, which are obtained 

by performing two gauge transformations (eqs. (2.2) and (5.1)). Let us consider 
small gauge transformations f2 t, described by small functions Af(x). The ~2 t form a 
group of transformations on the fields Ai, and the action of ~2 t on A i can be expressed 
in terms of a power series in Af, of which eq. (2.1) contains the first terms. The 
group property implies that the product of two gauge transformations is again a 
gauge transformation. If 

g23 = ~2 f21 ' (A.1) 

then g23 is described by 

a _  a + a l g?a --b c 
A 3 - A 1  A 2 - g g  beZ~lA2 +O(A],2) ' (A.2) 

where £-a~c are the structure constants of the group (in most cases simply numbers; in 
the theory of gravitation they contain the differentiation operator). 

Let us apply eq. (A.2) on some function Ri: 

a l R i  = Ri  + (~'a + g Pia (A)) A~ + O(A~) , 

a 2 a l R i  = Ri + (ria + g Pia (A)) A~ + O(A~) 

+ (~'a + g Pia (A)) Aa + g(Uiab + g °lab (A)) A~ Ab + O(A~) , (A.3) 

where fi and ~ are defined by 

~ia(A') = ~ia(A) + ~iabAb + g ~iab(A) A b (.4,.4) 

Note that we disregard terms of order A12 and A2 2, but we do take into account terms 

of order A1A 2. 

^ A a 1 ^a b c g23R i = R i + (ria + g Pia ( ) )  (A~ + A 2 - ~ g Cbc A1A 2) + O((A 1 + A2) 2) (A.5) 

Now let us consider only the antisymmetric bilinear terms in A 1 and A 2 (note 
that the omitted terms in (A.5) only contain symmetric bilinear terms). We then 
have, according to (A.1): 

g(Ftia b + g~iab(A))(Aal A b - A~ A b) 

- -  1 ^ C g(ri, ' + g ~ia(A) ) ~,, tab bc'" "1 A 2 -  A~ A~) . (A.6) 
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Fig. A3, 

This is an equation between vertices as for example fig. ld,  p, q and r and holds 
for all functions A 1 and A 2. 

Defining finally the auxiliary vertex part  of  fig. 1 s, which is antisymmetric be- 
tween A 1 and A 2 and multiplying eq. (A.6) on the left with B~ we can write the 
vertex identities of  fig. A.1. We may use fig. A.1 a for the gauge function C a. In that  
case we must  take ~ for ~ and rh for ~. Next we add on a ghost propagator  - rh -1 ,  
and a p-ghost vertex. We so obtain fig. A.2. 

Finally we show the cancellation of  the two tadpole graphs (fig. A.3). The ghost 
propagator is cancelled by the vertex th in fig. A.3; hence, the loop integration at 
the right hand side is an integral over some polynomial.  Indeed, in the regularization 
scheme of  ref. [ 10] integrals over polynomials are identically zero. 

APPENDIX B 

Group property and tree diagrams 
The aim of this appendix is to show that the Ward identities of  fig. 3 for tree dia- 

grams imply in many cases sufficient information to deduce the group proper ty  (fig. 
16, or fig. A.2). 

Suppose we have a Lagrangian Linv(A) that is invariant for infinitesimal transfor- 
mations of  the type (2.1), however it is not known if the 8 and ~" satisfy the group 
property (i.e. eq. (A.6), with ? and 13 replaced by ~'and 8, and with t~ and b being the 
transformed of  8). We fix a gauge by chosing a C a and add source terms of  the form 
JiA i. Thus there are as many  sources as fields, and the sources emit  simple fields 
only. 

Next we may redefine our field A i as done in sect. 3, eq. (3.3) involving a field B. 
Subsequently we may again redefine the fields but  now involving a field B'. Next 
with - B, and finally with - B'.  Neglecting terms of order B 2, B '2 we obtain 

1 - -  t B Linv- ~ C2 +JtAi+Ji(Uiab +g°iab(A))(BaBb Ba b) 

- + g a ( bB'c - BbB ). (B.1)  

The infinitesimal transformations relate the various objects 
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Since rh has an inverse we may finally do a field redefinition involving the quantitiy 
- r~;dl &dbc(BbB'c - B'bBc). The resulting Lagrangian is: 

+ Ji(~Ziab + g ~)iab (A) - t~'c thcd 1 edab - g Sic (A) m c )  edab)(BbB'c - B'bBc) 

- C ( g  3abc(A) -  g ~ad(A)md; ~lbc)(BbB' c - B'bBc) . (B.2) 

The sum of diagrams involving one BB'  pair must be zero. Considering diagrams in- 
volving one J and one BB'  pair one deduces straightaway that 

u i a b -  t~'c?nca 1 e~aab = 0  (B.3) 

This is an identity, not an equation of motion, and may be substituted in the 
Lagrangian (B.2). The requirement that diagrams involving one BB'  pair sum up to 
zero is then depicted in fig. B.I. The desired group property follows if either side of 
the equation of fig. B.1 is zero separately. Now the singularity structure (as a func- 
tion of the momenta emitted by the sources) of the left and right hand side is in 
general very different. This may be seen as follows. Limiting ourselves to tree dia- 
grams we may work out the ingoing C-line to obtain fig. B.2. 

We cannot go further unless we make some assumptions on the momentum de- 
pendence of the various propagators and vertices. Suppose that 

(i) the ghost vertices (except the i-ghost vertex, see eq. (B.3)) have no momen- 
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-'7 f Y "'? = 0  

Fig.  B.3.  

tum dependence such that the pole of the attached ghost propagator cancels (in prac- 
tice this means that l, 2, ~, ~ may contain at most one derivative); 

(ii) the vertices that are separated from the sources by one propagator only, have 
no momentum dependence such that the pole of that propagator cancels. 

Then we may separate out in a unique way those terms where a given source is 
connected directly to the ghost combination (without any intervening vertex where 
momentum can flow away to other sources). These terms can be found only in the 
right hand side of the equal sign in fig. B.2. The result is the group property, see fig. 
B.3. 

It may be noted here that if the group property holds for the transformation law 
of the fields it also holds for a large class of functions of the fields. 

The above argument works for many theories, in particular those that possess a 
renormalizable gauge (then the vertices have at most one derivative) and that have 
at most one derivative in l, ~/, g and ~. 

APPENDIX C 

Gauge invariance in quantum-e lec t rodynamics  

Consider photons interacting with electrons. The Lagrangian is invariant for the 
gauge transformation 

A'  =A + a  A , q /=~k+igA~b (C.1) /.t /a 

These are the eqs. (2.1). The invariant Lagrangian is 

Lin v = - ¼ (auA v - OAu)2 - ff(~'D + m) ~ , (C.2) 

D u a u igA u 

This must be supplemented by an Lc. If  we take L c = - ½ (buAu)  2 we get the usual 
Feynman gauge, and the ghost Lagrangian involves no photon field. An illustrative 
different choice is: 

_ 1 a - A  2 ( C . 3 )  C = a.uA u ~ g u 

with ~ arbitrary. 
Under a gauge transformation (C.1): 



350 G. 't Hoo f l ,  M. Vel tman,  Combinator ics  og gauge f ie lds  

Id l) 

w 

0 - - - - - - > - - - - 0  

% q  

P q 

lay 

k 2 -- ie 

i y k -  m 

k 2 + m 2 - ie 

1 - -  , - 1  for every 
k 2 - ie closed loop. 

i g 3"u 

i ~ g (~aoq~ + 5 ~ P a  + 5 ~  ka ) 

-- or2 g2(SaO6va + ~ 5 0 ~  + 6~680~) 

-- i e~ g p c, 

photon propagator 

electron propagator 

ghost propagator 

~ g A  2 buA u 

_ ~ . 2  g2 A2u A2v 

- a g Au ~°*au~° 

Fig. C. 1. 

C' = C -  a g A u buA+ a2A (C.4) 

Thus, in the notation of (2.2): 

l=  - a A u b  u , rh = 3 2 (C.5) 

This is a permissible gauge because rh has an inverse. The corresponding ghost 
Lagrangian is (see 2.4): 

L~ = ¢* 1~2~o - -  ot g A u  ~o* ~ta~o . (C.6) 
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1 The propagators corresponding to Linv - ~ C 2 + L~ are given in fig. C.1. The diagrams 
composed out of these elements reproduce ordinary Q.E.D., which is the theory with- 
out the last three vertices of fig. C.1. First we note that physical photons are those 
that are according to (2.6) emitted by a source J r  that satisfies OgJg = 0 (from C 2 
one has g = 0, tu = Ou in the notation of (2.6). These are indeed the ordinary trans- 
verse photons. 

If the vertices of fig. C.1 reproduce ordinary Q.E.D. then the contributions of the 
last three vertices must cancel in the physical matrix elements. We will consider some 
examples; Photon-photon scattering, fig. C.2. 

The first diagram of fig. C.2 gives, between physical states 

( -  io~ ~is~,kh) = t~2g 2 5o~ ~ i ~ g ~°c kh k 2 -  ie 

Similarly for the second and third diagram. Indeed, this cancels against the fourth. 
Vacuum polarization in electron-electron scattering, fig. C.3. The ghost tadpole 

diagram gives zero after symmetrical integration. The first diagram gives 

rv2~2 /,d4,~ {~a~(k - p),y - ~t~pb } {-  tS~(k - p),y + ~ ~,yp~} ½ 6 j /.., 
(p2 _ ie)((k - p)2 _ ie) 

= a292 ~o~fd4p ~ a292 r 4 p,~(k - p)~ - 

The ghost diagram gives 

iv2g2)Fd4_j P ( - P a  ) { - ( k - p ) ( J }  2 2r  4 p ~ ( k - p ) #  (- 
p2(----k- - - p--)~ = a  g J d Pp2(-----k p)2 

The last two diagrams give 

X- 
J 

k 
. . ._> 

- i k u  

Fig. C.4. 
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2 2,28 fd4p , _3.2.2  fd4p  
respectively. We see that  the whole lot  adds up to zero. 

Ward identi t ies in this model  are obtained by  mult iplying a source J by  C. This 
gives the extra  terms 

_ I o tgA 2) J(BuA u ~ 

which implies the vertices o f  fig. C.4. 
In lowest order o f g  the ident i ty  of  fig. 3 in the absence of  further sources R 

reads as in fig. C.5. Indeed,  remembering that  the external  photons  are physical  

t v g l k 2 6  ~ -  t~gSao= 0 
k 2 ~p 
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