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Abstract: A gauge theory with colour gauge group U(N) and quarks having a colour index running 
from one to N is considered in the limit N ~  ~, g2N fixed. It is shown that only planar dia- 
grams with the quarks at the edges dominate; the topological structure of the perturbation 
series in 1IN is identical to that of the dual models, such that the number 1IN corresponds to 
the dual coupling constant. For hadrons N is probably equal to three. A mathematical frame- 
work is proposed to link these concepts of planar diagrams with the functional integrals of 
Gervais, Sakita and Mandelstam for the dual string. 

1. Introduction 

The question we ask ourselves in this paper is how to construct a field theory of  
strong interactions in which quarks form inseparable bound states. We do not claim 
to have a satisfactory solution to that  problem, but  we do wish to point out  some 
remarkable features o f  certain (gauge) field theories that make them an interesting 
candidate for such a theory.  

First we have the singular infra-red behaviour o f  massless gauge theories [ 1] that 
makes it impossible to describe their spectra of  physical particles by means of  a per- 
turbat ion expansion with respect to the coupling constant.  It is not inconceivable 
that  in an infra-red unstable theory long range forces will accumulate to form in- 
finite potential  wells for single quarks in hadrons. 

The Han-Nambu quark theory [2] gives a qualitative picture o f  such forces be- 
tween quarks: a very high, or infinite, energy might be required to create a physical 
state with non-zero "colour"  quantum number. It is natural to take the symmetry 
corresponding to this quantum number to be a local gauge symmetry  of  some group 
SU(N). In that case, a formal argument in terms of  functional integrals has been 
given by Amati  and Testa [3] that supports the conjecture that "coloured"  states 
have infinite energy. 

In this paper we put the emphasis on an interesting coincidence. I f  we consider 
the parameter N of  the colour gauge group SU(N) as a free parameter,  then an ex- 
pansion o f  the amplitudes at N - ~  oo arranges the Feynman diagrams into sets which 
have exact ly the topology of  the quantized dual string with quarks at its ends. The 
analogy with the string can be pursued one step further by writing the planar dia- 
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grams in the light cone reference frame. In sect. 6, we write down a Hamiltonian that 
generates all planar diagrams, in a Hilbert space of a fixed number of  quarks. The 
quarks are inseparable if and only if the spectrum of  this Hamiltonian becomes 
discrete in the presence of the interactions. 

2. U (N) gauge theory 

In order to show that the set of  planar diagrams may play a leading r61e if certain 
physical parameters have certain values, we first formulate a possible gauge theory 
for strong interactions in which the parameters N and g have arbitrary values. 

The quarks Pi, ni and X i form three representations of  the group U(N); i = 1 . . . . .  N. 
Let us assume that an observer can distinguish between p, n and X, but that he cannot 
distinguish the different colour components (see also sect, 3) * 

There is an anti-Hermitian gauge (vector) field 

• * i ( x ) ,  ( 2 . 1 )  A l l  u ( x ) = - A  /. 

and the Lagrangian is 

= t " _ ~ _ a i  "Q "4 Guy i j Guy j t ( 7 D  u + m(a) ) qa i , (2.2) 

where 
j .  

Guy i j = ~ A i J  v -- ~vAiJ~ +g [Au'Av]i  ' 

D qa i =3 q a i + g A i j ~ q a / .  

The index a runs from one to three 

(2.3) 

q l = p ;  q 2 = n ;  q3=~ . .  (2.4) 

For sake of  simplicity we do not make the restriction that the trace of  the gauge 
field, A~ should vanish, and so we will have a photon corresponding to the Abelian 
subgrou~ U(1) of  U(N), and coupling to baryon number. Of course we could dispose 
of it, either by replacing U(N) by SU(N), or when we switch on weak and electro- 
magnetic interactions through the Higgs mechanism. But for the time being it is there 
and we must keep it in mind when we finally interpret the results of  our calculations. 

The Feynman rules [4, 5] may be formulated as usual in any suitable gauge. Let 
us take the Feynman gauge. We add to the Lagrangrian 

½ ~vh i ]  v 3 v h j i v  - 3u CP; i (Oil $i j +g [ A ,  4] if), (2.5) 

* We do not know whether this assumption is really essential for the theory, but it does simplify 
the arguments in sect. 3. 
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Fig. 1. Feynman rules for U(N) gauge theory in Feynman gauge. 
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where ~b is the Feynman-DeWitt-Faddeev-Popov ghost field. Now the bilinear parts 
of the Lagrangian generate the propagators and the interaction parts the vertices. 

In order to keep track of the indices, it is convenient to split the fields Aui J into 
complex fields for i > j  and real fields for i =]. One can then denote an upper index 
by an incoming arrow, and a lower index by an outgoing arrow. The propagator is 
then denoted by a double line. In fig. 1, the vector propagator stands for an Aui j 
propagator to the right if i > j; an A uj i propagator to the left if i < ] and a real prop- 
agator if i = j. The extra minus sign in this propagator is a consequence of the anti- 
Hermiticity of  the field A (eq. (2.1)). The ghost fields satisfy no Hermiticity condi- 
tion and therefore their propagators have an additional arrow (fig. 1). 

The vertices always consist of Kronecker delta functions connecting upper and 
lower indices, and thus connect ingoing with outgoing arrows. The quark propagators 
consist of  a single line. 

As usual, amplitudes and Green functions are obtained by adding all possible 
(planar and non-planar) diagrams with their appropriate combinatory factors. Note 
now that the numberN does not enter in fig. 1 (this would not be the case if we 
would try to remove the photon). 

But, of course, the number N will enter into expressions for the amplitudes, and 
that is when an index-line closes. Such an index loop gives rise to a factor 

~ 6 i i = N .  
i 

3.  T h e  N -+ o0 l i m i t  

In sect. 2 we assumed that the observer is colour-blind. This can be formulated 
more precisely: only gauge-invariant quantities can be measured. A measuring 
apparatus can formally be represented by a c number source function J (x )  which 
is coupled to a gauge invariant current, for instance 

-pin i . (3.1) 
i 

We observe from fig. 2 that index lines never stop at a gauge invariant external source, 
but they continue. "Index loops" going through an external source also obtain a fac- 
tor N, because of the summation in (3.1). 

We are now in the position that we can classify the diagrams with gauge invariant 
sources according to their power o fg  and their power of  N. Let there be given a 
connected diagram. First we consider the two-dimensional structure obtained by 
attaching little surfaces to each index loop. We get a big surface, with edges formed 
by the quark lines, and which is in general multiply connected (contains "worm 
holes"). We close the surface by also attaching little surfaces to the quark loops 
separately. 
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J (×/~p 
Fig. 2. Gauge invariant source function. 

Let that surface have F faces, P internal lines or propagators, and V vertices. 
Here F -- L + I, where L is the number of  quark loops and I the number o f  index 
loops; and V = E n V n, where V n is the number o f  n-point vertices. The diagram is 
associated with a factor 

Va+2 V4 NI" r = g  (3.2) 

By drawing a dot at each end of  each internal line, we find that the number of  
dots is 

= Z~n F n, (3.3) 
n 

and eq. (3.2) can be written as 

r = g2P-  2 V N F - L .  (3.4) 

Now we apply a well-known theorem of  Euler: 

F - P + V = 2 - 2H, (3.5) 

where H counts the number of  "holes" in the surface and is therefore always posi- 
tive (a sphere has H = 0, a toms H = 1, etc.). And so, 

1 V3+V 4 
r = (g 2N)2 N 2 - 2 H - L  (3.6) 

Suppose we take the limit 

N -->°°, g ~ O ,  g Z X = g 2 ( f i x e d ) .  (3.7) 

If  the sources are coupled to quarks, then there must be at least one quark loop: 
L t> 1. The leading diagrams in this limit have H = 0 and L = 1, they are the planar 
diagrams with the quark line at the edges (fig. 3). 

Note, however, that the above arguments not only apply to gauge fields but also 
to theories with a global U(N) symmetry containing fields with two U(N) indices, 
but from the introduction, it will be clear why we concentrate mainly on gauge 
fields. 

It is interesting to compare our result with that of  Wilson [6], who considers 
gauge fields on a dense lattice and also finds structures with the topology of  a two- 
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Fig. 3. One of the leading diagrams for the four-point function. 

dimensional surface. It is not  difficult to show that also Wilson's surfaces are asso- 
ciated with factors 1IN 2 and 1IN for each worm hole or fermion loop, respectively. 

The dual topology o f  the set o f  planar diagrams has been noted before [7]. Here 
we see that  the analogy with dual models goes even further; the expansion in powers 
of  1IN corresponds to the expansion with respect to the dual coupling constant in 

Fig. 4. Two diagrams of higher order in l/N: (a) obtain a factor l/N, (b) obtain a factor 1IN 2, 
as compared with the lowest-order graphs of the previous figure. 
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dual models. If we adopt the Han-Nambu picture of hadrons [2] then N is very likely 
to be three. This seems to give a reasonable order of magnitude for the dual coupling 
constant. 

Let us now formulate our theory more precisely. We assume that there is a local 
gauge group of the type U(3), (or SU(3)) for which no preferred reference frame in 
the form of a Higgs field exists. Such a theory is infra-red unstable [1 ] which implies 
that infra-red divergences accummulate instead of cancel, and the physical spectrum 
is governed by long range forces. A simple-minded perturbation expansion with re- 
spect to go in eq. (3.7) does not describe the spectrum and the S-matrix. But the 
1IN expansion may be a reasonable perturbation expansion, in spite of the fact that 
N is not very big. 

4. Planar diagrams in the light-cone frame 

The theory implies that we have to sum all planar diagrams in order to get the 
leading contributions to the amplitudes. Attempts to calculate certain large planar 
diagrams are known in the literature [7] but it seems to us that the choice of dia- 
grams there is rather arbitrary, and the replacement of a propagator by Gaussian 
expressions seems to be a bad approximation. We believe that a more careful study 
of this problem is necessary. 

Let us consider any large planar diagram (fig. 5). For a moment we shall abandon 
the rather complicated Feynman rules of fig. 1, replacing the vertices by simple 
local ~3 or q~4 interactions. 

We immediately face two problems: 
(i) how to find a convenient parametrization scheme to indicate a point of the 

graph in the plane, in terms of two parameters o and r; 
(ii) how to arrive at Gaussian integrands, in order to be able to do the integrations. 
These two problems can be solved simultaneously by going to light-cone co-ordi- 

nates: we write [8] 

p - + = ~ 2 ( P 3  +pO), ~ = ( p l , p 2 ) ,  

x + - = ~ 2 ( x  3 +x0) ,  x" = (x l , x2 ) .  (4.1) 

Although the gauge particles are massless, we shall consider the slightly more general 
case of arbitrary masses. The propagators are then 

1 1 
(2rr) 4i (/$2 + 2 p + p -  + m 2 - i e )  , (4.2) 

(for sign conventions, see ref. [5]). We go over to a mixed momentum coordinate 
representation: at each vertex V(a) we perform an integration over its time co-ordi- 
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Fig. 5. Example  o f  a planar diagram, divided into two regions a and b (see text).  

nate x + (a), and to each window F (i) of the graph corresponds an integration over the 
momenta p (i) and p~.) (always directed anti-clockwise). In terms of these variables 
the propagator is the Fourier transform of (4.2) with respect to p - ,  

X + 1 0 ( x + p + ) e x p - i - -  (m2+/~2) .  (4.3) 
(21r)321p+t 2p + 

I I !  I I  I I  li li I 

--~ p+ p+ 
tot 

Fig. 6. The componen t s  p + o f  the  m o m e n t a  o f  the  propagators that  cross the  dot ted line in fig. 5. 
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Fig. 7. A new representation of the same diagram. The blocks here correspond to the propagators 
in fig. 5 and have been numbered accordingly. 

Here x ÷ is the t ime difference between the two end points of  the line, and (/5, p +) 
are the difference o f  the momenta  (P(i) '  P~))  circulating in the windows at both  
sides o f  the line. Note that  the propagator  (4.3) is Gaussian in the transverse mo- 
menta /~ .  

The parametrizat ion problem can be solved by exploiting the famous 0 function 
in (4.3). For  simplicity we shall assume that  all external lines with positive p÷ lie 
next to each other in the p lane t .  If  we divide the set of  vertices into: (a ) those  
with x~a) < a ,  and (b) those with x~a) > a ,  then all lines * going from (a) to (b) have 

t If this condition is not fulfilled the resulting plane of fig. 7 will get several "sheets". 
• If we want to keep the diagram planar while dividing it into blobs (a) and (b), then we must 

expect lines going from (a) through (b) back to (a), etc. But it is easy to convince oneself that 
in those cases the diagram is zero as a consequence of the 0 functions. 
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positive p ÷. Now imagine a horizontal line with length P~-otal and divide it into 
segments, each corresponding to a propagator going from (a) to (b), and with 
a length equal to the (positive)value of p + in that propagator (fig. 6). If we now 
vary the number a, then this line sweeps out a surface with constant width, in which 
the propagators correspond to blocks; loops in the original diagrams now correspond 
to vertical lines, and vertices are now horizontal lines. See fig. 7 in which we num- 
bered the blocks corresponding to the propagators in fig. 5. We see that the variables 
p + and x ÷ are suitable co-ordinates. The integration in the transverse momenta (or 
co-ordinates) is Gaussian. Summing and integrating over all possible topologies in 
the p +x + plane is equivalent to performing the remaining p +x ÷ integrations and the 
summations over the diagrams. 

It is convenient at this point to perform a Wick rotation. 

i x  + = r .  (4.4) 

The factor i in the exponent (4.3) now disappears, together with the factors i at 
each vertex: 

(27r)3 i X d x+ -+ (27r) 3 Xdr ,  (4.5) 

and all amplitudes become real, Gaussian integrals (the 0 function in (4.3) now 
becomes 0 (rp+), defining the new regions of integrations). 

5. Comparison with the dual string 

Instead of considering the transverse momenta io, we could study the diagrams in 
transverse coordinate space. Then we would have a transverse variable ~ at each ver- 
tex of fig. 5, or at each horizontal line in fig. 7. The propagator is also Gaussian in 
terms of the ~. The integrand is (after the Wick rotation) 

Cexp - i~/ 2(r--~r] ) ( ~ _ ~ . ) 2  . (5.1) 

where C is independent of the transverse variables, and the summation is performed 
+ stands for the width of the over all pairs of adjacent horizontal lines in fig. 7. Api j 

block between i and/. 
This is to be compared with (the essential part of) the functional integrand for 

the quantized string: 

Cexp - f d o d r  [ a(-~o)2 + \br,/ax~21_l' (5.2) 

where # (o, r) is now a continuous variable on a similar rectangular surface [9]. The 
difference between (5.1) and (5.2) is profound. The first difference is that in eq. (5.1) 
we have a partition of the dual surface into meshes, and secondly in (5.1) one must 
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also integrate over all longitudinal variables and sum over all diagrams. This integra- 
tion and summation together correspond to the summation over all partitions into 
meshes. The detailed structure of  the meshes will depend on the initial Feynman 
rules, and from those it will probably depend whether (5.1) can be approximated 
by (5.2) in any way. I f  so, then the dual string will be an approximate solution of  
the dynamical equations of  our gauge model. 

6. A Hamiltonian formalism 

Attempts to attain more understanding of  the peculiarities of  planar diagram 
field theory have failed until now. There exists, however, a Hamiltonian for this 
system that might be useful. For simplicity, we confine ourselves to the planar 
diagrams o f ¢  3 theory (again defined by means of  a certain N-+  oo limit). A repre- 
sentation of  states [ if) in a Hilbert space is defined as a set of  structures like in fig. 6: 
a number  o f  "particles" is sitting on a line segment with length + Ptotal" They have co- 
ordinates p~,  i = 1, . . . ,  r; r --- 0, 1 , . . . .  A transverse loop integration momentum 
/~i is assigned to each particle (the particles in fig. 6 actually correspond to loops in 
the original diagram). We put/~total = 0, so that i~ = 0 on the boundaries at the left 
and at the right. 

A Wick rotation is not necessary here, so we can take x + to be real. The x + axis 
is divided into small segments x ~, x l ,  " " ' ,  X+n' with 

X + _ X + k+l k =e .  

Now we write the amplitude formally as 

A = + ( out [ e - i e H  I 1 ] / ) (  ~ l e - ieH[  t~ ) + 
x n x - 1  X n - 2  

(6.1) 

( ¢  I . . . . . .  lin)x~, (6.2) 

where summation and integration over the ~ntermediate states is understood. We now 
construct the Hamiltonian H that will yield the sum of all planar diagrams. Expand 

e - i e H  = 1 - i e H  = 1 - ie ( H  0 + H I ) ,  (6.3) 

where H 0 will be taken to be diagonal in the above-defined representation. I f  no 
vertex occurs between x~ + and Xk+ 1 then only H 0 contributes to 

+ ( ~ P l e - i e H l ~ k )  . 
Xk+ 1 x ~  

Taking 

H 0 = ~ m/2 + (/3"i-/Yi- 1)2 , (6.4) 
+ 

i 2 (19; - P i -  1 ) 
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we get the correct exponential parts of the propagators (compare (4.3)). 
At the vertices (horizontal lines in fig. 7), our particles are created or annihilated. 

Here H 1 is in action. Let us define operators at (/S, p+) and a (/~, p+), with 

[a t (/~,p+), a (lc, k+)] = 6 2 (~ - /~ )  ~ (p+ - k+), (6.5) 

creating respectively annihilating particles. We can then take H 1 = V + v t ,  with 

V= - (2zr) 3 ~ (16 zr3)-~ f dp+ f d2~ a (/~,p+) (6.6) 

X/(p;  - p}~) (pr + - p+) ( p + -  p ; )  

where ~ is the coupling constant; pr + and p]- are the coordinates of the closest neigh- 
bours at the right and at the left of the point p+. 

Substituting this interaction Hamiltonian into (6.3) and (6.2), we find exactly the 
Feynman rules for planar diagrams: the square root of the width of each block in 
fig. 7 always occurs twice, thus giving rise to the required factor 1/p + in the propa- 
gator (4.3). 

In our gauge theory model, a similar Hamiltonian will describe one quark and one 
antiquark in interaction. If our theory is to describe hadrons, then its spectrum 
should come out to be discrete. 

7. Conclusion 

We are still far away from a satisfactory theory for bound quarks. But, guided by 
the topological structure of the dual theories, we are led to the planar diagram field 
theory, in terms of which our problem can easily be formulated: if the eigenstates 
of a certain Hamiltonian crystallize into a discrete spectrum, despite the fact that 
the zeroth order Hamiltonian is continuous, then the original particles will con- 
densate into a string that keeps quarks together. 

As for baryons, the situation is even more complicated. The Han-Nambu theory 
clearly suggests N = 3. In that case we can raise or lower indices in the following way: 

;ki ~ x i! = eijk ~k = -- ;kji" (7.1) 

Taking Pi, ni and ;k//as our elementary fermions we can again consider the N ~  oo 
limit. The X quark will then sit in the middle of a string with p and/or n quarks at 
its ends: we have a string with ~ or A baryons! Similarly protons, neutrons and all 
other baryons can be constructed. 

It will be clear that in the case of baryons the 1/N expansion is extremely delicate. 
If calculations will be possible at all in this theory, then the dual coupling constant 

will be calculable and of order ] .  
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