Exercise sheet 1: 24 Feb +3 Mar NS-TP431: Introduction to black holes (spring 2009)

The exercises are to be handed in during exercise class or brought to Timothy Budd in office
MG 418 before Friday $6 \mathrm{Mar}, 5 \mathrm{pm}$. The exercises will not be graded, but we expect all exercises to be done and we will try to give feed-back when necessary.

1. Polar coordinates. The polar coordinates (r, θ) in the Euclidean x, y-plane are given by $(x, y)=(r \cos \theta, r \sin \theta)$.
(a) Derive the metric $g_{i j}$ of the Euclidean plane in polar coordinates.
(b) What are the Christoffel symbols?
(c) Show that the Laplacian $\Delta f=g^{i j} D_{i} D_{j} f$ of a scalar function f in polar coordinates coincides with the familiar one from calculus.
(d) Write down the geodesic equation for \ddot{r} and $\ddot{\theta}$ and show that they are solved by straight lines in the x, y-plane.
2. Determinant of the metric. Let g denote the determinant of the metric $g_{\mu \nu}$.
(a) Show that in three dimensions g is given by $g=\frac{1}{6} \epsilon^{\mu \nu \kappa} \epsilon^{\alpha \beta \gamma} g_{\mu \alpha} g_{\nu \beta} g_{\kappa \gamma}$, where $\epsilon^{\mu \nu \kappa}$ is the three-dimensional Levi-Civita symbol (i.e. totally antisymmetric and $\epsilon^{123}=1$).
(b) Show that $\epsilon^{\mu \nu \kappa} / \sqrt{|g|}$ transforms as a tensor under a coordinate transformation $x^{\mu} \rightarrow$ $x^{\mu^{\prime}}$.
(c) Show that $\Gamma_{\alpha \beta}^{\alpha}=\partial_{\beta} \log \sqrt{|g|}$ (summation convention is implied here).
3. Conformally flat metrics. Let f be a positive function and $g_{\mu \nu}(x)=f(x)^{2} \eta_{\mu \nu}$ be a metric in d dimensions. Such a metric is called conformally flat.
(a) How do the light-cones look like?
(b) Show that $\Gamma_{\nu \lambda}^{\mu}=\delta_{\lambda}^{\mu} \partial_{\nu} \log f+\delta_{\nu}^{\mu} \partial_{\lambda} \log f-\eta_{\nu \lambda} \partial^{\mu} \log f$.
(c) Show that $R=-\frac{1}{f^{2}}\left(2(d-1) \partial^{\mu} \partial_{\mu} \log f+(d-2)(d-1) \partial^{\mu} \log f \partial_{\mu} \log f\right)$.
(d) Show that we can write the metric of the unit 2 -sphere, $d s^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}$, in the conformally flat form $d s^{2}=\cosh ^{-2} x\left(d x^{2}+d \phi^{2}\right)$ by changing coordinates $x=\log (\tan (\theta / 2))$.
(e) Use part (c) to calculate the curvature R of the unit 2-sphere.

4. Bianchi identity.

(a) Derive the Jacobi identity

$$
\left[\left[D_{\alpha}, D_{\beta}\right], D_{\gamma}\right]+\left[\left[D_{\beta}, D_{\gamma}\right], D_{\alpha}\right]+\left[\left[D_{\gamma}, D_{\alpha}\right], D_{\beta}\right]=0
$$

by expanding the commutators.
(b) Given a vector field V^{μ}. Show that $\left[D_{\mu}, D_{\nu}\right] V^{\lambda}=R_{\rho \mu \nu}^{\lambda} V^{\rho}$.
(c) Use (a) and (b) to derive the Bianchi identity

$$
D_{\alpha} R_{\kappa \beta \gamma}^{\mu}+D_{\beta} R_{\kappa \gamma \alpha}^{\mu}+D_{\gamma} R_{\kappa \alpha \beta}^{\mu}=0 .
$$

