Exercise sheet 7: 28 Apr

NS-TP431: Introduction to black holes (spring 2009)
The exercises are to be handed in during exercise class or brought to Timothy Budd in office MG 418 before 4 May, 5 pm . The exercises will not be graded, but we expect all exercises to be done and we will try to give feed-back when necessary.

1. Surface gravity of the Kerr-Newman black hole. Recall that the Kerr-Newman metric is given by

$$
\begin{equation*}
d s^{2}=-\frac{\Delta}{Y}\left(d t-a \sin ^{2} \theta d \phi\right)^{2}+\frac{\sin ^{2} \theta}{Y}\left(a d t-\left(r^{2}+a^{2}\right) d \phi\right)^{2}+\frac{Y}{\Delta} d r^{2}+Y d \theta^{2} \tag{1}
\end{equation*}
$$

with $Y(r)=r^{2}+a^{2} \cos ^{2} \theta$ and

$$
\begin{equation*}
\Delta=r^{2}+a^{2}-2 M r+\frac{Q^{2}}{4 \pi}=\left(r-r_{+}\right)\left(r-r_{-}\right) \tag{2}
\end{equation*}
$$

(a) Show that if we replace $\phi=\tilde{\phi}+\frac{a}{r_{+}^{2}+a^{2}} t$ the metric (1) for constant θ and $\tilde{\phi}$ and close to $r=r_{+}$is given by

$$
\begin{equation*}
d s^{2}=Y\left(r_{+}\right)\left(-\frac{\left(r-r_{+}\right)\left(r_{+}-r_{-}\right)}{\left(r_{+}^{2}+a^{2}\right)^{2}} d t^{2}+\frac{d r^{2}}{\left(r-r_{+}\right)\left(r_{+}-r_{-}\right)}\right) \tag{3}
\end{equation*}
$$

up to higher order terms in $\left(r-r_{+}\right)$.
(b) Define a new coordinate $\rho=\rho(r)$ such that the metric takes the form of Rindler space-time

$$
\begin{equation*}
d s^{2}=-(\kappa \rho)^{2} d t^{2}+d \rho^{2} \tag{4}
\end{equation*}
$$

Show that κ (the "surface gravity") is given by

$$
\begin{equation*}
\kappa=\frac{1}{2} \frac{r_{+}-r_{-}}{r_{+}^{2}+a^{2}} . \tag{5}
\end{equation*}
$$

2. Free fall in Rindler space-time. The 2-dimensional Rindler metric is given by

$$
\begin{equation*}
d s^{2}=-(\kappa \rho)^{2} d \tau^{2}+d \rho^{2} \tag{6}
\end{equation*}
$$

for a constant κ.
(a) Show that the equation of motion for a massive particle in Rindler spacetime is given by

$$
\begin{equation*}
\frac{d^{2} \rho}{d \tau^{2}}=-\rho\left(\kappa^{2}+\frac{2}{\rho^{2}}\left(\frac{d \rho}{d \tau}\right)^{2}\right) . \tag{7}
\end{equation*}
$$

(b) For what value of ρ is τ a normalized (or proper) time-coordinate? What is the gravitational field at that point as felt by an observer at rest? This is by definition the surface gravity (corresponding to the time τ).
(c) Given a value $\rho_{0}>0$, how should we rescale τ for it to be normalized at $\rho=\rho_{0}$? What is the surface gravity corresponding to the new time coordinate? How does it depend on ρ_{0} ?

We see that the definition of surface gravity depends on the chosen time coordinate. However, for a stationary asymptotically flat space-time metric (like Schwarzschild and KerrNewman) there exists a natural choice of time coordinate corresponding to the proper time at spatial infinity (which we used in the previous exercise).
3. Show that the period in Euclidean time is $2 \pi / \kappa$.

