
The energy momentum tensor

This is also a little exercise of inserting c at the correct places. We put c equal 1 for
convenience and re-insert it at the end.

Recall the Euler equations for an ideal fluid with density ρ(xi, t) and velocity vi(xj , t):

∂ρ

∂t
+

∂(ρvi)

∂xi
= 0

∂pj

∂t
+

∂(pjvi)

∂xi
= (Force density)j = − ∂p

∂xj

where pj ≡ ρvj is the j-component of the momentum density and p is the pressure.
The first equation (the continuity equation) expresses the conservation of mass, the
next equation expresses that the change of (a component of) momentum per volume
according to Newton’s second law is equal to the force component per volume, i.e.
minus the gradient of the pressure.

Using the continuity equation in the momentum equation, this latter can be written
as

∂�v

∂t
+ (�v · �∇)�v = −1

ρ
�∇p, (1)

while the continuity equation can be written as a current conservation:

∂µjµ = 0, jµ = (ρ, ρ�v) (2)

For an ideal fluid we have:

T µν = pηµν + (p+ ρ)UµUν , ∂νT
µν = 0, (3)

where Uµ = γ(v)(1, vi) is the four-velocity (UµUµ = −1).
(4) Write out the equations explicitly for µ = 0 and for µ = i, and show (using both
equations) that the one for µ = i can be written as

∂�v

∂t
+ (�v · �∇)�v = −1− v2

p+ ρ

(
�∇p+ �v

∂p

∂t

)
.

(5) Show that this equation reduces to (1) in the non-relativistic limit and that the
equation for µ = 0 likewise reduces to (2) in the non-relativistic limit.
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Problem set 2

constant acceleration, part I

Consider the equation of motion in SR for a point particle:

d�p

dt
= �F , �p = m0γ�v, γ =

1√
1− β2

, β =
v

c
.

Consider the situation where �F points along the x-axis and has the constant value
F = m0g. Assume that the velocity is zero at time t = 0.

(1) Show that the motion of the particle is hyperbolic:

(
x+

c2

g

)2

− (x0)2 =

(
c2

g

)2

, (4)

where x0 = ct and y = z = 0.

(2) Let I denote the initial system where the particle is at rest at t = 0. Show that
the proper time (times c) of a clock following the accelerated particle is given by:

τ =
c2

g
sinh−1

(
gx0

c2

)
, (5)

i.e.

x0 =
c2

g
sinh

(gτ

c2

)
. (6)

(3) Show that the transformation from an inertial system I’, where the accelerated
particle is at rest at proper time τ at x′ = 0 (and y′ = z′ = 0) with x0′ = 0 to I is
given by:

x =
c2

g

(
cosh

(gτ

c2

)
− 1

)
+ x′ cosh

(gτ

c2

)
+ x0′ sinh

(gτ

c2

)
(7)

x0 =
c2

g
sinh

(gτ

c2

)
+ x′ sinh

(gτ

c2

)
+ x0′ cosh

(gτ

c2

)
(8)
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Derivation of the geodesic equation

Define the following quantity:

S[x(λ)] =

∫ λ2

λ1

dλ L(x(λ), ẋ(λ)), ẋ(λ) ≡ dx

dλ
. (30)

S is a functional of the set of paths x(λ). Assume now that

L(x, ẋ) =
√

gij(x) ẋiẋj . (31)

(6) Prove that for the choice (31) the functional S is independent of the parametriza-
tion of the path x(λ), i.e. given one parametrization, S is unchanged if we change
parametrization λ̃ = f(λ), ḟ(λ) > 0, and consider the new path x̃(λ̃) = x(f−1(λ̃))
(of course this path describes the same set of points, but the curve is “traveled” in
a different “speed” as a function of λ̃).

(7) Show that if we choose the parameter s = λ̃ as the length of the curve:

s(λ) =

∫ λ

λ1

dλ′
√

gij(x(λ′)) ẋi(λ′)ẋj(λ′) (32)

then the Euler-Lagrange equations

d

ds

(
∂L

∂ẋi

)
− ∂L

∂xi
= 0 (33)

simplify and can be written as:

d

ds

(
gik(x)

dxk

ds

)
=
1

2

∂gkl(x)

∂xi

dxk

ds

dxl

ds
, gkl(x)

dxk

ds

dxl

ds
= 1. (34)
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Problem set 6

geodesics in Rindler space

Let (x0, x) denote Minkowski coordinates in a system of inertia I, and let (w0, w)
denote the Rindler coordinates of a system of reference R with constant acceleration
g relative to I:

x =
c2

g

(
cosh

(
gw0

c2

)
− 1

)
+ w cosh

(
gw0

c2

)

x0 =
c2

g
sinh

(
gw0

c2

)
+ w sinh

(
gw0

c2

)

As shown we have

ds2 = dx2 − (dx0)2 = dw2 − (1 + gw/c2)2(dw0)2. (43)

(1) Write down the equation of motion for a particle in free fall as a second order
differential equation in w0.

(2) Show that the solution for a particle starting at w = w̃ at time w0 = 0 with
velocity zero is:

w(w0) =
c2

g

[(
1 +

gw̃

c2

) 1

cosh gw0

c2

− 1

]
. (44)

(3) Calculate the velocity

v ≡ c
dw

dw0
.

Find the maximum velocity of the particle and compare with the velocity of light
(calculate that too). What happens for w0 →∞?

(4) Calculate the proper time of the particle as a function of w0 and w̃.

Geodesics on the rotating disk

The metric of spatial geometry of the rotating disk is given by:

ds2 = dr2 +
r2

1− r2ω2/c2
dθ2. (45)

(5) Write down the equations for a geodesic.
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Figure 1:

(6) Show that first integrals are:

dθ

ds
= α

1− r2ω2/c2

r2
, (46)

dr

ds
= ±

√
1 +

α2ω2

c2
− α2

r2
, (47)

where α is an integration constant.

Thus

dr

dθ
= ±

r2
√
1 + α2ω2

c2
− α2

r2

α
(
1− r2ω2

c2

) (48)

and by integration we can in principle find r(θ).

(7) Consider the geodesic passing through (r0, 0) and having dr/ds = 0 at r0. Find
α expressed by r0.

(8) Find the geodesics corresponding to the α = 0.

(9) Find the angle φ between two geodesics which go through the same point ex-
pressed by α1 and α1 and the r-coordinate at the point where they meet. Answer:

cos φ = ±
√
1 +

α2
1ω

2

c2
− α2

1

r2

√
1 +

α2
2ω

2

c2
− α2

2

r2
+

α1α2(1− r2ω2/c2)

r2
(49)
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(10) Show that geodesics always met the boundary r∗ = c/ω at a right angle (see
figure).

(11) Show that the sum of angles of the triangle OAB in the figure is less than π.
How small can the sum of the angles in a triangle formed by geodesics be ? How
large ?
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Problem set 8

The Riemann tensor

The Riemann tensor in n dimensions has at most n2(n2 − 1)/12 independent com-
ponents.

(1) Show this using the symmetries of the Riemann tensor. (a) Show that Rκλµν

written as RAB, A = (κλ) B = (µν) is a symmetric matrix in the generalized indices
A, B. A symmetric N -dimensional matrix has N(N + 1)/2 independent elements.
Show that the indices A and B can take N = n(n − 1)/2 independent values. (b)
From the number of independent elements calculated this way we have to subtract
the constrains coming from the fact that the cyclic sum Rκλµν + Rκνλµ + Rκµνκλ is
completely antisymmetric. Show that this gives n(n−1)(n−2)(n−3)/4! constraints
and obtain the total number n2(n2 − 1)/12 of independent components.

In two dimensions there is thus only one independent component and we can write:

Rκλµν =
1

2
R (gκµgλν − gκνgλµ) (53)

since this tensor has the right symmetries and the contraction gives the scalar cur-
vature.

Assume now that the metric has the form

ds2 = dr2 + gφφ(r)dφ2. (54)

We know already which components of Γi
jk are different from zero, expressed in

terms of gφφ(r) and ∂gφφ/∂r.

(2) Show that Rφ
rφr = R/2 and use the definition of Rφ

rφr in terms of Γ to find a
general expression for R.

(3) Calculate R/2 for a sphere, for a pseudo-sphere and for the geometry corre-
sponding to the rotating disk.

Consider the maximally symmetric spaces in n dimensions in the representation

Kxixi + z2 = 1, ds2 = dxidxi +
1

K
dz2. (55)

As we showed

gij(x) = δij +
Kxixj

1−Kxixi
(56)
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Problem set 9

The energy-momentum tensor

(1) Derive the energy-momentum tensor for a dust of point particles with action

S =
∑

n

mn

∫
dτ

√
−gµν

dxµ
n(τ)

dτ

dxν
n(τ)

dτ

using the variation in gµν .

(2) Derive the energy-momentum tensor for a scalar field with action

S =

∫
d4x

√
−g(x)

(
−1
2
∂µφ∂µφ− V (φ)

)
.

using the variation in gµν .

(3) Derive the energy-momentum tensor for the electromagnetic field with action

S =

∫
d4x

√
−g(x) FµνF

µν

using the variation in gµν .

Use of the Lie-derivative

Under a diffeomorphism xµ → yµ(xν) the metric will change as

g′µν(y) =
∂xκ

∂yµ

∂xλ

∂yν
gκλ(x) (60)

The change of the metric under an infinitesimal diffeomorphisms can be written as:

δgµν(x) ≡ g′µν(x)− gµν(x) = −gµκ(x)
∂εκ(x)

∂xν
− gνκ

∂εκ(x)

∂xµ
− ∂gµν(x)

∂xκ
εκ(x), (61)

for an infinitesimal diffeomorphism

yµ = xµ + εµ(x). (62)

Note that in (61) the tensor g′µν is evaluated in point x and not point y as in (60).
This change of argument explains the presence of the last term in (61) and it is
important in order to make δgµν(x) a tensor. g′µν(y) − gµν(x) is not a tensor even
for an infinitesimal diffeomorphism like (62)).
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