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− − ∞ − −

This is the ‘Lecture Notes” version of my latest paper on black hole
microstates. These notes highlight the essentials, such that they should be
easier to read and understand. My plan is to keep this updated. If new insights
arise, they will be added.

In this version, v3, a chapter, with figures, on “virtual black holes and space-time foam”, was added at the end.

These notes must be seen as a personal view of the author. Most importantly,
we try to avoid any wild assumptions, as we usually see in the literature. Our
claim is that everything here is assentially derived from basic laws that are
well-established. Not even String Theory is used (this might change in the
future).

These notes are not intended for use in talks (too much information on single “slides”)

with apologies for not always following the same notation as used elsewhere.

There is a discussion site on https:\\www.researchgate.net/

− − ∞ − −
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Black holes are an essential feature of the gravitational force. Without a
thorough understanding of their properties one cannot understand quantum
gravity. See: G. ’t Hooft, arxiv:1612.08640 [gr-qc] + references there.

String theory could have been a good tool as well, and I don’t go as far as
saying that string theory would be wrong, but this lecturer does not understand
string theory well enough.

The assumption that “particles are pieces of string” is just an assumption.
I think we do not need to make such assumptions. If string theory is right, we
will be able to derive it from other first principles.

Anyway, I here describe a path towards understanding without dubious
assumptions at all. Just derivations from known principles, such as Quantum
Mechanics and General Relativity.

Note, that these theories are also assumptions, but they are much more
compelling. Dropping or loosening these assumptions is much more difficult
than keeping them as long as we can. No theory is sacred, and some sense of
taste for what to keep and what not, is a useful attire for a theoretical physicist.

We claim that topics such as microstates can be understood very well in our
theory.
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The tortoise coordinates

Our prototype is the Schwarzschild black hole. No serious complications are
expected when generalized to Kerr-Newman or such. The extreme black hole
would not serve our purposes, because it is a limiting case, and its horizon is
fundamentally different from the more general black holes.

Consider the Schwarzschild metric:

ds2 =
1

1− 2GM
r

dr 2 −
(
1− 2GM

r

)
dt2 + r 2dΩ2 ;

{
Ω ≡ (θ, ϕ) ,

dΩ ≡ (dθ, sin θ dϕ) .

Go to Kruskal-Szekeres coordinates x , y , defined by

x y =
( r

2GM
− 1
)
er/2GM ;

y/x = et/2GM .

ds2 =
32(GM)3

r
e−r/2GM dx dy + r 2dΩ2 .

At r = 2GM, we have x = 0 : past event horizon, and
y = 0 : future event horizon.
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We concentrate on the region close to the horizon: r ≈ 2GM. There:

x =

√
e/2

2GM
u+ ; y =

√
e/2

2GM
u− ; 2GM ≡ R

ds2 → 2du+du− + R2dΩ2 . time t/4GM = τ

distant

time

local time

III

u
+

u
−

u−(τ) = u−(0)eτ

u+(τ) = u+(0)e−τ

As time goes forwards, u+

approaches the horizon
asymptotically;

as time goes backwards, u−

approaches the past horizon
asymptotically (tortoises).
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If we redefine u+ → f (u+) , u− → g(u−), then the metric keeps the form

ds2 = 2A(u)du+du− + r 2(u)dΩ2. → Map u± on compact domains:

The Penrose diagram.

For pure Schwarzschild (without matter responsible for the formation of a black
hole, or representing its final decay):

III

IV

III
u+

u−

in

outin

out

∞

∞+

∞−
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Now, we begin to deviate from standard practice:
This is the “eternal black hole” (it never formed, it will never decay).

We keep it. Why?

We put the “microstates” on a Cauchy surface. As yet, we are only
interested in how they evolve for a short amount of time. For the
quantum properties of the BH, the distant past, and the distant
future, should be irrelevant. They are always irrelevant in quantum
physics. Late in the future, or long ago in the past, the states we
are looking at now, will be highly entangled states. Not suitable for
generating a well-defined, curved space-time. Leave all that
nonsense out.
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First, consider the particles near the horizon(s).
Mass shell: 2p+p− + p̃2 + µ2 = 0.
Here, p̃ is the transverse part of the momentum, µ = mass;

|p̃| ≈ L/R and µ are basically constant.
But p−(τ) = p−(0)eτ , p+(τ) = p+(0)e−τ .

Define soft particles: |~p|, µ � MPlanck Negligible effect on
space-time curvature.

As τ →∞, p+ → 0, p− →∞: that’s a hard in-particle;
As τ → −∞, p− → 0, p+ →∞: that’s a hard out-particle.

|p̃| and µ stay small.

To understand what happens with the evolution at longer time
intervals, we have to understand what the hard in- and out- partcles do.

As τ � 1, the in-particles become hard. Their interactions with other
in-particles are negligible (they basically move in parallel orbits), but they do
interact with the out-particles. the interaction through QFT forces stay weak,
but the gravitational forces make that (early) in-particles interact strongly with

(late) out-particles.

The gravitational force between them can easily be calculated
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The gravitational backreaction:

Calculate the Shapiro time delay caused by the grav. field of a fast moving
particle: simply Lorentz boost the field of a particle at rest:

δx

x

x ′

1

2

u
−

p
−

δu
−

1
2

space-time
flat

space-time
flat

δu−(x̃) = −4G p−(x̃ ′) log |x̃ − x̃ ′| .

P.C. Aichelburg and R.U. Sexl, J. Gen. Rel. Grav. 2 (1971) 303,
W.B. Bonnor, Commun. Math. Phys. 13 (1969) 163,
T. Dray and G. ’t Hooft, Nucl. Phys. B253 (1985) 173.
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What we need to know is the interactions between in- and out-particles.

0 � MPlanck MPlanck ∞
|p±| →

∞

↑
|p∓|

Shapiro
drag

MPlanck

� MPlanck

QFT Shapiro drag

0

NOT

NEEDED
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The fact that the mutual interactions between particles at the Planck mass or
beyond, will not be needed, is a very important aspect of this work. As you will
see.

We start with only soft particles on a Cauchy surface of the Penrose diagram.
These will define all quantum microstates of the black hole.

Now, the question is how do these evolve with time.
The soft particles won’t stay soft; their longitudinal momenta will quickly
explode. To see what happens, calculate the Shapiro shift.

in-particle with momentum p− at solid angle Ω′ = (θ′, ϕ′)
causes a shift δu− at solid angle Ω = (θ, ϕ):

δu−(Ω) = 8πG f (Ω,Ω′)p− ; (1−∆W )f (Ω,Ω′) = δ2(Ω,Ω′) .

Many particles: p−(Ω) =
∑

i p
−
i δ

2(Ω,Ωi ) .

δu−(Ω) = 8πG

∫
d2Ω′f (Ω,Ω′)p−(Ω′) .

Now start with one unique “reference” black hole, yielding out-particles with
given positions at the origin of some coordinate system. Suppose p−(Ω)
represents all in-particles needed to describe any other black hole.
Then the out-particles will be at positions u−(Ω) given by
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u−out(Ω) = 8πG

∫
d2Ω′f (Ω,Ω′)p−in(Ω′) .

Spherical wave expansion:

u±(Ω) =
∑
`,m

u`mY`m(Ω) , p±(Ω) =
∑
`,m

p±`mY`m(Ω) ;

[u±(Ω), p∓(Ω′)] = iδ2(Ω, Ω′) , [u±`m, p
∓
`′m′ ] = iδ``′δmm′ ;

u−out =
8πG

`2 + `+ 1
p−in , u+

in = − 8πG

`2 + `+ 1
p+
out ,

(1)

p±`m = total momentum in of out
in -particles in (`,m)-wave ,

u±`m = (`,m)-component of c.m. position of in
out-particles .

Because we have linear equations, all different `,m waves decouple, and
for one (`,m)-mode we have just the variables u± and p±. They
represent only one independent coordinate u+, with p− = −i∂/∂u+.
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3 more steps to be taken:

1. Momentum density p±(Ω) for every quantum state in a QFT is well-defined.

However, our evolution law will only be unitary is we can find the QFT quantum
state back from the momentum density. That’s difficult.

Use vertex insertions as in string theory?

2. What is the physical interpretation of region II ?.

We demand locality. This means that commutators of space-like separated
operators should vanish. Then, since in-going signals in region I produce signals
in the out-going objects in region II , we must guarantee that I and II are not
space-like separated.

Postulate that region II refers to the same black hole as region I , but not at the
same solid angle Ω = (θ, ϕ). Only one possibility:

The antipodal identification: Ω→ Ω̃ = (π − θ, ϕ+ π)

3. The “firewalls”. Soft particles become hard particles. Must be ‘removed’.

Obvious suggestion: all information carried by the in- particles is now present in
the out-particles. The in-particles are redundant (“quantum clones”). Leave the
hard ones out. Hilbert space is completely specified by the coordinates u−(Ω) of
the out-particles. Note: as soon as |u−| > LPlanck, these out-particles are soft.

This is the “firewall transformation”; it removes firewalls.
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The basic, explicit, calculation

The algebra (1) generates the scattering matrix, by giving us the
boundary condition that replaces |in〉-states by |out〉-states. This boundary
condition replaces the old brick wall model and it is embarassingly easy to
derive

(The catch will be exposed later) .

All of this is NOT a model, or a theory, or an assumption . . .

Apart from the most basic assumption of unitary evolution,
this is nothing more than applying GR and quantum mchanics !
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Let there be two operators, u and p, obeying the commutator equation

[u, p] = i , so that 〈u|p〉 = 1√
2π
e ipu .

and a wave function |ψ〉, defined by ψ(u) ≡ 〈u|ψ〉 . Then

ψ̂(p) ≡ 〈p|ψ〉 = 1√
2π

∫ ∞
−∞

du e−ipuψ(u) .

Now introduce tortoise coordinates, and split both u and p in a positive part
and a negative part:

u ≡ σu e%u , p = σp e
%p ; σu = ±1 , σp = ±1 , and

ψ̃σu (%u) ≡ e
1
2
%u ψ(σu e

%u ) , ˜̂ψσp (%p) ≡ e
1
2
%p ψ̂(σp e

%p ) ;

normalized: |ψ|2 =
∑
σu=±

∫ ∞
−∞

d%u|ψ̃σu (%u)|2 =
∑
σp=±

∫ ∞
−∞

d%p| ˜̂ψσp (%p)|2 .
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Then ˜̂ψσp (%p) =
∑
σu=±1

∫ ∞
−∞

d%u Kσuσp (%u + %p) ψ̃σu (%u) ,

with Kσ(%) ≡ 1√
2π
e

1
2
% e−iσ e% .

Notice the symmetry under %u → %u + λ , %p → %p − λ , which is simply the
symmetry u → u eλ , p → p e−λ , a property of the Fourier transform, and
an invariance of our algebra.

We now use this symmetry to write plane waves:

ψ̃σu (%u) ≡ ψ̆σu (κ) e−iκ%u and ˜̂ψσp (%p) ≡ ˘̂ψσp (κ) eiκ%p with

˘̂ψσp (κ) =
∑
σp=±1

Fσuσp (κ)ψ̆σu (κ) ; Fσ(κ) ≡
∫ ∞
−∞

Kσ(%)e−iκ%d% .

Thus, we see left-going waves produce right-going waves. On finds
(just do the integral):

Fσ(κ) =

∫ ∞
0

dy

y
y

1
2
−iκ e−iσy = Γ( 1

2
− iκ) e−

iσπ
4
− π

2
κσ .

Matrix

(
F+ F−
F− F+

)
is unitary: F+F

∗
− = −F−F ∗+ and |F+|2 + |F−|2 = 1 .
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Look at how our soft particle wave functions evolve with time τ , slide # 8.
Their Hamiltonian is the dilaton operator:

H = − 1
2
(u+p− + p−u+) = 1

2
(u−p+ + p+u−) =

i
∂

∂%u+
= −i ∂

∂%u−
= −i ∂

∂%p−
= i

∂

∂%p+
= κ ,

(if we apply the previous slide to the coordinates u+ and p−).

Add the scale factor 8πG
`2+`+1

, to get, if u± = σ±e
%± ,

ψin
σ+

e−iκ%
+

→ ψout
σ− eiκ%

−
, (2)

ψout
σ− =

∑
σ+

Fσ+σ−(κ) e−iκ log
(
8πG/(`2 + `+ 1)

)
ψin
σ+

These equations generate the contributions to the scattering matrix from all
(`,m) sectors of the system, where |m| ≤ `. At every (`,m), we have a
contribution to the position operators u±(θ, ϕ) and momentum operators
p±(θ, ϕ) proportional to the partial wave function Y`m(θ, ϕ). The signs of
u±(θ, ϕ) tell us whether we are in region I or region II . The signs of p±(θ, ϕ)
tell us whether we added or sutracted a particle from region I or region II .
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a) Wave functions ψ(u+) of the in-particles live in region I , therefore u+ > 0.
b) Out-particles in region I have ψ(u−) with u− > 0.

0
in

u+

u−

Region I

a)

ψin (u+) ,   u+ > 0

0
out

u+

u−

Region I

b)
ψout (u−) ,   u− > 0

0
in u+

u−
Region II

c)u+ < 0

ψin (u+)

0
out

u+

u−
Region II

d)

u− < 0
ψout (u−)

The physical
picture

c, d) In region II , the in-particles have u+ < 0 and the out-particles u− < 0.
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Note that the in-particles will never get the opportunity to become truly hard
particles.

Eq. (2) is to be seen as a “soft wall”-boundary condition near the origin of the
Penrose diagram. Wave functions going in are reflected as wave functions
going out. These again emerge as soft particles.

Thus, there is no firewall, ever.

In the previous slide, the total of the in-particles in regions I and II are
transformed (basically just a Fourier transform) into out-particles in the same
two regions.

Note that the regions III and IV in the Penrose diagram (see slide 6) never
play much of a role, even if an observer falling in region III would want to
assure us that (s)he is still alive.

These regions are best to be seen as lying somewhere on the time-line where
time t is somewhere beyond infinity (thus a mere repetition of the degrees of
freedom we have seen before)
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The catch?

Our “boundary condition at the origin” is in terms of momentum distributions

p±(θ, ϕ) and center-of-mass positions u±(θ, ϕ) only.

But we would need the quantum wave functions as elements of Fock space
(which would be specified by positions or momenta, but also by other quantum
numbers!)

Such mapping should be unitary in Hibert space. We are not certain that this
can be done, but it is natural to look at how it is done in string theory. Our
momentum distributions are like vertex insertions, although they are on the
horizon instead of the string world sheet.
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The antipodal identification

Regions I and II of the Penrose diagram are exact copies of one another.
Often, it was thought that region II describes something like the ‘inside’ of a
black hole. That cannot be right, since region II , like region I , has asymptotic
regions. Hawking suggested that region II might be some other black hole, in
an other universe, or far away in our universe. However, our 2× 2 scattering
matrix implies that the two regions are in contact with each other quantum
mechanically. In ordinary branches of physics, such long-distance
communication never takes place, and I don’t think theories with such features
make any sense.

It is far more natural to assume that region II describes the same black hole as
region I . It must then represent some other part of the same black hole. Which
other part? The local geometry stays the same, while the square of this SO(3)
operator must be the identity.

There is exactly one possibility: This is the SO(3) operator −I, which is:

the antipodal mapping.
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Antipodal identification only holds for the central point (origin) of the Penrose
diagram. Regions I and II are different regions of the universe. But by relating
region II to region I by demanding that the angular coordinates are antipodes,
means that now the mapping from Schwarzschild coordinates to Kruskal
Szekeres coordinates is one-to-one. This now turns out to be an essential
property of our coordinate transformations. Thus, we arrive at a new restriction
for all general coordinate transformations:

In applying general coordinate transformations for quantized fields
on a curved space-time background, to use them as a valid model
for a physical quantum system, one must demand that the following
constraint hold: the mapping must be one-to-one and differentiable.

The emergence of a non-trivial topology needs not be conpletely absurd, as
long as no signals can be sent around. We think that this is the case at hand
here. It is the absence of singularities in the physical domain of space-time that
we must demand.
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Black emptiness: blue regions are the
accessible part of space-time; dotted
lines indicate identification.

The white sphere within is not part
of space-time. Call it a ‘vacuole’.

At given time t, the black hole is a 3-dimensional vacuole. The entire life cycle
of a black hole is a vacuole in 4-d Minkowski space-time.

Space coordinates change sign at the identified points
– and also time changes sign
(Note: time stands still at the horizon itself).
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A timelike Möbius strip

time

time Draw a spacelike closed curve:

Begin on the horizon at a point

r0 = 2GM , t0 = 0 , (θ0, ϕ0) .

Move to larger r values, then
travel to the antipode:

r0 = 2GM , t0 = 0 , (π − θ0, ϕ0 + π) .

You arrived at the same point, so the (space-like) curve is closed.

Now look at the environment {dx} of this curve. Continuously transport
dx around the curve. The identification at the horizon demands

dx ↔ −dx , dt ↔ −dt , .

So this is a Möbius strip, in particular in the time direction.
Note that it makes a CPT inversion when going around the loop.
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There are no direct contradictions, but take in mind that

the local Hamiltonian density switches sign as well.

This is not true for the total Hamiltonian adopted by distant observers. locally,
near the horizon, this is the dilaton operator. That operator leaves regions I
and II invariant, and does not flip sign along the loop. Also, the boundary
condition, our “scattering matrix”, leaves this Hamiltonian invariant.

The S-matrix commutes with the Hamiltonian.
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Critical questions.

The effect of the gravitational footprint of an in-going particle (red line to
upper left) onto the out-going particles (other coloured lines) is correctly
accommodated for in this work. But there is an oddity, see our picture
here of the allowed regions I and II and the unphysical regions III and IV .

 fu
tu

re
 h

or
iz

on

     past horizon

II I

IV

III
vu

The gravitational footprint moves
the pure states of all out-particles
combined in the light cone direction
by an amount δu−(θ, ϕ) in the
same direction as the in-momentum
δp−(θ′, ϕ′).
This is a unitary transformation in
the space of the combined wave
functions only if all out-particles
move by the same amount in the
same drection, as is drawn here.

But this led to an apparently valid
criticism:
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This configuration does not appear to correspond to a valid solution of
Einstein’s equations for the local observer. What are we doing wrong?

It appears that this corresponds to a solution of Einstein’s equations only
if the momentum δp− of the hard, in-particle flips its sign while passing
through the future event horizon. At the same time, of course, the arrow
of time switches sign.

Moreover, those out-particles that are dragged right across the horizon
(green line), do not seem to follow a geodesic at all, as regarded by the
local observer. Yet, of course, with our definition of the arrow of time, we
have no choice, the particle has to continue its way as shown. What
should a local observer say?

For the local observer, the diagram here does not show a classical
solution, but it shows the action of an operator. The operator creates an
extra in-particle (red line) that, in all states in regions I and II , shifts the
geodesics of all out-particles by the same amount, in the same direction.
It has the effect of a positive δp− particle in region I and at the same
time the effect of a negative δp− particle (an annihilayed particle) in
region II . The operators u± and p± on the horizons all switch sign when
passing from region I to II , since they are each other’s antipodes, on the
horizon.
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The BMS group.

In a development parallel to our work here, it has been argued that
“conservation of information” for black holes can be understood by using
the BMS group. It was claimed that this group generates an infinite class
of conserved charges that must be held responsible for safegarding the
information processed by the black hole. These charges are associated to
supertranslations, and as such must take the form of (θ, ϕ)-dependent
momenta in the light cone direction. To the present author, the physical
interpretation of these arguments is less transparent. The arguments
seem to be very formal, and thus suspect. I would like to see how the
BMS group generates a unitary S-matrix.

There are numerous treatises in the literature claiming solutions to the
black hole information paradox, and about as many publications that
dismiss these claims. This author dismisses all claims that either ignore
the gravitational back reaction of quantised excitations, or ignore the
antipodal identification of points on the horizon – meaning that the
horizon is a projective 2-sphere.
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Virtual black holes and space-time foam (Summary)

Virtual black holes must be everywhere in space and time. Due to vacuum
fluctuations, amounts of matter that can contract to become black holes, must
occur frequently. They also evaporate frequently, since they are very small.
This produces small vacuoles in the space-time fabric.
How to describe multiple vacuoles is not evident. The emerging picture could
be that of “space-time foam”:
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Work is still in progress. More than happy to discuss these ideas with like-minded colleagues.

See: G. ’t Hooft, arxiv:1612.08640 [gr-qc] + references there;

http://www.phys.uu.nl/∼thooft/lectures/GtHBlackHole 2017.pdf

See also:
P. Betzios, N. Gaddam and O. Papadoulaki, The Black Hole S-Matrix from
Quantum Mechanics, JHEP 1611, 131 (2016), arxiv:1607.07885.

S.W. Hawking, M.J. Perry and A. Strominger, Superrotation Charge and
Supertranslation Hair on Black Holes, arXiv:1611.09175 [hep-th]
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