Exercise sheet 1: 24 Feb + 3 Mar NS-TP431: Introduction to black holes (spring 2009)

The exercises are to be handed in during exercise class or brought to Timothy Budd in office MG 418 before Friday 6 Mar, 5pm. The exercises will not be graded, but we expect all exercises to be done and we will try to give feed-back when necessary.

- 1. **Polar coordinates.** The polar coordinates (r, θ) in the Euclidean x, y-plane are given by $(x, y) = (r \cos \theta, r \sin \theta)$.
 - (a) Derive the metric g_{ij} of the Euclidean plane in polar coordinates.
 - (b) What are the Christoffel symbols?
 - (c) Show that the Laplacian $\Delta f = g^{ij} D_i D_j f$ of a scalar function f in polar coordinates coincides with the familiar one from calculus.
 - (d) Write down the geodesic equation for \ddot{r} and $\ddot{\theta}$ and show that they are solved by straight lines in the x, y-plane.
- 2. Determinant of the metric. Let g denote the determinant of the metric $g_{\mu\nu}$.
 - (a) Show that in three dimensions g is given by $g = \frac{1}{6} \epsilon^{\mu\nu\kappa} \epsilon^{\alpha\beta\gamma} g_{\mu\alpha} g_{\nu\beta} g_{\kappa\gamma}$, where $\epsilon^{\mu\nu\kappa}$ is the three-dimensional Levi-Civita symbol (i.e. totally antisymmetric and $\epsilon^{123} = 1$).
 - (b) Show that $\epsilon^{\mu\nu\kappa}/\sqrt{|g|}$ transforms as a tensor under a coordinate transformation $x^{\mu} \to x^{\mu'}$.
 - (c) Show that $\Gamma^{\alpha}_{\alpha\beta} = \partial_{\beta} \log \sqrt{|g|}$ (summation convention is implied here).
- 3. Conformally flat metrics. Let f be a positive function and $g_{\mu\nu}(x) = f(x)^2 \eta_{\mu\nu}$ be a metric in d dimensions. Such a metric is called conformally flat.
 - (a) How do the light-cones look like?
 - (b) Show that $\Gamma^{\mu}_{\nu\lambda} = \delta^{\mu}_{\lambda}\partial_{\nu}\log f + \delta^{\mu}_{\nu}\partial_{\lambda}\log f \eta_{\nu\lambda}\partial^{\mu}\log f$.
 - (c) Show that $R = -\frac{1}{f^2} \left(2(d-1)\partial^{\mu}\partial_{\mu}\log f + (d-2)(d-1)\partial^{\mu}\log f \partial_{\mu}\log f \right)$.
 - (d) Show that we can write the metric of the unit 2-sphere, $ds^2 = d\theta^2 + \sin^2 \theta d\phi^2$, in the conformally flat form $ds^2 = \cosh^{-2} x (dx^2 + d\phi^2)$ by changing coordinates $x = \log(\tan(\theta/2))$.
 - (e) Use part (c) to calculate the curvature R of the unit 2-sphere.

4. Bianchi identity.

(a) Derive the Jacobi identity

$$[[D_{\alpha}, D_{\beta}], D_{\gamma}] + [[D_{\beta}, D_{\gamma}], D_{\alpha}] + [[D_{\gamma}, D_{\alpha}], D_{\beta}] = 0$$

by expanding the commutators.

- (b) Given a vector field V^{μ} . Show that $[D_{\mu}, D_{\nu}]V^{\lambda} = R^{\lambda}_{\alpha\mu\nu}V^{\rho}$.
- (c) Use (a) and (b) to derive the Bianchi identity

$$D_{\alpha}R^{\mu}_{\ \kappa\beta\gamma} + D_{\beta}R^{\mu}_{\ \kappa\gamma\alpha} + D_{\gamma}R^{\mu}_{\ \kappa\alpha\beta} = 0.$$