Exercise sheet 3: 24 Mar + 26 Mar
 NS-TP431: Introduction to black holes (spring 2009)

The exercises are to be handed in during exercise class or brought to Timothy Budd in office MG 418 before 27 Mar, 5 pm . The exercises will not be graded, but we expect all exercises to be done and we will try to give feed-back when necessary.

1. Electromagnetism coupled to gravity. The action for general relativity coupled to a matter field is of the form

$$
\begin{equation*}
S=\int d^{4} x \sqrt{-g}\left(\frac{R}{16 \pi G}+\mathcal{L}_{m}\right) \tag{1}
\end{equation*}
$$

where \mathcal{L}_{m} is a Lagrangian corresponding to the matter field.
(a) Show that when we vary S with respect to $g_{\mu \nu}$ we get the Einstein equations with stress-energy tensor given by

$$
\begin{equation*}
T^{\mu \nu}=-\frac{2}{\sqrt{-g}} \frac{\delta\left(\sqrt{-g} \mathcal{L}_{m}\right)}{\delta g_{\mu \nu}}=-2 \frac{\delta \mathcal{L}_{m}}{\delta g_{\mu \nu}}-g^{\mu \nu} \mathcal{L}_{m} \tag{2}
\end{equation*}
$$

You may use that $\delta \int d^{4} x \sqrt{-g} R=\int d^{4} x \sqrt{-g}\left(R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}\right) \delta g^{\mu \nu}$.
(b) For electromagnetism without sources \mathcal{L}_{m} is given by

$$
\begin{equation*}
\mathcal{L}_{m}\left(A_{\mu}, g_{\mu \nu}, J^{\mu}\right)=\frac{1}{4} F^{\mu \nu} F_{\mu \nu} \tag{3}
\end{equation*}
$$

where $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ is the field strength. Derive the corresponding $T_{\mu \nu}$.
(c) Show that the inhomogeneous Maxwell equation $D_{\mu} F_{\nu}^{\mu}=0$ (with $J^{\mu}=0$) is equivalent to $\partial_{\mu}\left(\sqrt{-g} F^{\mu \nu}\right)=0$.
(d) Assume we are in the static spherical symmetric case $d s^{2}=-A(r) d t^{2}+B(r) d r^{2}+$ $r^{2} d \Omega^{2}$ with only an electric field in the r-direction, i.e. $F_{0 r}=-F_{r 0}=E(r)$ and other components vanish. Show that the inhomogeneous Maxwell equation implies that

$$
\begin{equation*}
E(r)=\frac{Q \sqrt{A B}}{4 \pi r^{2}} \tag{4}
\end{equation*}
$$

for some constant Q.
(e) Show that $T_{\mu \nu}=\frac{Q^{2}}{32 \pi^{2} r^{2}} \operatorname{diag}\left(-\frac{A}{r^{2}}, \frac{B}{r^{2}},-1,-\sin ^{2} \theta\right)$.
2. Killing vectors. A continuous symmetry of a metric is characterized by a Killing vector field ξ_{μ}, which satisfies $D_{\mu} \xi_{\nu}+D_{\nu} \xi_{\mu}=0$. Show that $\xi_{\mu} \dot{x}^{\mu}$ is conserved along a geodesic $\lambda \rightarrow x(\lambda)$.
3. Falling into a Reissner-Nordström black hole. The Reissner-Nordström metric with charge Q is given by

$$
\begin{equation*}
d s^{2}=-A d t^{2}+A^{-1} d r^{2}+r^{2} d \Omega^{2} \tag{5}
\end{equation*}
$$

with $A=1-2 M / r+Q^{2} /\left(4 \pi r^{2}\right)$.
(a) Show that we can rewrite the metric as

$$
\begin{equation*}
d s^{2}=-A d v^{2}+2 d v d r+r^{2} d \Omega^{2} \tag{6}
\end{equation*}
$$

in terms of a co-moving time $v=t+f(r)$ (the analogue of (8.6) in the lecture notes) satisfying

$$
\begin{equation*}
\frac{d f}{d r}=\frac{1}{A(r)} \tag{7}
\end{equation*}
$$

(b) Solve (7). Hint: Use that $A(r)=\left(1-\frac{r^{+}}{r}\right)\left(1-\frac{r^{-}}{r}\right)$.
(c) Draw the light-cone structure in the (v, r)-plane.
(d) Let ξ^{μ} be the vector field corresponding to $\partial / \partial t$, i.e. time translation. Show that ξ^{μ} is a killing vector field and therefore the "energy" $E=-\xi_{\mu} \dot{x}^{\mu}$ is conserved for an infalling particle.
(e) Show that for a radially infalling (massive) particle we have

$$
\begin{equation*}
\dot{r}^{2}+A(r)=E^{2} \tag{8}
\end{equation*}
$$

where $\dot{r}=d r / d \tau$ is a derivative with respect to the eigentime parameterizing the geodesic.
(f) We can interpret (8) as the equation for a particle with energy E^{2} in a 1-dimensional potential $A(r)$. Draw this potential (and indicate where the horizons $r^{ \pm}$are). What would we expect to happen for a particle coming from $r=\infty$?
(g) Show that

$$
\begin{equation*}
\frac{d v}{d \tau}=\frac{E \pm \sqrt{E^{2}-A}}{A} \tag{9}
\end{equation*}
$$

where the sign depends on whether the particle is ingoing or outgoing. What happens to \dot{v} near the horizons? Argue that the coordinates brake down when the particle encounters the horizon r^{-}for the second time.
(h) Show that if we change coordinates to (u, r) with $u=v-2 f(r)$, that the coordinate singularity is removed. Therefore we have extended our space-time metric to a new region. What does the metric look like in these coordinates?
(i) What happens for a radially infalling massless particle?

