
Problem 1, Lorentz transformations of electric and mag-
netic fields

We have that
F µ′ν′

= Lµ
′

µL
ν′

νF
µν ,

where,

F µν =


0 B3 −B2 −iE1

−B3 0 B1 −iE2

B2 −B1 0 −iE3

iE2 iE2 iE3 0

 .

Note that we use the convention from the lecture notes, in which xµ =
(x, y, z, ict).

(1) Consider an ordinary rotation around the z-axis. Show that the mag-
netic and electric fields transform as ordinary vectors under such a rotation.

(2) Consider a boost along the x-axis with velocity v. Show that we
have the following transformation, mixing electric and magnetic fields: (γ =
1/
√

1− β2, β = v/c)

B′
1 = B1, B′

2 = γ(B2 + βE3), B′
3 = γ(B3 − βE2),

E ′
1 = E1, E ′

2 = γ(E2 − βB3), E ′
3 = γ(E3 + βB2).

Recall that a Lorentz boost along the x-axis is given by the transformation

x′1 = γ(x1 + iβx4) y′ = y z′ = z x′4 = γ(x4 − iβx1).

Consider now an inertial system I and the Lorentz boosted system I′

(i.e. I′ not rotated relative to I), moving with velocity −→v relative to I. The
formula generalizing the above formula is:

−→
B = γ

−→
B′ +

−→v
v2

(−→v ·
−→
B′)(1− γ) + γ

−→v
c
×
−→
E ′,

−→
E = γ

−→
E ′ +

−→v
v2

(−→v ·
−→
E ′)(1− γ)− γ

−→v
c
×
−→
B′.
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(You can try to prove this formula, but it is not part of the problem) Assume

that
−→
E ′ and

−→
B ′ are constant and different from zero.

(3) Find the condition that
−→
E ′ and

−→
B ′ have to satisfy in order that there

exists a −→v such that
−→
B = 0, and find the corresponding −→v expressed in

terms of
−→
E ′ and

−→
B ′.

Problem 2

’Constant acceleration part I’ of the enclosed exercises.

Problem 3, The Eötvös experiment

In the lecture it was explained how Eötvös found a way of testing the Equiv-
alence Principle (i.e. Mgrav = Minert) by checking the misalignment of the
forces acting on two objects. The gravitational force on the surface of the
Earth is

~Fg = −GNM⊕Mgrav
~r

r3
,

while the centrifugal force is

~Fω = Minertω
2

(
~r − (~ω · ~r)~ω

ω2

)
,

where ω is Earth’s angular velocity. Can you derive more carefully the mea-
surable misalignment between the forces ~F (i) = ~F

(i)
g + ~F

(i)
ω of two objects:

α =
|~F (1) ∧ ~F (2)|
|~F (1)||~F (2)|

≈?

under the (justified) assumption that the gravitational force is much stronger
than the centrifugal one?

Problem 4, Constant acceleration, part II

(0) Recall your results from last week, where we did the first part of this
exercise
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Now consider a coordinate system moving ”along” with the accelerated
particle and rigid in the sense that distances measured with standard rods
at rest in the system are constant in time (which, in the co-moving frame, is
identified with the proper time of the accelerated particle).

In part I we found the transformation from the inertial system I, where
the particle started at rest at t = 0, to another inertial system I ′, where the
accelerated system (particle) is at rest at proper time τ and coordinate time
t′ = 0. Now, we define a coordinate system (w0, w, y, z) by

w0 = τ, w = x′, y = y′, z = z′,

where we have to set t′ = 0. Such a coordinate system will move along with
the accelerated particle. It is very special that we have a transformation from
Minkowski space to this co-moving frame. In general this is not possible. In
the following we will ignore y and z. Thus we have the relation between
(x0, x) and (w0, w):

x =
c2

g

[
cosh

(
gw0

c2

)
− 1

]
+ w cosh

(
gw0

c2

)
,

x0 =
c2

g
sinh

(
gw0

c2

)
+ w sinh

(
gw0

c2

)
.

(w0, w) are called Rindler coordinates (R).

(1) Consider two spacetime points infinitesimally seperated. Let they
have coordinates (x0, x) and (x0 + dx0, x + dx). Denote the corresponding
coordinates in R by (w0, w) and (w0 + dw0, w + dw). Show that

ds2 ≡ dx2 − (dx0)2 = dw2 − (1 + gw/c2)2(dw0)2

and conclude that the Rindler coordinates are indeed rigid (lengths are con-
stant).

(2) Show that the point with fixed coordinate w in R as seen from I,
performs a hyperbolic motion with velocity

v =
gx0/c√

(1 + gw/c2)2 + (gx0/c2)2
(= c tanh

gw0

c2
)).
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(3) Using the results from part (1), show that an observer at rest in I,
with spatial coordinate x can send signals to any other observer at rest in
I. Consider a point w > 0. Show that there are points x which can never
send signals to an observer in rest at R with coordinate w. Characterize the
region of space time which cannot send signals to any observer at rest in R.
We say that the system R has a horizon: There are regions of space-time
which can receive signals from R, but cannot send signals to R.

Further Hints for this exercise:

cosh[arcsinhx] =
√

1 + x2

tanh[arcsinhx] =
x√

1 + x2

Problem 5, Rotating coordinate system

In order to find the line element of a uniformly rotating reference frame, we
can start from flat space in cylindrical coordinates,

ds′2 = −c2dt′2 + dρ′2 + dz′2 + ρ′2dφ′2,

and perform the following spatial transformation for axis of rotation z:

ρ = ρ′, z = z′, φ = φ′ + ωt.

Here ω is the constant angular velocity of rotation.

1. What is the line element ds2 of the rotating coordinate system?

2. What would be the circumference of a circle in terms of the coordinate ρ
as measured by an observer in the rotating frame? Discuss the physical
meaning of the case when ρ ≥ c

ω
.

Hint: An observer in a given space-time measures the time interval
between two events as dτ 2 = g00dt

2 and the space interval as dl2 =(
gij − g0ig0j

g00

)
dxidxj.
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Problem 6, Coordinate transformations

1. How would the product of a covariant and a contravariant vector, AµBµ,
transform under general coordinate transformations?

2. What about the quantity gµνg
νρ = δρµ?

3. Can you show that the derivative of a covariant vector, ∂µAν , does not
transform as a tensor? Show that for linear coordinate transformations
(i.e. Lorentz transformations) ∂µAν is indeed a tensor.

Problem 7, Transformation rule of a density

Consider a fully antisymmetric tensor gµναβ in four dimensional space time.
(1) Argue that gµναβ has indeed one independent component and therefore
can be written as gµναβ = ωεµναβ, where εµναβ is the Levi-Cevita symbol,
which is defined in the notes.
(2) Using Leibnitz formula for the determinant, show that ω transform as a
(scalar) density,

ω̃(u) = det

(
∂x

∂u

)
ω(x(u)).

Leibnitz formula:
detA = εαβγδA

α
0A

β
1A

γ
2A

δ
3.

(3) Using Leibnitz’ formula, show how the Levi-Cevita symbol transforms
under coordinate transformation. An object that transforms in this way is
called a tensor density (of weight 1, in this case). We will see later that the
determinant of the metric transforms as a tensor density of weight -2.
(4) Prove identity (5.18) of the lecture notes:

Dαω = ∂αω − Γµµαω.

Problem 8, Transformation rule of an affine

connection field

Do the exercise on page 20 of the lecture notes.
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Problem 9

’The energy momentum tensor’ of the enclosed exercises.

Problem 10

’Derivation of the geodesic equation’ of the enclosed exercises.

Problem 11

’Geodesics in Rindler space’ of the enclosed exercises.

Problem 12

’Geodesics on the rotating disk’ of the enclosed exercises.

Problem 13

The metric for the three-sphere in coordinates xµ = (ψ, θ, φ) can be written

ds2 = dψ2 + sin2 ψ(dθ2 + sin2 θdφ2).

(a) Calculate the Christoffel connection coefficients.
(b) Calculate the Riemann tensor, Ricci tensor, Ricci scalar and Einstein
tensor.
(c) Show that

Rρσµν =
R

n(n− 1)
(gρµgσν − gρνgσµ)

A space for which this last equation is satisfied is called a maximally sym-
metric space. In such a space, the curvature is the same everywhere and the
same in every direction. Hence, if one knows the curvature in one point of
the space, it is known everywhere.
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Problem 14

A vector field is a mapping that assigns to every point in space-time an
object in its tangent space. In a curved space-time it is not straightforward
to compare two vectors at different points. Only if two vectors are elements
of the same tangent space, one can add, subtract, or take the dot product
of two vectors. Think of two vectors on the sphere: If one of them lives on
the equator and the other one on the north pole, there is no way to compare
them. However, there is a way to transform a vector from one tangent space
to the other along a given path. The concept of transporting a vector from
one point in space to another point, while keeping it ’constant’ is known
as parallel transport. If one wants to keep a vector constant along a curve,
xµ(λ), in flat space, one wants to keep the components of the vector field
constant along the curve:

d

dλ
V µ =

dxν

dλ

∂V µ

∂xν
= 0.

In a curved space time, one replaces the partial derivative by the covariant
derivative, and then defines parallel transport of the vector V µ along the
curve xµ(λ) to be the requirement that the covariant derivative of V µ along
the path vanishes:

D

dλ
V µ ≡ dxν

dλ
DνV

µ = 0,

where we have defined the directional covariant derivative, D/dλ. The
concept of parallel transport is defined for general tensors.

Recall that a geodesic is the curved space generalization of a straight line.
A straight line is a path that parallel transports its own tangent vector.
(1) Show that this definition of a straight line gives indeed the geodesic equa-
tion.

Another definition of a straight line is the path of extremal distance be-
tween two points. Therefore, the geodesic equation can be derived by mini-
mizing the action

S[x(λ)] =

∫
dλ
√
−gµν ẋµẋν .

(2) Convince yourself that these two definition are only equivalent if one
chooses the Christoffel connection. (use the proper time as parameter along
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your path, such that gµν ẋ
µẋν = −1).

Assume we have a metric of the form:

ds2 = da2 + gbb(a)db2.

(3) Show that only Γbaa,Γ
a
bb, and Γbab = Γbba are different from zero and given

by

Γbaa = gbb
dgbb
da

, Γabb = −1

2

dgbb
da

, Γbab = Γbba =
1

2
gbb
dgbb
da

.

(4) Choose polar coordinates in the Euclidian plane and consider a vec-
torfield V = (V r, V θ) and a path along a circle with radius r0: x(λ) =
(r(λ), θ(λ)) = (r0, θ0 + λ(θ1 − θ0)), λ ∈ [0, 1] Let V (λ = 0) ≡ (V r

0 , V
θ
0 ) sit at

the point (r0, θ0). Parallel transport this vector along the path given. What
is V (λ = 1), (which is an element of the tangent space at (r0, θ1)).

(5) Consider a vectorfield V = (V φ, V θ) on the unit sphere, where the
metric is given by

ds2 = dθ2 + sin2 θdφ2, θ ∈ [0, π], φ ∈ [0, 2π[.

Parameterize a path along a curve with constant θ = θ0: x(λ) = (φ(λ), θ(λ)) =
(φ0 + λ(φ1 − φ0), θ0), λ ∈ [0, 1] Let V (λ = 0) ≡ (V φ

0 , V
θ
0 ) sit at the point

(φ0, θ0). Parallel transport this vector along the path given. What is V (λ =
1), (which is an element of the tangent space at (φ1, θ0)).

(6) Check that the norm of this vector is conserved after parallel trans-
port.

(7) A cone is parameterized by x = a u cos θ, y = a u sin θ, z = u, where
u ≥ 0, θ ∈ [0, 2π[. One can reparameterize the cone in terms of s and θ,
where s is the distance to the tip of the cone. In this parametrization the
metric has the form we use in this exercise. Calculate the metric.

(8) Calculate parallel transport around a circle surrounding the tip of the
cone (constant s).
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Problem 15

Consider the expanding universe metric:

ds2 = −dt2 + a2(t)δijdx
idxj

(1) Find the geodesic equations. (Either by explicitly constructing the
Christoffel symbols, or by varying the action S =

∫
dλ
√
−gµν ẋµẋν)

(2) Using the geodesic equations and the expression for ds2, show that for
a photon moving along the x-axis, the coordinate-time as function of the
parameter λ, which parameterizes the path, is given by

dt

dλ
=
ω0

a
,

where ω0 is a constant. Defining pµ = dxµ/dλ, show that the energy of the
photon, E = pµU

µ, with Uµ the four velocity, is for a comoving observer
equal to E = ω0/a. Can you explain why this is called the cosmological
redshift?

Problem 16

’The Riemann tensor’, part (1)-(3), of the enclosed exercises.

Problem 17

The Exercise at page 36 of the lecture notes.

Problem 18

’The energy momentum tensor’ of the enclosed exercises.

Problem 19

Assume that we are in a space, where the Minkowski metric is slightly per-
turbed:

gµν(x) = ηµν + hµν(x).
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(1) Consider coordinate transformations of the type: xµ → x̃µ = xµ + ξµ(x).
Show that the metric transforms as:

gµν → g̃µν(x̃) = gµν(x) +Dµξν(x) +Dνξµ(x).

hµν has ten independent components. The transformation above is a gauge
transformation. If one wants to fix the gauge we have to choose the four
ξµ. This implies that there have to be 6 gauge independent variables. In
this exercise we want to find these 6 quantities. The fundamental theorem
of vector calculus tells us that we can decompose any vector field into the
sum of a part with vanishing divergence (transverse vector) and a part with
vanishing curl.

Ai = Avi + Aci = Avi + ∂iA
s, ∂iA

v
i = 0, ∇×

−→
A c = 0,

where As is a scalar quantity. Therefore one can write the perturbation hµν
as:

h00 = h00, (1)

h0i = Bi + ∂iS, (2)

hij =
δij
3
h+ (∂i∂j −

δij
3
∇2)h̃+ (∂iVj + ∂jVi) + hTTij , (3)

(4)

where h00, h, S, and h̃ are scalars; Bi and Vi are transverse vectors, and hTTij
is a transverse traceless tensor (graviton).
(2) Argue that the number of degrees of freedom are equal on both sides of
the equation signs in (1), (2), and (3).
(3) Using that ξµ = (ξ0, ξ

v
i + ∂iξ

s), show that the transformation rules under
a coordinate transformation for this new defined quantities are given by

h00 → h00 + 2∂0ξ0,

h→ h+∇2ξs,

S → S + ξ0 + ∂0ξ
s,

h̃→ h̃+ 2ξs,

Bi → Bi + ∂0ξ
v
i ,

Vi → Vi + ξvi ,

hTTij → hTTij .
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(4) Show that there are two scalars one vector and one tensor, which are
gauge independent by constructing them explicitly.
(5) Can you show that the scalar quantities are equal to −GM/r in the New-
tonian limit of general relativity? This statement is now gauge independent.
(For more information about the Newtonian limit of GR see the notes from
Carroll: http://arxiv.org/abs/gr-qc/9712019).
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