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Abstract: Renormalizable models are constructed in which local gauge invariance is broken 
spontaneously. Feynman rules and Ward identities can be found by means of a path in- 
tegral method, and they can be checked by algebra. In one of these models, which is 
Studied in more detail, local SU(2) is broken in such a way that local U(1) remains as a 
symmetry. A renormalizable and unitary theory results, with photons, charged massive 
vector particles, and additional neutral scalar particles. It has three independent param- 
eters. 

Another model has local SU(2) (~U(1) as a symmetry and may serve as a renormali- 
zable theory for p-mesons and photons. 

In such models electromagnetic mass-differences are finite and can be calculated in 
perturbation theory. 

1. INTRODUCTION 

In a preceding article [1] ,  henceforth referred to as I, it  has been shown that,  ow- 
ing to their large symmetry,  mass-less Yang-Mills fields may  be renormalized, pro- 
vided that a certain set of  Ward identit ies is not  violated by renormalization effects. 
With this we mean that  anomalies like those o f  the axial current Ward identities in 
nucleon-nucleon interactions [ 2 - 4 ] ,  which are due to an unallowed shift o f  inte- 
gration variables in the "formal"  proof,  must not  occur. In I it  is proved that such 
anomalies are absent in diagrams with one closed loop,  if  there are no parity- 
changing transformations in the local gauge group. We do know an extension of this 
proof  for diagrams with an arbitrary number o f  dosed  loops, bu t  it is rather in- 
volved and we shall not  present it here. 

Thus, our prescription for the renormalization procedure is consistent, so the 
ultraviolet problem for mass-less Yang-Mills fields has been solved. A much more 
complicated problem is formed by the infrared divergencies o f  the system. Wein- 
berg [5] has pointed out  that ,  contrary to the quantum electrodynamical  case, this 
problem cannot merely be solved by  some closer contemplat ion of  the measuring 
process. The disaster is such ~ a t  the per turbat ion expansion breaks down in the in- 
frared region, so we have no rigorous field theory to describe what  happens. 
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However, although the Lagrangian is invariant under local gauge transformations, 
the physical solutions we are interested in may provide us with a certain preference 
gauge, in which these solutions take a simple form. If this is the case, then the local 
gauge invariance is hidden, and it is very well possible that all Yang-Mills bosons 
become massive vector particles [6]. We do not know whether such a thing can 
happen with mass-less Yang-Mills fields alone, but it surely can happen in other mo- 
dels, of  which we present some. 

In all these models additional scalar fields are introduced, which are representa- 
tions of the local gauge group. If, in some gauge, these fields have a non-zero vac- 
uum expectation value, then they may fix the gauge, either completely, or partly. 
In the latter case, invariance under transformations of  a local subgroup of the ori- 
ginal invariance group remains evident, and some of the Yang-Mills bosons remain 
mass-less. 

The transition from a "symmetric" to a "non-symmetric" representation is done 
in a way analogous to the treatment of the a-model by Lee and Gervais [7, 8]. The 
difference is of course that we have a local invariance, and we have no symmetry 
breaking term in the Lagrangian. 

Our result is a large set of different models with massive, charged or neutral, 
spin one bosons, photons, and massive scalar particles. Due to the local symmetry 
our models are renormalizable, causal, and unitary. They all contain a small number 
of independent physical parameters. 

A nice feature is that in certain models the electromagnetic mass-differences are 
finite and can be expressed in terms of the other parameters. 

In sect. 2 we give a short review of the results in the preceding paper (I) on mass- 
less Yang-Mills fields. A general procedure appears to exist for deriving Feynman 
rules for models with a local gauge invariance. One statement must be made on our 
use of path integrals here: we only apply path integral techniques in order to get 
some idea of what the Feynman rules and Ward-identities might be. Consistency and 
unitarity of the renormalized expressions must always be checked later on. This has 
been done for the models described in this paper. 

In sect. 3 we consider SU(2) gauge fields and an additional scalar isospin one 
boson. We show how the vacuum expectation value of this boson field can become 
non-zero due to dynamical effects, and how two of the Yang-Mills bosons become 
massive, oppositely charged, vector particles, while the third becomes an ordinary 
photon. Of the original scalar fields one component survives in the form of a neutral 
spinless particle. Interaction and gauge are formulated in such a way that the theory 
remains renormalizable. In sect. 4 a renormalization scheme is presented, but for a 
more elaborate description of the renormalization procedures we refer to I. In sect. 
5 we prove that the model of  sect. 3 is unitary and it is easily seen that the proof 
applies also to the other models. 

In sect. 6 we describe an example where local invariance seems broken, while 
global invariance remains evident. All Yang-Mills particles get equal mass, and the 
model resembles very much the massive Yang-Mills field studied by other authors 
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[9, 10] except for the presence of one extra neutral scalar boson with arbitrary 
mass. The model can be used to describe o-mesons as elementary particles. 

In sect. 7 it is shown that our "o-meson model" can be enriched with electromag- 
netic interactions without destroying renormalizability or unitarity. O ° - 7 mixture 
leads to phenomena like vector-dominance. 

In the appendix we formulate the Feynman rules for the various models. 

2. RESUME MASSLESS YANG-MILLS FIELDS 

The massless Yang-Mills field has been discussed in I. The Lagrangian is 

with 

= i,,--a ,-,a +Z?cou , (2.1) "~YM -- 7ilt'rUvt'rUv lYva) 

(2.2) 

where ~ are the Yang-Mills field components and fabc are the structure constants 
of the underlying gauge group, g is a coupling constant. 

Z? c is an extra term, only depending on the divergence of the field W~, and it 
may be chosen in an arbitrary way, thus fixing the gauge. 

From (2.1) the Feynman rules may be constructed by ordinary Feynman path 
integral methods: the procedure is clarified in the appendix. But, because of the 
gauge non.invariance of ~c,  an extra complex ghost particle field ~a must be intro- 
duced, described by the Lagrangian 

* a  
(2.3) 

where D u is the covariant derivative, defined as 

(D uX)a = auXa + ~ , _ w b x  c 
a o ¢  I~  " 

(2.4) 

Furthermore, an extra factor - 1 must be inserted in the amplitude for each closed 
loop of ¢'s. 

The ¢ particles (and antiparticles) do not occur in the intermediate states in the 
unitarity condition, because they cancel the helicity-0 states in the W-field. 

The Lagrangian (2.3) is related to the behaviour under local gauge transforma- 
tions of  the gauge non.invariant part Z? e of the Lagrangian (2.1): 

e = ~ c ( a  ~ W~).  

Under an infinitesimal gauge transformation generated by Aa(x), the quantity ~ 
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transforms as: 

[ ¥ a '  a - -  1 (2.5) 

Because the fields W a occur explicitly in the covariant derivative D u in eq: (2.5), a 
non4rivial Jacobian factor is needed in the gauge dependent expressions for the am- 
plitude, which is precisely the @particle contribution. In appendix A of I it is shown 
how to derive the Lagrangian (2.3) from eq. (2.5). 

The choice 

c = _ a ( a  w~ - c a )  2", a -~ *~ (2.6) 

leads to the Landau gauge for C = 0, and from the fact that the amplitudes must be 
independent of Ca(x), one can derive Ward identities. The most appropriate choice 
however is 

c = _ ½ 0 .  w T , ( x )  - s " ( x ) )  2 • (2.7) 

For J = 0 we have the Feynman gauge, in which the propagators are" 

BuY (2.8) 
k 2 -  ie 

and again one can derive Ward identities. 
These Ward identities supply a unique prescription for the subtraction constants 

in a renormalization procedure, and from them unitarity of the system follows. 
If  we introduce other fields which are representations of the gauge group, then 

all derivatives in their Lagrangian parts must be replaced by covariant derivatives, 
thus ensuring local gauge invariance and unitarity. 

3. SELECTION OF A PREFERENCE GAUGE BY INTRODUCING AN ISOSPIN 1 
SCALAR FIELD 

Consider the case that the local gauge group is SU(2), and suppose that an isospin 
one scalar field or current Xa(x)  exists which has (in a certain gauge) a non-zero 
vacuum expectation value [6]. Then this isovector is apt to select a preference 
gauge, which may be taken to be the gauge in which 

X1(x) = X2(x) = 0 ( 3 . 1 )  

for all x. However, a gauge transformation of the original system to this "X-field 
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gauge" would in general involve a non-polynomial Jacobian factor (cf. I), thus des- 
troying renormalizability of  our model. So, in general we shall abandon the gauge 
(3.1), but  its formal possibility indicates clearly that the components  X 1 and X 2 
are unobservable, and X 3 acts as a "schizon": our symmetry seems to be broken. 

In our renormalizable model, X is simply a boson field, and we fix the gauge by 
adding some functional Z? c to the Lagrangian as in sect. 2. In the symmetric repre- 
sentation the Lagrangian is 

= d~ YM -- ~(D# X)2 -- ~/22X2 -- }~'(X2)2 " (3.2) 

This Lagrangian corresponds to a renormalizable theory. The last term is necessary 
for fixing the counterterm in divergent graphs with four X-lines. Thus we have three 
independent parameters g, tt and X. 

In order to get some insight in what might happen let us consider the tree- 
approximation,  that is, we disregard all graphs with closed loops. In this approxima- 
tion all fields may be considered as being classical, and the vacuum corresponds to 
the equilibrium state, where all fields are constant and the total energy has a mini- 
mum. ( I f  we specify.the gauge, then this energy can be written as an integral over 
space pf  an Hamiltonian density ~ ( x ) . )  In order for this vacuum to exist, the par- 
ameter X must be positive, but /a  2 may have a negative value. In the latter case we 
expect that  the X-field is non-zero in the equilibrium state: for slowly varying X a, 
and I¢~ ~" 0, we have 

~¢ = f 4x(½u2x 2 + }x(x2)2). 
v 

This has a minimum for 

X a ( x )  = ea v /~_  21a2 " (3.3) 

with e a an arbitrary vector with modulus unity. By a global gauge transformation 
this vector e a can always be pointed in the z-direction. 

If  we do quantum mechanics things do not change drastically. Eq. (3.3) must be 
replaced by 

(01xa(x)10) = F , 

F = ~ + 060, 

(3.4) 

(the parameter X is of  order g2). 
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We now proceed as Lee did for the o-model [7]. We write 

Xa(x) = F + Aa(X) , 

with 

(OIAa(X)lO) =- O , 

The Lagrangian (3.2) then becomes 

2 1 2 2 2 2 12 2 2 2 £? = A?yM-½(DA) _:~rl, ,A3_½g F (W~ + W~ )-½XFA A3- iX(A2)  2 

-g2~'A3(W12 + WU22)+ g2F[¥3(A 1W1+ A2 W2) - , (½A2 + FA 3) 

+ gF(A .O W2-  A~3 W 1) 
1 ~  ~ ~ l a  ~ ' 

where 

~ U 2 + ½ X F  2 . 

(3.5) 

(3.6) 

(3.7) 

1 3 2_~(~ W/ c = _ =(bu W~ - J3(x)) - gFA 2 -  Jl(X)) 2 

±'b W 2 + gFA 1 - de (x))2 (3.S) 
- -  2 ~ la I~ 

In here the functionsda(X ) will be put equal to zero, but the fact that all physical 
amplitudes are independent of them enables us to formulate Ward-identities. 

The fields in eq. (3.8) transform as follows under infinitesimal local gauge trans- 

c % )  = - ½ ( a  2 , 

but the resulting Feynman rules are rather complicated and a massless ghost re- 
mains. It is more convenient to choose: 

Note, that the "tadpole condition" (3.6) implies that fl = 0 in first order o fg  and ~,, 
in accordance with eq. (3.4). 

We deliberately have not yet specified the local gauge. We have seen that the 
gauge (3.1) is no good, because it renders the theory unrenormalizable. One could 
very well proceed like in sect. 2 and choose the local gauge by adding 
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formations: 

a I4 ,'3'u = ~ W~ 3 - g -  1 a (D A)3 ," 

(a**W1 v _gFA2)'= a W 1 _ g F A 2 - g - l a  (o A) 1 +gF2A 1 -gFe2beAbAc ; (3.9) 

(auW2 u + gfA1), = O u W~ 2 + gFA 1 _ g - 1  au(DuA)2 + gF2A 2 + gFelbcAbAc " 

With the same procedure as in sect. 2 we derive the ~0-ghost Lagrangian:~: 

£? ~o = - a~ ~°*a ( Dv ~° )a - g2 F2 ( ~°* l ~°1 + ~°" 2~°2 ) 

2 .1 .2 +g F(~o e2bcgbAc-~O elbc~ObA). (3.10) 

Because of our choice (3.8) for £?c the last term in (3.7) is cancelled; likewise the 
term 

+~(a Wua)2 in t Ga G a 

Let us finally replace the three parameters by 

M = g F > O  , 

ot =X/g2> 0 ,  
(3.11) 

and g. 
The resulting theory has two massive, charged vector particles ~ -+ i I¢u2, with 

the propagator 

k 2 + M 2 -  ie 

a massless photon Wu3, with the propagator 

~au 

k 2 -  ie 

and a neutral, scalar particle A3, with mass Mx~.  
There are two different types of ghosts: 

(3.12) 

(3.13) 

Note that this expression is not Hermitian; the ~ghost restores unitarity. Because of these 
features Feynman rules must be derived by path integral methods. The heuristic Feynman 
rules are here the correct ones, as is shown in the appendix. 
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First: the complex ~-ghost with the oriented propagators: (k  2 + M  2 - i e ) -  1 for ~ 1 , 2  

and (k 2 - ie)- 1 for ~3. 
A minus sign must be inserted for each closed loop of ~-ghosts. 

Second: the real A 1,2 ghosts, with no minus sign, and massM 2 (resulting from a 
contribution of Z? c, eq. (3.8)). 

These, and all other Feynman rules, except for the above mentioned minus sign, 
may be derived with ordinary Feynman path-integral techniques, from the Lagran- 

gian 

2~ = 1G a G a 1,'i~ wa',2 + ,'~ I(D A'~2 IM2[W12 + W 22) 
- -  ~ lay lav --  ~2t- # #3  . ~  - -  ~ (  # ) - - 2  k t~ 

2 ~3  2 "'2 z 2 ~ .... a 3 -8- 

× [ a W I _ M A 2 ]  + j e ( x ) [ a W e + M A f l  x 2 la 
(3.14) 

with 

Z ?  = - b ~*a(Du~o)a-M2([~ol[ 2 + [~212) +gM(~ *1 e2bc--~o*2elbc)~obAc • (3.15) 

The functions Ja(x) are arbitrary, which enables us to formulate Ward identities. 
They may be chosen to be zero. The constant/~ must be adjusted in such a way, 
that the tadpole condition (3.6) holds. 

The complex e-particles with their unphysical "Fermi statistics", and the A ± par- 
ticles, with positive definite metric, must all be considered as ghosts. The most 
compelling reason for this is the unitarity condition; In sect. 5 we derive that these 
particles cancel the unphysical polarisation directions of the W-fields in the inter- 
mediate states, resulting from the anomalous propagators (3.12) and (3.13). 

4. RENORMALIZATION 

The expression (3.8) for ~oe, has especially been chosen in order to acquire the 
simple, quadratically convergent propagators (3.12) and (3.13), and to arrive at 
Feynman rules which are those of a renormalizable theory. 

However, renormalization requires the introduction of a cut-off procedure, and 
in general this modifies the theory such that thesymmetry, and therefore also uni- 
tarity, get lost. Thus, the cut-off procedure must be chosen in accordance with our 
symmetry requirement. To this purpose we can use the observation that in all or. 
ders o fg  the physical amplitudes must be independent of the source function Ja(X). 
The Feynman rules for the contribution of their Fourier transform Ja(k) are given in 
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JI,2,3 WI,2, 3 
- tk Ca) 

JI  

X ~ -M 
(b) 

J2 

X A1 +. (c) 

j(k) ~ J ( - k )  _ 8 h (d) 8 

Fig. 1. Feynman rules for the contribution of the source function Ja to the amplitude. 

fig. 1 (compare eq. (3.14)). (Note that (d) is cancelled by contributions of  bare W 
and A particles.) 

A graphical notation for the Ward identities is shown in fig. 2. The number of  
"J-lines" must be non-zero. A combinatorial proof  o f  these Ward identities can be 
given in the same way as in the case o f  the massless Yang-Mills fields. 

Further, also in this model, a variation upon these identities can be found for the 
case that one o f  the external W-lines on mass shell has a non-physical polarization 
direction (fig. 3). The identity in fig. 3 can be proven either by combinatorics, or 
by using a formulation in terms of  path integrals: one must consider an infmitesi- 

J J (off mass shell) 

= 0  

Fig. 2. Example of Ward identity expressing the fact that physical amplitudes are independent 
of the J-source. 
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= i k  

q¢ 
I i 

X 
~t q~a ¢pb 

Fig. 3. Ward identity for the case that one of the external W-lines on mass shell has a non- 
physical polarization direction. 

mal gauge transformation generated by Aa(x) with the property 

a.D u A(x) = J (x ) ,  (4.1) 

(J(x) being also infinitesimal). 
One of the simplest ways to use these Ward identities to calculate the renormal- 

ized higher order corrections to the amplitudes, is to apply subtracted dispersion re- 
lations. The behaviour of the amplitudes for the momenta going to infinity is pres- 
cribed by the condition that renormalizability must not be destroyed at higher or- 
ders: hence, the amplitude for a diagram with N outgoing boson lines must behave 
at infinity like (k) 4-NL(k) ,  where (k) stands for the momenta of the outgoing 
lines, and L is a logarithmic factor. Thus the number of subtractions has been deter- 
mined, whereas the Ward identities give a large restriction on the possible values of 
the subtraction constants. The procedure sketched here can be proven to be consis- 
tent as soon as some gauge covariant set of regulators is found. Such a set can in- 
deed be formulated for diagrams with one closed loop by the introduction of a fifth 
dimension in Minkowsky space (cf. I). By introducing more dimensions one can 
give a consistency proof for all orders, but we shall not present it here. 

5. UNITARITY 

The equations shown in figs. 2 and 3 may be used to prove unitarity of the model. 
The procedure is analogous to the proof given in (I). The proof that the contribu- 
tions of the ~o 3 and ~0 3 intermediate states cancel those of the unphysical W3-states 
is the same as in I and will not be repeated here. Actually, it is enough to s~ow that 
the residues of the poles at k 2 = 0 of these propagators cancel. 

As to the charged particle states, a unitary field theory of massive vector parti- 
cles would have propagators 

k~kv 
~,, + M 2 

k 2 +M2_ie 
(5.1) 
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instead of (3.12). Hence, the W 1,2 propagators have anomalous parts 

kvkv (5.2) 
M2(k 2 + M 2 - ie) 

Now, indeed, we see that as a consequence of the equations in figs. 2 and 3, the 
residues of the poles at k 2 = - M  2 of the unphysical propagators cancel. In fig. 4 it 
is shown which combination of these propagators has to be considered in order to 
prove this canceilation. (Note the explicitly written minus sign for the C-loops; the 
integration over k has not yet been carried out.) For more details of this proof we 
refer to the treatment of the analogous case in massless Yang-Mills fields, given in 
(I). It is because of this phenomenon that we can consider the anomalous part of 
the W-field, and the A1, A 2 and C-particles, as unphysical. They can be left out of 
the intermediate states without invalidating the unitarity equation. 

anomalous - ktkl ~ 

. w ~, v3Ck 2 - i ,)  

anomalous 

Fig. 4. Combination of unphysical propagators for f'med value of k. 

6. ISOSPIN-½ SCALAR FIELD 

Our most important conclusion from the foregoing is that a basic principle like 
gauge invariance can lead to renormalizable, unitary theories with massive, charged, 
vector particles, Many different models may be constructed this way. We like to 
mention in more detail a very interesting case: local SU(2)-gauge invariance with an 
isospin-~ "symmetry breaking" field 
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Let the Lagrangian in the symmetric representation be 

* 2 * . C = £ ~ y M - ( D u K )  Dj,K-Ix K K -  ~X(K*K) 2 . 

The covariant derivative of  an isospin-2 t field is: 

(6.1) 

DvK - auK - ½igT a I¢~K . (6.2) 

For negative values o f #  2, the field K is expected to have a non-zero vacuum ex- 
pectation value, which by a suitable global rotation in isospin space can be taken to 
be: 

(') (01K(x)[0) = F . (6.3) 
0 

Now, it appears to be convenient to express the complex spinor K in terms of  a 
real isospin singlet and a real triplet: 

(6.4) 

and to introduce the independent parameters 

M 2 = ~g2F2 ' 

¢x = ~k/g 2 , 
(6.5) 

andg.  
In this representation, the Lagrangian is: 

.e = _ ±Ca, ,,~ ca .~ +.C~-½M2 W2 - ½ 0 ,  Z)2 - ½ 0 .  ~ ) ~  v , - ½4,~M2Z 2 

+ ½g ~ ( Z a ~  a -  ~ a Z )  - ~g2 W2(~2 + Z 2) _ ½gM W2Z _ .MgZ(~ 2 ÷ Z 2) 

- ~ 4 ( ¢ 2  + Z2)2-[3 [~(Z2 + ~2) + ~ - Z  1 -Mt~aO. Wat* ' (6.6) 

where the parameter 3 = / a2 + ~ F2 must be chosen in such a way that all tadpoles 
cancel. It is of  order g2. 
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./2 c is chosen to be 

2 , (6.7) 

so that again the Feynman propagator (3.12) for the W-field emerges, and the last 
term of eq. (6.6) cancels. 

By studying the behaviour of ~ c  under gauge transformations we derive the La- 
grangian for the ghost field ~0 (compare sects. 2 and 3) 

= ~ * ~ ~ . 2  * * a  b c Z? -ou~o z)u~o-~ ~ ~-½Mg~o*~Z +12Mgeabc~O ~ ~ . (6.8) 

The Feynman rules for the source function contributions are now those of fig. 5. 
Now we observe that the Lagrangian (6.6) as well as the Ward identities remain 

invariant under global isospin transformations, if the ~b fields are considered as a 
triplet and the Z as a singlet. Only local gauge invariance has been broken. Here the 

fields act as additional ghosts, and all three isospin components of the wa-fields u 
have become massive. The Z is an additional physical particle. 

Many authors [9, 10] have considered the massive Yang-Mills theory described 
by the Lagrangian 

Z?yM - ½M 2 l~u. (6.9) 

That model appears to be non renormalizable, although many of the divergencies 
can be seen to cancel by the introduction of two kinds of ghost fields [11, 12]. In 
our model also two ghosts appear: the complex ~-field, with Fermi statistics, and 
the V-field. But now we see that the introduction of one physical isospin-zero par. 
ticle Z can render the model renormalizable. Its mass is a new independent param- 
eter. For large values of this mass we get something very similar to the old model 
(6.9). 

X - ik 

Ja (k) 
- N  

j(k) X X Jb(-k) - S~b 

Fig. 5. Feynman roles for the J-souzce contribution to the amplitude. 
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7. ISOSPIN AND ELECTROMAGNETISM; VECTOR DOMINANCE 

In the previous model, electromagnetism can be introduced in an elegant wayt .  
Consider first the symmetric representation (6.1). Let us assume the presence of  a 
"hyperelectromagnetic" field, Au, which does not break isospin. Let in (6.1) only 
the K particle have a "hypercharge" q. The Lagrangian is then: 

with 

£~ = "QYM -- ¼/~tv/~ttv -- (/~ K)*/)  K - /12K*K - ",~.(K*K) 2 ,it /,i 

Du K - Du K + i q A u r  . 
(7.1) 

The gauge group in this model is SU(2)®U(1) .  Let us consider an infinitesimal 
gauge transformation: 

K *= (1 - ½ i A a r  a -  iTX)K, 

wu'a = w a _  g -  1 u (DuA)a ' (7.2) 

Z.--./. +q-%x, 

where Aa(x), ,Tt(x) are generators of an infinitesimal gauge transformation. 
Now if the K field has a non-zero vacuum expectation value: 

( 1 )  
(01K(x)10) = F , (7.3) 

0 

then the physical fields will only appear to be invariant under those transformations 
(7.2) that leave the spinor 

(;) 
invariant; that are the transformations with 

A 1 = A 2 = 0 ; A 3 = - 2A = A EM . (7.4) 

1" The model  o f  this section is due to Weinberg [ 13],  who showed that  it can describe weak in- 
teractions between leptons. His lepton model can be shown to be renormalizable. 
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Let us call such transformations electromagnetic gauge transformations. If we define 

wl,2 = _1,2 (a) 

Y= Y + ~  ' (7.5) - p~ (b) 

then these quantities transform under electromagnetic gauge transformations like: 

Z ' = Z  , 

4Is = v, s , 

, • , ± ' E M  
~1 ± t~2 = e iA (~bl ± i~b2), 

(7.6) 
3'_ 3 

Pu -P~ ' 
o,l'-+' ip2'=u e+/AEM(p.I ± ip2) , 

A-'.  = - , , A  E M  . 

Finally, we make the substitutions: 

+ ; e--:2q g2 ] " 

In terms of these variables the Lagrangian (7.1) becomes: 

p=  _.14Oavpav_¼FvF _ e F p3 +.~c_½M2p2_½(O Z)2_½40.M2Z2 
zg uv ~v 

• ,a T M  -','o TM-'' + ½g,~(z a~ ~ % -  ~ a z )  - ½ g M p 2 z  - ~g2p2(~ 2 + z 2) 
- -  2 t  ~ 9 x )  ~t 9x 

_ ~ g z ( 0 2  ÷z  2 ) _ ~ ( ~ 2  +z2)2_~ ½(z 2 + ~2) + z - M % a  p. ,  

(7.8) 
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where 

a EM,t, =au~3, 
tt v ' 3 - -  

aEM(~kl + tqJ 2) = (b u + i eAu) (~  1 + i~k 2) , 

( D E M ~ )  a ------=- 0 E M ~  +geabcpb~c V Ta 

a = - , E M  a ~EM a +  e b e 
P u v - ° u  P v - v  #u g abcPu or" 

Let us choose 

(7.9) 

.~ c = _ ½(~)EMpa _ M ~  - J )2 _ ½ 0 u A u  _ j E M ) 2  
/.t ,t/, a a (7.10) 

so that the last term in (7.8) is cancelled, while the photon, and the p-particle have 
the Feynman propagators (3.12) and (3.13) resp. 

The contributions of the Q-ghosts is described by 

£3 _aEM o* D~uM~_M2 o*99_½Mg~o*o Z *a b.,.c = +½Mgeabc~ ~ ~ , (7.11) 

again with the additional minus sign for each closed loop of ~0's. 
So, we have arrived at a renormalizable model containing photons, p-mesons and 

neutral Z-particles. There are four independent parameters: g, M, ot and e. The par- 
ameter 3 is dictated by the tadpole condition: 

(01Z(x)10) = 0 .  (7.12) 

Note the third term in (7.8), which leads to phenomena like vector dominance. It is 
a consequence of the translation (7.5b). 

8. CALCULATION OF ELECTROMAGNETIC MASS DIFFERENCES 

One of the main virtues of the models presented here is, that there are no am- 
biguities due to infinities, and the number of independent parameters is small. It is 
interesting to calculate some "electromagnetic" mass differences. For instance, in 
the model of sect. 3 one may introduce an isospin one fermiont 

£?N = --At( m + ~luDu) N" ( 8 . 1 )  

t It appears that  counterterms of  the form NaeabcXbNc, or, in the asymmetric representation, 
NaeabcAbNC, are not  needed for renormalization. 
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A direct computation of  the difference in mass of  the A r~ and N ° seems to lead 
to ambiguous results because the integrals for the self-energy corrections diverge. 
But, one o f  the Ward identities states that the graph of  fig. 6a equals zero, if the 
charged particle N2, and the neutral N 3 are both on mass shell. Let us consider all 
terms of  this graph up to third order in g (fig. 6b). 

The first term only contributes if m ± :/: m °. Now the mass difference m ± - m ° 
will be of  order g 2, so q can be taken of  order g2. Hence the last four diagrams of  
fig. 6b will not contribute in the third order o fg .  

Jl (off mass shell) 

N 2 " N 3 = 

(a) 

~ P  

J| 

+ 4- 

N 2 N 5 

(0) 

I w 

Fig. 6. a. Ward identity for the model of sect. 3, augmented with isospin-one fermions, b. All 
eontr~utions up to order g3. 



184 G. 't Hooft, Massive Yang-Mills fields 

Thus, the Ward identity reads 

g(m ± - mo) - M.B = 0 (8.2) 

where B is the second graph of fig. 6b. 
The momentum transfer q may now be taken to be zero, and both externalN- 

lines have momentum p with p2 = _ m 2. The integral in B converges, and the result 
is: 

m ± - m ° -  2g2 f dx( l  + x ) l o g ~  + M 2 ( 1 - - x ) l  (8.3) 
m (470 2 0 m2x2 j 

(in second order of g). 
This mass-difference is always positive, and for small resp. large values o fM2/m 2 

eq. (8.3) may be simplified to 

g2M 
m ± _ m o - (M 2 ,~ m2) • 

87r 

m ± _ m o = 3g 2m logM 2 
(470 2 m 2 

(M 2 >> m2).  

(8.4) 

A negative mass-difference is found for the p-meson itself in the model of sect. 7. 
This mass-difference is of zeroth order, and originates from the "vector dominance" 
term in eq. (7.8). Diagonalisation of the bilinear terms in (7.8) leads to the mass 
formula for the p-mesons (in zeroth order): 

Mo - M±2 (8.5) 
1 - e2/g 2 " 

The author wishes to thank Prof. M.Veltman for his invaluable criticism and 
encouragement. 

APPENDIX 

Feynman rules for  the various models 
In the preceding article I a system with a complete local gauge invariance was 

quantized using a path integral technique. It was shown how to make the integrand 
gauge non-invariant without changing the total amplitude. The same procedure has 
been applied here. The term which breakes the gauge invariance is always called £?c. 
As a consequence of this procedure, the Feynman rules must always be derived 
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from the final Lagrangians by performing the path integral, and not by canonical 
quantization. This means that the propagators are always the inverse of the matrices 
in the bilinear terms of the Lagrangian, and the vertices are the coefficients in front 
of the remaining terms in the Lagrangian, regardless whether time derivatives occur 
or not. We mention here some of these Feynman rules. 

Modelofsec t ion  3. (compare (3.14) and (3.15)). 
physical particles: 

W 1,2 ~#v 
V k 2 + M 2 - -  ie (A. 1) 

W 3 ~uv (A.2) 
;' k2-ie 

A3 1 

k 2 + t~M 2 - ie 
(A.3) 

ghosts: 

A1,2 1 
....... (A.4) 

k 2 +M 2 -  ie 

,__4 'L_.  1 
(A.5) 

k 2 + M 2 - ie 

~03 1 
. . . .  ~ - -* (A.6) 

k 2 -  ie 

for each closed loop of ~0 lines: - 1 (A.7) 

some of the vertices: 

W W W W as in massless 
; ~ ; .~'1"-~. Yang-Mills 

W W W W ~o" "~o fields. 

A3 

A1, if" " .A1 ,2  

- e t g M  (A.8) 
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etc. 

A3 

A 3 / / ~ ' ' ~  A3 
- 3ozgM 

h c 

a c 

I 

A3 
• ( k  = o )  

A1,2 ,~ _A1- 2 

A3 A3 1 

gMe2bc 

- gMelb c 

g 

(A.9) 

(A.lO) 

(A.11) 

(A.12) 

(A.13) 

The vertices (A.12) and (A.13) must be added to higher order tadpole- and self. 
energy diagrams, with/3 chosen such, that all tadpole contributions cancel. 

Model of section 6. (compare (6.6), (6.7) and (6.8)). 
physical particles: 

W a Buy 

/~ ~ k 2 +M 2 -  ie 
(A.14) 

Z 1 
k 2 + 4aM 2 - / e  

(A.15) 

ghosts: 

.. ~a 1 
. . . . .  - . o  

k 2 +M2-ie 
(A.16) 

C a 1 • - - -~- - - .  ( A . 1 7 )  
k2 + M2-ie  
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some of the vertices: 

W b 
L ~ . ^ .  - ½ ig eabc(p - q ) .  

Z 

- 2t~Mg 8 ab 

Z 
- 6 ~ M g  

etc. 

Model  o f  section 7. (compare (7.8), (7.9), (7.10) and (7.11)). 
Rules as in preceding model, but with additional photon lines: 

A tSav 

la v k 2 -  ie 

and vertices: 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

3 
A n P,. e (k25 _ k k u  ) 

g /w 

~o 1 -/5 ~ -~--q_. ~o2 

q -  ~pl 
- e(p - q) .  

etc. 
The J-source can now emit a photon and a p-meson simultaneously: 

h/,t 

- e ~ v  

etc. 

(A.22) 

(A.23) 

(A.24) 

(A.25) 
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The vertex (A.22) is a consequence of  the fact that we did not diagonalize the 
bilinear terms in (7.8) completely. The diagonalized propagators have a rather com- 
plicated form. For small e it is easier to leave (A.22) as it stands. 

If  necessary, vertices like (A.25) for the J-source contribution may be avoided by 
choosing another expression for Z? c (eq. (7.10)). 
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