
Exercise sheet 2: 10 Mar
NS-TP431: Introduction to black holes (spring 2009)

The exercises are to be handed in during exercise class or brought to Timothy Budd in office
MG 418 before 20 Mar, 5pm. The exercises will not be graded, but we expect all exercises to

be done and we will try to give feed-back when necessary.

1. Energy-momentum conservation. Show that the energy momentum conservation
DµTµν = 0 follows from the Bianchi identity and Einstein’s equations.

2. Newtonian limit. Let’s consider the Newtonian limit in which the metric is given by

gµν = ηµν + hµν , (1)

where hµν is viewed as infinitesimal with respect to the Minkowski metric.

(a) Show that the Christoffel symbols, the Ricci tensor and the Ricci scalar to first order
in h are given by

Γα
µν =

1

2
ηαλ(∂µhλν + ∂νhλµ − ∂λhµν)

Rµν =
1

2
(−∂2hµν + ∂α∂µh

α
ν + ∂α∂νh

α
µ − ∂µ∂νh

α
α) (2)

R = −∂2hµ
µ + ∂µ∂νhµν .

(b) Let’s assume from now on the metric to be stationary, ∂thµν = 0. Show that the
geodesic equation for a slowly moving particle (i.e. ẋµ ≈ (1, ẋi)) reduces to

d2xi

dt2
=

1

2
∂ih00. (3)

Therefore we can identify −1
2
h00 with the Newtonian gravitational potential Φ(x).

(c) Show that hµν = 2Φδµν solves the Einstein equations with T00(x) = −ρ(x) (and the
other components zero) when Φ satisfies the Newton’s gravity law

∂2Φ(x) = 4πGρ(x). (4)

(d) The components Tii describe the pressure of the source and if they are non-zero they
will contribute to the gravitational field. However, show that when we integrate Tii

over the region containing the source, the contribution averages to zero,∫
d3xTii = 0, i = 1, 2, 3. (5)

Hint: calculate ∂1

∫
dx2dx3T11(x) using the energy-momentum conservation which in

our static case reads ∂iTij = 0.

3. Deriving the Schwarzschild solution. Any 4-dimensional spherically symmetric static
metric can be written in the form

ds2 = −A(r) dt2 + B(r) dr2 + r2(dθ2 + sin2 θ dφ2), (6)

where A(r) and B(r) are functions of r. We will therefore take (6) as ansatz to find a
solution to the Einstein equations.
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(a) What should the asymptotics (r → ∞) of A(r) and B(r) be for the metric to look
like Minkowski space for large r?

(b) Show that the non-vanishing Christoffel symbols are (up to symmetry in the lower
indices)

Γr
tt = A′

2B
Γt

rt = A′

2A
Γr

rr = B′

2B
Γr

θθ = − r
B

Γθ
rθ = 1

r

Γr
φφ = − r sin2 θ

B
Γφ

rφ = 1
r

Γθ
φφ = − sin θ cos θ Γφ

θφ = cot θ
(7)

(c) Show that the non-vanishing components of the Ricci tensor are

Rtt =
1

2B

(
A′′ − A′B′

2B
− (A′)2

2A
+

2A′

r

)
,

Rrr =
1

2A

(
−A′′ +

(A′)2

2A
+

A′B′

2B
+

2AB′

rB

)
, (8)

Rθθ = 1− 1

B

(
1 +

rA′

2A
− rB′

2B

)
,

and Rφφ (but you do not need to calculate Rφφ).

(d) Applying the vacuum Einstein equations Rµν = 0, we get an (overdetermined) system
of differential equations. Show that a solution must satisfy (AB)′ = 0 and (r/B)′ = 1
and therefore (taking into account the asymptotics) must be of the form

A(r) = 1− 2M

r
; B(r) =

(
1− 2M

r

)−1

, (9)

for some constant M .

4. Tolman-Oppenheimer-Volkoff equations. We consider the metric ansatz (6) from the
previous exercise but this time we will impose Einstein’s equations with a non-vanishing
stress-energy tensor T ν

µ = diag(ρ(r),−p(r),−p(r),−p(r)).

(a) Write Einstein’s equations (with G = c = 1) in the form Rµν = −8π(Tµν − 1
2
gµνT )

and derive the equations for Rtt, Rrr and Rθθ.

(b) Using (8), show that

M ′(r) =
r2

4
(
Rtt

A
+

Rrr

B
) +

1

2
Rθθ = 4πr2ρ (10)

where we defined M by B = (1− 2M/r)−1.

(c) Use the energy momentum conservation DνT
ν
µ = 0 and (7) to derive

dp

dr
= −(ρ + p)

A′

A
= −(ρ + p)(M + 4πpr3)

r2(1− 2M/r)
. (11)
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