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Abstract: The problem of renormalization of gauge fields is studied. It is observed that the use 
of non-gauge invariant regulator fields is not excluded provided that in the limit of high 
regulator mass gauge invariance can be restored by means of a finite number of counter- 
terms in the Lagrangian. Massless Yang-Mills fields can be treated in this manner, and 
appear to be renormalizable in the usual sense. 

Consistency of the method is proved for diagrams with non-overlapping divergencies 
by means of gauge invariant regulators, which however, cannot be interpreted in terms of 
regulator fields. Assuming consistency the S-matrix is shown to be unitary in any order 
of the coupling constant. A restriction must be made: no local, parity-changing transtbr- 
mations must be contained in the underlying gauge group. The interactions must con- 
serve parity. 

1. INTRODUCTION 

In recent years the Feynman rules for massless Yang-Mills fields have been es- 

tablished [ 1 - 5 ] .  Naive power counting suggests a renormalizable theory; however, 

in order to carry through a renormalization procedure one must first define a cut-off 

procedure. And if the cut-off procedure breaks the gauge-invariance of  the theory 

then it is no more clear what the Feynman rules are. The reason is that gauge- 

invariance, through Ward identities, is essential for the S-matrix to be unitary. 

Thus the problem poses itseJf as follows: how to find a gauge invariant cut-off 

procedure. This problem is of course quite the same in quantum electrodynamics. 

There the problem was solved by Pauli, Villars [6] and Gupta [7] who succeeded 

in finding a set of  regulator fields that could be coupled in a gauge invariant way. 

Now in the case of  massless Yang-Mills fields a gauge invariant regularizing proce- 
dure also seems to exist. Unfortunately,  however, this procedure cannot be inter- 

preted in terms of  fields with indefinite metric and/or wrong statistics, like in the 

case of  electrodynamics. Hence, unitarity and causality are no longer evident. 

However, it must be realized that the whole renormalization procedure involves 
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also the addition of counterterms in the Lagrangian. And in fact the important  point 
is that the total effect of  regulator fields and counterterms is to be gauge invariant, 
at least in the limit of infinite regulator masses. Thus let us suppose now that we 
have found a set of  regulator fields, that makes the various amplitudes finite but 
destroys the gauge invariance. If  we are to restore gauge invariance by means of  a 
finite number of  counterterms in the Lagrangian then the gauge-invariance breaking 
terms in the above mentioned amplitudes must be polynomials of  a definite degree 
in the external momenta,  order by order in perturbation theory. But this is precisely 
the same problem as with the ultra-violet infinities in perturbation theory: the cut- 
off dependent terms must be polynomials of  a definite degree in order for the theo- 
ry to be renormalizable. Thus the usual proofs of the renormalizability of  quantum 
electrodynamics also guarantee that the unwanted effects of  a non-gauge invariant 
regulator procedure may be off-set by suitably chosen counterterms. Our aim with 
this procedure is twofold: first, causality is evident, and unitarity can be proven 
using Cutkosky relations. Secondly, actual calculations are much easier this way, 
because the counterterms can be fixed easily by applying Ward identities, whereas 
gauge-invariant regulators become rather complicated particularly at higher orders. 

The above point may be illustrated in quantum electrodynamics; in sect. 2 our 
cut-off procedure is applied to the lowest order photon self energy diagram. Here 
the unwanted effects of  a non-gauge invariant regulator procedure are seen to be 
such that they can be cured by means of  counterterms, one of which has the form 
of  a photon mass term. 

One may argue that the method is equivalent with a dispersion relation techni- 
que, where the subtraction constants are determined by generalized Ward identities; 
and that is then sufficient to have a completely gauge invariant theory. 

In sect. 3 the situation for massless Yang-Mills fields is outlined. First we use 
non-gauge invariant regulators, and require that counterterms that remove diver- 
gencies are such that Ward identities hold*. 

Consequently, three important  questions must be answered: 
(i) Do the Ward identities determine the hitherto arbitrary coefficients unique- 

ly? Indeed, we will show that only one arbitrary physical constant remains, being 
the renormalized coupling constant. Two other arbitrary numbers are unobservable 
and can be chosen by some convention. 

(it) Are there no internal inconsistencies, like in the PCAC case [8, 9] ,  where no 
renormalizable counterterm could be found in such a way that PCAC and gauge in- 
variance hold at the same time? In sect. 4 we show a combinatorial proof  of  the 
Ward identities, and it appears that many shifts of  integration variables are neces- 
sary for this proof. Nevertheless, there are no inconsistencies, and for the case of  
one closed loop we prove this by deriving the gauge invariant set of  regulators al- 
ready referred to (sect. 5). Extension of  a similar regulator technique to higher-orders 

* The meth0d of removing infinities by the use of Waxd identities and counterterms for Quan- 
tum Electrodynamics is described in Jauch and Rohrlich, Theory of photons and electrons, 
p. 189. 
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seems possible, but complicated and tricky, and we shall not bother about it in this 
article. 

(iii) Is the resulting S-matrix unitary? In sect. 5 we generalize the Ward identities, 
in order to show that the ghost particle intermediate states cancel the intermediate 
states with non-physically polarized W-particles. Thus in the unitarity equation only 
physically (i.e. transversely) polarized W-particles occur in the intermediate states. 

In appendix A a simple formal path integral derivation of  the Feynman rules 
for Yang-Mills fields and the generalized Ward identities is given for both Landau 
and Feynman gauge. The rules are listed in appendix B. 

We use the notation k u = (k, iko); k 2 = k 2 - k 2. Throughout the paper we confine 
ourselves to the perturbation expansion. The underlying group here is SU(2), 
though this is not essential. For simplicity also, no other particles with isospin are 
taken into account, but introducing them does not give rise to any serious difficul- 
ty, as long as the matrix 3, 5 and the tensor e~uu do not occur in the Lagrangian. 

2. QUANTUM ELECTRODYNAMICS 

In this section we review the situation in quantum electrodynamics. We calculate 
the contribution of the diagram in fig. 1 to the photon self-energy: a spin ½ particle 
forms a closed loop. We do this calculation in order to show the procedure, which 
can readily be extended to non-Abelian gauge fields. 

m~ 

Fig. 1. 

The integral diverges quadratically. Now suppose we regularize by replacing the 
propagator (m + iTk) -  1 by 

ci(mi + iTk ) -1  , (2.1) 
i 

with 

G . c  i = 0 ,  G cim i = 0 ,  ~ ci m 2 = O ,  c o= 1 , m o = m , ( 2 . 2 )  
i i i 

and let ultimately m i go to infinity for iv  e o (c i remain finite). 
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For finite m i the integral now converges and we may shift the integration varia- 
ble and integrate symmetrically. Then we have 

II~V - -  

ie2 f d4k ~ c& Tr(mi-  i'yk)'yu(m/- bl(k + q))'yv 
(2rr) 4 ,7 (k 2 + m 2) ((k + q)2 + m 2) 

4ie 2 

(2rr) 4 

1 
f d x f  d4k ~.. cic ] 
0 q 

(mira j + ½k 2 - x(1 -x)q2)6ta  v + 2x(1 - x) quq u 

[k 2 + mZx + m~(1 - x )  + qZx(1 - x ) ]  2 

(2.3) 

Let us define 

2-- 2 m 2 ( l _ x ) + q 2 x ( l _ x )  12ij= mix  + (2.4) 

then we also have 

cic/~ q. = 0 ,  (2.5) 
ij 

and we can evaluate the convergent integral using 

f / ~ ]  d4k _ 
CiCJ (k2 + ld2)2 irr2 ~" 

f ~ mim! d4k 
'!'" cicJ (k2 + l.t2il.)'--'~ 2 - iTr 2 Gij cicjmimjl°gl't2"' 

f ~ .  k 2 d4k 9 
tl" cic:' (k2 + #2.) 2 - 2irr2 Gij cicjt't21Ogl'tq" (2.6) 

so that (2.3) becomes 

1 
f dx ~ c ic /{Suv(2x(1-x)q  2 + m2x + m 2 ( 1 - x ) - m i m / )  
0 # 

- 2x(l - x )ququ}  log [m2x + m2(1 - x )  + q2x(1 - x ) ]  . (2.7) 

To see what happens if for i 4:0 m i goes to infinity while the c i remain finite, we 
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split off  the term i = j  = 0 and ignore contributions of  order q2/m2 for i 4: 0: 

[Ivy = e dx 2x(1 - x ) ( q 2 5 u v - q u q v  ) og(m 2 +q2x(1 - x ) )  

0 
t 

• ,roT(a-x))] 
q 

t 

+ ~.. cic/5uv(m2x + mj2(1-x)-mirn/) [log(rn2x + m 2 ( 1 -  x)) 
11 

+m2x+m2( l :x) j  +termsO ~ , (2.8) 

t 

where Zij denotes the sum over all i and j except the term with both i = j = O. This 
result does not  satisfy the usual gauge condit ion 

qu Iluv(q) = O, (2.9) 

and the renormalized mass of  the photon  is not  evidently zero. 
Of course, the reason is that our regulators are not  gauge invariant; a vertex 

where a photon  line is at tached to particle lines with different masses is not  allowed. 
If  we had used Pauli-Vilars-Gupta regulator fields instead of the propagators (2.1), 
that is, if in formulae (2 .3 ) - (2 .8 )  ~'i/cic! is replaced by 

ci6i/ , 
i~ 

then the second term in (2.8) would vanish identically and eq. (2.9) would be ful- 
filled [6, 7] .  

However, it is important  to note that the gauge non-invariant term in (2.8) is 
only a polynomial  of  rank one as a function o f q  2. Let us abbreviate it by 

-n) 2 (M+Lq2)6uv .  (2.10) 

It can be removed from expression (2.8) if we add a simple counterterm into the 
Lagrangian* 

e ) 2 (MA2 + L(OvAu )2)" (2.11) a.~---½ 

* This implies that terms in the Lagrangian axe renormalized, not the fields, as is often done. 
The difference is merely a scale transformation of the bare quantities. 
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These terms are local and have dimension less than or equa l to  four, so that causali- 
ty and renormalizability are not destroyed. 

This can be seen to be a very general feature: instead of  the gauge invariant 
Pauli-Villars-Gupta regularization technique we could just as well regularize with 
the revised propagator (2.1) (which is a non-gauge invariant procedure) and add to 
the Lagrangian as many local counterterms with dimension less than or equal to 
four, as desirable. All arbitrary coefficients can then be fixed by requiring the 
validity of  identities like (2.9). 

Equations like (2.9) will be called generalized Ward identities* from now on. 
They are derived from the usual Ward-Takahashi identity 

(p' - p)~ r .~p' ,  p) = s~- ~(p') - s~- ~(p),  (2.12) 

which can be symbolized as 

I / @ , ©  ®.,. 

Here the dashed line denotes a "scalar pho ton"  (a photon line with polarization 
vector proport ional  to its own momentum).  This identi ty can be used to derive 
other equalities for diagrams. For  instance 

. . . . .  ~ ' ~  .~. O 

which is precisely eq. (2.9). 
In our example we see that the coefficient in front of ( q 2 6 u v -  quqv ) is still un- 

specified. This is because we can add freely counter terms proport ional  to FuvFu~ 
to the Lagrangian because they are gauge invariant themselves. It corresponds to a 
scale transformation in our definition of the field A u. So the freedom we have is 
only a freedom in definition. The most convenient choice is to keep the matrix ele- 
ment o f A u ( x  ) between the vacuum and the one-photon state fixed: 

(Ol A u ( x  ) [k, e) = e u e ikx . (2.13) 

The renormalized propagator must then have a pole with residue unity at k 2 = 0, 
just as the bare propagator.  

* See e,g. J,D.Bjorken and S.D.DreI1, Relativistic quantum fields. 
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So (2.8) must vanish on the mass shell: 

Iluv(q 2 = O) = O,  (2.14) 

and we derive finally 

0 
dx 2x(1 - x )  ( q 2 5 u v -  quqv ) 

X [log(m 2 + q2x(1 - x ) ) - l o g m 2 l  . (2.15) 

Once we know that the above mentioned procedure works well, we can go even 
further and leave the particular set of  regulator fields or propagators altogether un- 
specified. Instead of  the identities (2.6) we may use the symbolic expressions: 

d4k _ _ i¢r 2 logp 2 + D 1 , 

f (k 2 +/a2) 2 

f k2d4k = 2iTr2p 2 logp 2 + D9 + D3P 2 
(k 2 +/.t2) 2 - , 

(2.16) 

indicating only the terms i =]  = 0 in eq. (2.6) explicitly. 
The constants D1,2, 3 depend on the diagram for which the integral is evaluated, 

but do not depend on p. Of course, expressions like (2.15) must be handled with 
great care, but in general they give a very clear idea of  where arbitrary numbers en- 
ter in the theory. The arbitrariness can only be removed if some additional sym- 
metry property of the system is known, like gauge invariance. 

3. MASSLESS YANG-MILLS FIELDS 

We now consider the Lagrangian of  the massless Yang-Mills theory [ 10]" 

= i ( 3 . 1 )  .O YM -- 4GuvGuv , 

a _  a a b e (3.2) Guy - 3 u Wv - ~vW~ + geab c W u Wv , 

which is invariant under the local gauge transformation 

w'ua(x) = fab(X) Wb(x)  -- ~-~ eabc(3 u f ( x )  f -  l(x))cb . (3.3) 
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If one wants to apply conventional field theory to this model one encounters 
difficulties [1]. Mandelstam [2] derived Feynman rules for the system using path 
dependent Green's functions. DeWitt, Faddeev and Popov [3, 4] derived the same 
rules using a path integral method. We sketch a simple path integral derivation for 
different gauges in appendix A, and the resulting rules are listed in appendix B: 

An auxiliary "ghost particle" appears. In fact it will be seen to cancel the third 
polarization direction of the W-particles. There is an arbitrariness in gauge, ex- 
pressed in the parameter ~, in the propagator 

kukv  

6U~--)t k 2 

k 2 

Other gauges, like the transversal, can be described in the same way [5]. 
A path integral derivation of generelized Ward identities is also given in appen- 

dix A. A "scalar" W-line 

k 

is defined as a W-line with polarization vector - i k u :  

. )  . . . . . . . . . .  , ~  ¢ / ,  

A "transversal line" has a polarization vector eu satisfying 

(3.4) 

k u e u = 0 ,  

e4 = 0 . 

(3.5) 

A generalized Ward identity is then: 

on mass shell t ~ t on mass shell 
transversal transversal 

= 0. (3.6) 

off mass shell 

Amplitudes with "longitudinal W-lines" (e u = ( -  1)8u4 ku) satisfy more complicated 
Ward identities (cf. sect. 6). 

These identities are seen to express the gauge invariance of the theory. For ex- 
ample, the equivalence of the Feynman (~. = 0) and the Landau gauge (X = 1) can be 
proven using (3.6). 
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Without much effort one now 'can verify that the Ward identitieS are sufficient 
to prescribe all subtraction constants uniquely, except for the coupling constant. 
The only needed (and allowed) counterterms are of the following type 

X 3ab[6uv(Co + C1 k2) + C2kukv] , (3.7a) 

- - - ) ~ -  ~'- 3ab C3 k2 , (3.7b) 

- i g C  4 eabc[6~v(q - p)~ + 63,~(k - q)# + 6 ~  - k).r] , (3.7c) 

- g2C 5 [egacegbdgaa6v~ + permutations] (3.7d) 

+ g2C 6 [6abgcd(6c~Ofv6 + 6~6 6v# ) + permutations] , 

/ 

~"~"~t - igCTq ~ , (3.7e) 

q 

(vertices with more c-lines do not occur because any amplitude must contain as a 
factor the momenta of the outgoing c-particles (or ingoing c-antiparticles) as can be 
seen from the rules (B.1)-(B.6). 

The numbers C1, C 3 and C 4 may be chosen freely, using some convention for the 
physical amplitude of the W- and C-fields, and the definition of the physical coup- 
ling constant grenonnalized. In the Landau gauge moreover, C 2 is immaterial. 

According to the Ward identity for the self-energy correction one must have: 

. . . . .  , , ~  . . . .  • . . . .  ,,,x . . . . .  = 0 ( 3 . 8 )  

where the counterterm is indicated explicitly, while 

. . . .  ~ . . . . .  6ab(Co k2 + C1 k4 + C2 k4) . 

So C o is fixed and C 2 is expressed in C I. 
Indeed, an actual calculation of the second-order self energy diagram in the 

Feynman gauge using the symbolic expressions (2.16) shows: 

g2 6o [ k26 . -1° -rk~kv]  l°g k2 + fiab[6~v(Co + C1 k2) + C2k~kv] (3.9) 
(47r):2 
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so indeed the Ward identi ty (3.8) can be satisfied: 

C O = 0 ,  C 1 + C 2 = 0 .  

The renormalized mass, depending on Co, turns out to be zero. Note that  the coeffi- 
cients in front of  the terms k26uv logk 2 and kuk v logk 2 would not be the same if 
the ~0-particle loop had been left out. 

For the four-point function we have, 

s 

• s • ~ / 

r • • 

~ s 7 

. . . . . .  0 (3.10) 

while 

r ~ 
i • 

~: 0 if C 5 or C6 4: 0 ,  

so C 5 and C 6 are expressed in terms of  the other subtraction constants. 
Finally, C 7 can be determined by applying the Ward identitY (3.8) for the higher 

order self.energy diagram of  the W-particle, using for instance the BPH procedure of  
renormalization [ 11], and the above mentioned observation that 

- - - - ~  )~ . . . .  ~ o 

4. COMBINATORIAL PROOF OF THE WARD IDENTITIES 

There is no a priori reason why no conflict situation could emerge if we try to 
satisfy an infinite number of  Ward identities using a finite number of counter terms. 
This problem must be taken seriously, because the algebraic proof  of  the Ward iden- 
tities, which will be given below, involves many shifts of  integration variables. A 
proof  of  the absence of  such a conflict will be given only for one closed loop. 

Let us introduce some conventions: 
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© stands for the set of  diagrams of a given order in g, and a given 
number of  external transversal W-lines (cf. (3.5)) on mass-shell. 
There are no longitudinal or scalar external lines. They are de- 
noted explicitly: 

stands for the set of  diagrams of  a given order in g, and a given 
number of  external transversal W-lines, as above, and in addition a 
number of  external ghost lines and W-lines with arbitrary polari- 
zation and momentum, as drawn. The ghost lines are followed in- 
side the graph, which is possible because (B.5) is the oniy kind of 
vertex for the ghost particle. The graphs maybe  disconfiected. 

The combinatorial proof of  the validity of the Ward identities is as follows. From 
now on we use the Feynman gauge. 

Let us perform an infinitesimal gauge transformation in the Lagrangian (3.1): 

"•YM = " ' Y M  = - - 4 " - ' # v ~ p v ,  , = _ ~ G u v  G .  v o '  1 ~ ,  ,~, 

ra 
W ~ ( x )  = W ~ ( x )  + g e a b e A b ( x )  W ~ ( x ) -  O u A a ( x )  , 

(4.1) 

(4.2) 

A is some external source which, according to (4.1), remains uncoupled. : 
Then  we must add to all vertices (B.3) and (B.4)all vertices we get from (B.3) 

and (B.4) if one of  the W-lines ~ has been substituted by r 
c 

x.ll 

"'---~ (4.3a) --  g eab c , W A 

k 
^ - -  _ ~ - _ . , ~  - OacUC u @ (4.3b) 

(Note: the double line is not meant to be a propagator; (4.3a) is a part of  one ver- 
tex). Also from the free part of "~YM we derive an extra vertex term in £YM, which 
appears to be 

2 2 + (4.3c) - g  e a b c ( ~ u v P  - P u P v  -- 6 u v q  q u q v )  • 

The ghost particle resulting from the use of  a certain gauge condition, is not in- 
cluded in our gauge transformation (4.2). Hence, its vertices and propagators are un- 
changed. 

Now it is easy to verify that up to first order in A all extra vertices cancel, which 
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they should do.  In diagrams: 

T * ! 

= 0 (4.4a) 

! : 0 (4.4b) 

* + ~ + ; : 0 (4.4c) 
I w 

(4.3b) is of  the type which occurs in our Ward identities. We now see that it can be 
replaced by (4.3a) and (4.3c) using eqs. (4.4), except for the connections with the 
ghost particle. So as 

I I i 
I 

, o I N~ '  

(4.5) 

(Note the explicitly written minus sign for the ~0-1oop and the combinatory fac- 
tors, because the blobs are already symmetrized) we have 

(4.5) = - 

. ° \ \ 

Nk ,~ , *', ° 

, 

s 

A B C 

(4.6) 
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eq. (4.6) may be written as 

185 

I , , I I ' 

I I 

_- _ - ½  - ½  - _ 

A C, B C, C, 

(4.7) 

(Of course, C 1 equals C2. ) 
Note that C 3 cancels those diagrams contained in C 1 and C 2 where the double 

line is attached to a ghost vertex. 
The next step is a propagator identity wl~ich is related to invariance of  the gauge 

condition under special gauge transformations A with Ou(~/~Aa + geab c wbA ¢) = 0: 

I I I 
# I ~ ! t 

i 
, ,  . ' ( 4  8a) ~, - + ~ + a~--~-' : + -- '-+-~ = 0 • 

," : I 
• (4 8b) 

P P P 

The P denotes a transversal W-line on mass shell (cf. (3.5)). Note again that the 
double line is no propagator. 

Eq. (4.8a) is the Yang-Mills counterpart of  the usual Ward-Takahashi identity 
(2.12) for bare electron propagators and vertex functions. In the last two terms the 
dashed line ("A-line") has the same vertices and propagators as the ghost particle 
("c-line",  compare (B.2) and (B.5)). If  some of the lines in (4.8) are parts of  a 
closed loop these identities are true provided one may shift integration variables. 
This is the reason why subtraction constants must be chosen carefully. 

Applying eqs. (4.8) to eq. (4.7) we find 

i 

4," " 
(4.9) 

Eq. (4.9) can now be iterated, but then we must include the possibility that the 
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A-line forms a closed loop and is attached to itself. The result is: 

' I ', ' 0 • 1 

. . . .  i._ ( ,~:  
° . 

. ^ ~ . J  

Using one more identity 

(4.10) 

we have 

i /  I 

i 
i 

"r 

0 

I 

0 ( 4 . 1  1 )  

= 0 (4.12) 

Substituting (4.3b) into (4.3a) one obtains another vertex, for which the follow- 
ing equation holds: 

I 
i # "  i ,4¢ 

_ _ Z  . . . .  • : ~ . . . . . . . .  ~__u-- . . . . .  0 ( 4 . 1 3 )  

Consequently the derivation remains valid even if there are more off-mass shell 
scalar W-lines: 

I 
I 

- - - - +  . . . .  

I 
I 

= 0 (4.14a) 
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which is the graphical notat ion for the formula 

a 

N 
~X~l aXuN 

- -  (out[ T*(W~(x 1) .i. W~N(xN))lin) = O, (4.14b) 

in conventional field theory.  
From this algebraic derivation of the Ward identities we draw the following con- 

clusion: if we succeed in regularizing graphs containing one of  the auxiliary vertices 
(4 .3a) - (4 .3c)  in such a way that eqs. (4.8), (4.11) and (4.13) remain valid also in- 
side closed loops, then we acquire gauge invariant amplitudes (amplitudes satisfying 
(4.14)) .  

5. GAUGE INVARIANT REGULATORS 

In this section we construct a set of  regulators satisfying all requirements for- 
mulated in the previous section, but  we confine ourselves to the one closed-loop 
case. The mere existence of  these regulators implies that no conflict situation arises 
if one uses Ward identities for calculating subtraction constants in the first quantum- 
mechanical correction, instead of  gauge invariant regulators. 

The procedure is as follows. Note that the identities (4.8), (4.11) and (4.13) are 
not only valid in a four-dimensional Minkowsky space, but we may add another 
dimension. Then the momenta  k u have five components,  and the fields W~ have 
15 components.  Let for all diagrams with one closed loop the external momenta  be 
in the Minkowsky space, that is, only their first four components  differ from zero. 
Let the momenta  inside the closed loop have one more component  of  fixed length 
M in a fixed fifth direction. Because of conservation of m o m e n t u m , M  is the same 
for all propagators of the closed loop. With this interpretat ion in mind, we may now 
reformulate the Feynman rules, which now contain an extra parameter M. Further- 
more, they depend On which of  the propagators belong to the closed loop; those 
propagators will be denoted by a * 

The W- and ~0-propagators inside the closed loop are replaced by: 

6abbey 
* (5 .1a )  

: _- k2 + M  2 ' 

. ~ab 
. - - - 1 , - - . - .  k 2 + M  2 . ( 5 . 1 b )  

The vertices (B.3)- (B.5)  remain the same, as well as the propagators (B. 1 ) and 
(B.2) in the tree parts of a graph. In (5.1a) we let the indices/~, u run from 1 to 4 
as usual. The fifth polarization direction of  the W-field is treated as a new particle, 
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which only occurs inside the closed loop: 

~ab 

~ ++ ++ + ""  k2 + M 5 " 

It has the vertices: 

~+ + + M g  eabe ~ ~3' ' 

+ 

f L 

+ +",," + ~ - M g e a b  c , 
k 

(note that the factors ---. i at each end of  a crossed line have cancelled), and 

J,,p ++,+, 

(5.1c) 

(5.1d) 

(5.1e) 

- i g e a b c ( q - p ) a ,  (5.If)  

• , , ' "  ~, . _ g2(egae egbd + egad egbc) 8,~t~. ( 5.1 g) 

~we ~ l  4, 

Now with vertices (5.10 and (5.1g) one may have closed loops of  crossed lines, 
but these contributions are gauge invariant themselves, since the vertices (5.1 f) and 
(5.1g) are precisely those of  an ordinary isospin one scalar particle. So we may ex- 
clude diagrams with closed loops of  crossed lines without invalidating the Ward 
identities. The above vertices with the rule of  no closed loop of  crossed lines define 
a set of  diagrams which, up to one loop, satisfy the Ward identities. For M = 0 we 
have the diagrams of the massless theory. For M non-zero we have diagrams that 
may be used as regulator diagrams. 

Consider now the sum of diagrams of  the massless theory and regulator dia- 
grams. Choosing the appropriate integration variables (remember that each indivi- 
dual contribution may be infinite, and relative shifts of  integration variables may 
give different results) and furthermore regulators with masses M i and signs el, in 
such a way that 
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~ e i = O ,  eo= 1,  

~ ' e i M 2  = O , M o = 0 ,  
{5.2) 

we obtain a finite result. 
One may choose convenient, finite values for 

2 G e i l o g M 2 = - A ,  ~e.dl4i-logM; = B .  
i=~O 

(5.3) 

In the limit Mi~: 0 -+ oo we find the desired gauge invariant amplitudes. 
Let us demonstrate this regulator technique for the second order self-energy 

contributions to the W-propagator: 

- - ' • * ~ ( 5  4"~ 
7 

Using expressions (2.6) we find 

ab _ _ g2 
1 

f dx ~ ei[{k2(5 - l O x ( l - x ) ) S u v  
0 i 

- kukv(2 + 8 x ( ! - x ) ) }  log (M/2 + x(1 - x )  k 2) 

-6M28uvlog(M2 + x(1 x )k2)  + 6M26uvlogM21. (5.5) 

Indeed, one may convince oneself that this satisfies the Ward identity 

ab kukuII~v(k ) = 0 .  (5.6) 

In the limit Mi~ 0 -+ oo we have 

g: 
(4rr)  2 8ab(k28u v _ kukv  ) [1~. l o g k  2 _ L0-3A _ ~ ]  . (5.7) 

The number A is the logarithm of a suitably chosen reference mass. It must have 
the same value for all graphs with one closed loop. 

It must be emphasized that even if our regulator method appears very similar to 
the Pauli-Villars method it is in fact very different. The regulators do not corres- 
pond to fields in Lagrangians etc., and the procedure works only for one closed 
loop. In fact the above isjast a convenient way of  implementing the scheme pro- 
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posed in the beginning. Tentative investigation shows that probably a modification 
of  this regulator technique can produce finite gauge invariant amplitudes at higher 
orders. As yet we shall consider this as a conjecture. It is important to note that 
this technique of  introducing more dimensions only works if the matrix 3 '5 and the 
tensor eKxuv do not occur in the Lagrangian. 

6. UNITARITY 

In proving unitarity of the S-matrix one has to deal with on mass-shell ampli- 
tudes. We are then confronted with infrared difficulties. Now if we add a very small 
mass t e r m  t¢ 2 in the propagators, then the on mass-shell amplitudes (in finite order 
of  g) are proportional to some power of  log K 2. The Ward identities however, are 
violated with terms proportional to K 2, t¢ 2 log¢ 2, etc. So we can still use these Ward 
identities keeping log K 2 finite, but ignoring terms proportional to t¢ 2, ~ 2 log r 2 etc. 
For instance, in the regularized expressions in sect. 5 we might put M o = r ~ 0, but 
ignore the crossed line with mass to, because it is coupled with strength K 2. 

We shall not go into the problems of the physical interpretation of  these infrared 
divergencies. 

To compute imaginary parts we shall make use of  the well-known Cutkosky 
rules [12]:  

, , , 

,l. 4. 4P - -  - -  ÷ 
/ v ' - I . - ' -  \ ~ L -  

,, , I .' ,, 

+ (graphs with more than two lines cut through) = 0 ,  (6.1) 

where at the right-hand side of  the dashed line the ie in the propagators is replaced 
by - ie, and an extra minus sign is introduced for each propagator and each vertex. 
The blobs are at least of order one ing. Now, if in the blobs of  (6.1) all graphs are 
added, including disconnected ones, such that the total order in g is kept fixed, then 
equation (6.1) is an identity, whatever the choice of our subtraction coefficients 
may be, provided that we use the following rules: 
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! 

¶ I k 
I ~ 27r6(k2)O(ko)Suv6ab , (6.2) 

! 

t t 2rr6 (k 2) 0 (k 2) ¢5 ab ,  (6.3) 
• I 6 

t 

(a dashed line going through an external particle-line has no special meaning, except 
that it separates the ingoing lines from the outgoing lines). 

Now if we can prove a slightly different equation, 

| I 

! 
! ! 

0 (6.4) 

with 

( | standing for 27r6(k2)O(ko)6ab Buy-  kukv] (1 -8u4)(1  -8u4) ,  
,. ~ Ikl 2 '] 

(6.5) 

then unitarity has been proven, for the case that bosons with a given isospin have 
only two helicity states, like the photons. We shall prove eq. (6.4) from eq. (6.1) 
provided that we only look at the transverse components of the other outgoing 
lines. Let us first consider the case of only two intermediate particles. Define 

I 

. . . . .  I .k 27r6(k2)O(ko)6ab -- i~u ku -=- ( -  1) 6u4 kv 
A ', ~b 21kl 2 '  

~.'a I - ~ "  27rf(k2)O(ko)f ab - "  
1 ~ 21kl 2 

(6.6) 

A useful equation is: 

+ 6uv-  (1 -6u4)(1  '-6v4 ) i fk  2 = 0 .  (6.7) 
Ik[ 2 Ikl 2 ] 
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Symbolically: 

I I 

! ! 
i 

• 4. • 

' [ i 

' - ) - . ~  + : : ( 6 8 )  
I , 
i 

Also we have 

I 
I 

e .  - ( .  - . i ~ , .  - , ( - e  

I 
I 

! 

I 

B.--4. ~ .... 4 

I 
I 

(6.9) 

We shall apply the Ward identities 

o S s S 

s ° s ° 

0 . (6.10) 

Moreover, we need a generalization of  the Ward identities (4.14) for amplitudes 
with on mass-shell ghost particles and non-physically polarized W-particles, in parti- 
cular W-particles with polarization vector eu not satisfying kueu = 0. Formula (4.8b) 
is extended to 

, ,  I I I 
e I I I 

/ I ~k ~o 
• I 

,~- - ~ ÷ ~ ) "  'E  ~. m l - -  - ,..,..--~ 
0 " 0  0 0 

= 0 
(6.1 la) 

where the arrow in --- ,@/a stands for multiplication with - i k u ,  and the lines 
with a o are taken on mass-shell (k 2 = 0). Note that the last graph in (6.1 la) van- 
ishes if multiplied with a transversal polarization vector e u. We have also 

I I I 
i I I 
j ,6, ,~¢ 

o ~ o . o4=.__- . I  o + o I-.-=,-,-,-~o 
= 0 

(6.1'lb) 

Applying again the combinatorics of  sect. 4 we derive the generalized Ward 
identity 
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J "  s 
p • 

o ~ o  

(6.12) 

(This identity is not altered if other gauge invariant interactions are introduced. The 
other isospin particles must then be on mass-shell). 

Equipped with eqs. (6.8), (6.9), (6.10) and (6.12) we derive 

I 

I 

i 

(6.13) 

from which eq. (6.4) follows, as long as we confine ourselves to the contributions 
with at most two particles in the intermediate states. 

In the same way it can be shown for intermediate states with more than two 
particles that the ghost particles cancel the non-physical polarization directions of 
the W-bosons. In principle this can be verified by writing down further generaliza- 
tions of the Ward identity (6.12), but a more straightforward proof of this cancella- 
tion goes as follows. We apply induction with respect to the number of particles in 
the intermediate states. 

Suppose we have a diagram 

(the external lines being on mass-shell). Let then 

| 

stand for the sum of all graphs acquired by cutting the 
former diagram in all possible ways, except that at least 
one vertex must remain at either side of the dashed line. 

Applying again the Cutkosky rule to the left-hand side of 
(6.12): 
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I I ! 

/ " / r S  

I 

one derives easily: 

I I 

s S 71S • 
i \ 

(6.14) 

(6.15) 

with the external lines on mass shell. 
Now careful examination of  the underlying propagator identities and combinat- 

orics leads to the observation that eq. (6.15) is also valid if the total number of  cut 
propagators is kept fixed at both sides. So if we introduce the notation 

= 

! I I (6.16) 

N denoting the total number of  cut propagators, then (6.15) reads: 

(6.17) 

for all N. Moreover, one can impose the restriction that the cutting line must pass 
through both of  the explicitly denoted external lines in (6.17), and then we get: 

I 

(6.18) 

Now suppose that for a certain value of  N 

I 

I 

(6.19) 
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then we have 

'N  

I 

195 

' ~ (6.20) 

i 

which completes the proof by induction. 
So the S-matrix is unitary in a Hilbert space with only plane wave W-particle 

states, in which each particle has helicity +- 1. A necessary condition is that subtrac- 
tion constants are chosen in such a way that all generalized Ward identities are satis- 
fied. 

7. CONCLUSION 

Massless YM fields can be renormalized. A formal regulator procedure exists, at 
least for diagrams with one closed loop, but the simplest way to deal with the diver- 
gencies is to use the subtracted expressions (2.16) for divergent integrals, calculat- 
ing subtraction constants by means of the Ward identities. In this article we have 
not gone into the details of a regulator technique for diagrams with more loops, so 
as yet a consistency proof of the Ward identity method for removing overlapping 
divergencies, is lacking. 

With this restriction, we have proven that the resulting S-matrix is unitary, if 
infrared divergencies are dealt with in a proper way. There is only one physical 
parameter in the theory, which is the coupling constant g. The renormalized mass 
of the bosons is zero (at least, in perturbation theory). 

The author is greatly indebted to Prof. M.Veltman for many helpful discussions 
and critical remarks. 
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APPENDIX A 

Path integral derivation o f  Feynman rules for massless Yang-Mills fields 

The Feynman path integral expression for the amplitude is 

(outtin) = f ~ [  dWu(x ) exp {iSyM [W]} 
x , / z , a  

-fC'D Wexp iSyM [W] , (A.1) 

where a denotes isospin, ~ the Lorentz vector component, and SyM [14"] = 
f ~ y M ( x )  dx is the (unrenormalized) action functional. Now if the Yang-Mills 
asymptotic states are invariant under local gauge transformations ~,  that is 

~2lin> = lin), ~lout) = lout), 

then the integrand, as well as the measure CDW, are invariant under local gauge trans- 
formations. 

In order to extract the infinite constant arising from this invariance we alter ex- 
pression (A.1) by multiplying with a delta-function 6(log ~)  (defined in terms of 
the same measure CDW) where ~2 is defined such, that the field 

w' = a -  l(w) 

satisfies a special gauge condition. We choose the gauge 

t a ~. w;i (x) = Ca(x), (A.2) 

with Ca(x) a fixed function. Then expression (A,1) becomes 

f~w~(log  a)exp iSyM [Wl = f ~ w s ( a .  w5 - c a) 

×d e t  ( ~ ~ W : ( x ) ) e x p i S y M [ W  l 

(A.3) 

In order to calculate the determinant we only need to know the change of 
~ WE(x ) under an infinitesimal gauge transformation Ab(x): 

8. IVf= Ou ~ +eab c 3u(A b W~) - g  1 D2 A a 

= 3 u W~- g-  1 Du(D" A)a (a.4) 

(D u is the covariant derivative and g is the coupling constant). 
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So we must calculate the determinant of  the operator g -  18uDu" This we do with 
the following trick. Note that even for a non-hermitean matrix A# the identity 

1 f . ,  detA = C  1--I. d Rez id  Imziexpt(z ,Az) (A.5) 
t 

holds, where C is a trivial constant. So we write in a symbolic notation eq. (A.3) as 

fcDWf(OuW ~-  ca)fc~'~o exp {iSyM[W ] + if ~*(x)auDu~(x)dx). (A.6) 

~a(x) is a complex scalar particle field. The notation is symbolic because the deter- 
minant in eq. (A.3) stands in the numerator and not in the denominator like in eq. 
(A.5). But this only means that we have to add a factor - 1 for each closed loop of  
~0's, as can easily be established. It is denoted by the prime in c-/)'~0. 

If  C a is put equal to zero, we get the rules derived by Faddeev and Popov [4]. 
The transversal propagators 

kukv 

6uv- k2 
6ab k2 , (A.7) 

emerge (Landau gauge)t. We can get rid of  the annoying kuk v term by noting that 
expression (A.6) is completely independent of  the choice of  Ca(x). So we may in- 
tegrate over all values of  C, together with an arbitrary weight function exp iS' [C]. 

We then get 

f c-Dw fc-D'¢ exp {iSyM [W l - i f  (Su~o)* Du~o dx + iS' [Ou Wu] ). (A.8) 

S' [8 u Wu] may be chosen such that it cancels the corresponding term in SyM [W] 
and we then find the Feynman gauge, with propagators 

5 ab 6 uv 
k 2 

(A.9) 

The resulting Feynman rules are listed in appendix B. 

Ward identities 

We first derive Ward identities in the Landau gauge. Let us treat C a in expression 
(A.6) as a source function and make an expansion with respect to it. Even with out- 

"~ The ie in a propagator is not found by the path integral method. Its sign is dictated by unitari- 
ty and is essential for derivation of the Cutkosky rules (sect. 6). 
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or ingoing particles at plus or minus infinity expression (A.6) is independent of  C a. 
So all expansion terms with respect to C a must be zero except the first. 

In order to derive the Feynman rules for the expansion terms we must treat the 
transversal and longitudinal parts of  the W-field separately. Integration over the 
transversal part leads to the Feynman rules (B.1)-(B.6),  with ?~ = 1, but the fact 
that a u Wu now is C and not zero gives us the additional C-lines: 

- iku e ikx (A. 10) 
a,p x ,b  

where the cross denotes the action of  the "source" Cb(x), and the double line sim- 
ply acts as a normal Yang-Mills boson. (The derivation is done by making 3u Wu vari- 
able and adding - a(O u W~ - ca) 2 to the Lagrangian, which gives rise to a delta func- 
tion for a ~ oo.) 

We can now formulate our Ward identity in the Landau gauge: The total contri- 
bution o f a l l  diagrams with a given (non-zero) number o f  C-lines o f f  mass-shell, and 
a given number o f i n -  or outgoing lines on mass-shell, is zero. 

This rule is visualized in the diagram notation (3.6), and corresponds to formula 
(4.14b). 

Eq. (3.6) greatly resembles the corresponding Ward identities in quantum elec- 
trodynamics, the only difference being that we have to contract all off mass-shell 
lines with their own momentum (that is, choose a polarization vector proportional 
to their own momentum). The outgoing lines must be physical, that is, their polari- 
zation vector must be orthogonal to their own momentum. 

In the Feynman gauge we can do something similar. In expression (A.8) we 
made the choice 

S'[C] = f d x {  - ~ C2(x)} . 

Now we add a source function J(x): 

s ' [ c l  = ( d x  { -  ~(C(x) - J(x)) 2 } 
J 

(A.11) 

Again, the result must be independent of  J(x). 
The Feynman rules are those of  appendix B, with ;k = 0, together with a J-source 

contribution which is the same as (A. 10) except for the (immaterial) factor 1/k 2. 
So the Ward identities in this case are again those of  eqs. (3.6) and (4.14). 
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APPENDIX B 

F e y n m a n  rules f o r  massless Yang-Mil ls  f i e M s  

W: ,~ k b lab k u k u  

k 2 - ie uv - k _ 

5 ab 

~ k 2 - i e "  

X = 1 Landau gauge,  
(B.1) 

= 0 Feynman gauge,  

(B.2) 

- igeabc[6ov(q - P)c~ + 6.r~(k - q)o + 6 ~ p  - k)~r] , (B.3) 

- g2e.gaeegbcl(6o~tj6~, ~ - 6~6 6~,~) 

- g2egac l egbc (6~06~  -- 6 ~v6 8 ~) 

_ g2 egab Cgec l(5 ~.y6 f36 -- 6 o~6 6 {3"y), 

I all., ~, 
(B.4) 

- igeabcq  ~ , (B.5) 

(at the vertices all momenta  are defined to be inwards). 

For  each closed loop of  ~0 particles: - 1 . (B.6) 

As usual: a factor 1/(2rr) 4 i for each propagator and (2rr) 4 i for each vertex. 
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