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C H A P T E R 1

Introduction

The product software industry is flourishing. Computer games, enterprise resource
planning products, and navigation systems are just some examples of successful
products, nationally and internationally. The international product software industry
has had a sustained growth of around 14% for a number of years, making it one of
the most successful industries at this time. In 2001 (1999) the total market of the
product software industry was estimated to be 196 (154.9) billion USD, which is just
9% of the overall ICT spending of 2.1 trillion USD worldwide. “The product software
sector is among the most rapidly growing sectors in OECD countries, with strong
increases in added value, employment and R&D investments” [44]. More specifically,
the Netherlands exported 1.6 billion Euro worth of software products in 2005, putting
the Netherlands in fourth place on the list of largest exporters of product software in
the world.

Though product software vendors have a large body of knowledge available to them
about generic software development, product development, and engineering, none of it
is specific to the development of product software. Authorative works such as the the
SoftWare Engineering Body Of Knowledge [1] only sparsely address the issues that
are specific to product software management. Also, in product lifecycle management
and product data management literature physical products are preferred over software
products, with few exceptions.

One area of product software development that requires more attention are
the release, delivery, deployment, and usage and activation processes, also known
as customer configuration updating. This “ugly duckling” of product software
development is the subject of this thesis, mostly because so little research has been
done in this area, even though it affects product software developers on a large scale.

The overall question of this research is whether customer configuration updating
can be improved for product software vendors by explicitly managing product software
knowledge. This question is answered using a mixed method multi-theory approach.
The results are a detailed description of the Customer Configuration Updating (CCU)
processes that are obtained by conducting case studies into practices of product
software vendors, by tool evaluations, surveys, prototype building and evaluation in
industrial size case studies, and design research.

The overall result of this research is the development of four contributions that
improve customer configuration updating and the unveiling of the importance of
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Introduction CHAPTER 1

customer configuration updating. The first contribution is a customer configuration
updating process improvement model that enables product software vendors to make
strategic improvement decisions. The second contribution is a tool evaluation method
that enables customer configuration updating support tool builders to establish what
features are required for such tools. The third contribution is a tool infrastructure for
software knowledge delivery, enabling product software vendors to share knowledge
with their end-users in a software supply network. Finally, the fourth contribution
is a tool that facilitates correct evolution between configurations of components
while keeping complexity within manageable borders. The importance of customer
configuration updating is uncovered by nine case studies of product software and a
survey, showing that customer configuration updating improvements have had a large
influence on product success.

1.1 Research Area

1.1.1 Product Software
Product software is a packaged configuration of software components or a software-
based service, with auxiliary material, which is released for and traded in a specific
market [132]. In contrast, product software is different from embedded software
because product software is sold separately from the hardware on which it will be
installed. Furthermore, it is different from customly built software for one customer, in
that because product software is delivered to a large number of customers and deployed
on a wide variation of hardware components.

Some examples of product software are games, components-off-the-shelf, database
management systems, and ERP packages:

• TomTom [129], the manufacturer of navigational software and embedded
devices, develops the software product TomTom navigator. This product is a
software product because it can be deployed on a large range of devices (PC,
PDA, and embedded devices) and is sold separately. TomTom has demonstrated
an explosive growth throughout the last years and is now active in eighteen
countries.

• Zylom games [27] is a manufacturer and service provider of games delivered
over the Internet. Their target customers are casual gamers who wish to play a
quick game. For a small amount of money gamers can play all games without
limitations. Furthermore, gamers can participate in international tournaments.
This Dutch founded company currently has 10 million subscribed casual gamers.

• Exact Software [26] is a manufacturer of product software and one of the largest
product software vendors in the Netherlands. Their ERP products, making
bookkeeping for small to medium companies simple, are being sold all over the
world. Currently their customer base exceeds 160,000 customers.

Besides illustrating what product software entails, these three Dutch examples show
that product software vendors can be extremely successful. Furthermore, these three

4



SECTION 1.1 Research Area

provide only a minor part of the 1.6 billion euros in exports from the Netherlands.
Besides being a booming business, the OECD [44] claims that product software is one
of the most rapidly growing sectors in OECD countries.

1.1.2 Product Management Research Perspectives
Product software management can be seen from three perspectives [132], being the
social perspective, the company perspective, and the development perspective. The
social perspective views all external factors that influence a product software vendor,
such as laws and regulations and the economy. The company perspective concerns
all non-development processes, such as marketing, sales, quality control, etc. Finally,
the development perspective concerns all processes that eventually produce software
products that can readily be deployed at the customers. The product software research
framework is displayed in figure 1.1 [132].

The focus of this thesis is on the development perspective, and more specifically
the development, release, delivery, and deployment of product software (found in
the bottom right corner of figure 1.1). The development process determines how
bugs are resolved, feature requests are satisfied, the development methodology,
etc. Furthermore, the release process determines how and when new releases are
published, keeping in mind the releases that are already installed at customers.
The delivery process concerns the delivery of software artefacts from customer to
vendor, again keeping in mind the releases that are deployed at customer sites. The
deployment process concerns not only the technical deployment of products, but also
the implementation of these products into the customers’ organization.

1.1.3 Customer Configuration Updating
One area specific to product software vendors is that they have to release, deliver,
and deploy their products on a wide range of systems, for a wide range of customers,
in many variations. Furthermore, these applications constantly evolve, introducing
versioning problems. An increasingly important part of product software development
thus is CCU. CCU is the combination of the vendor side release process, the product
or update delivery process, the customer side deployment process, and the activation
and usage processes. Product software vendors encounter particular problems when
trying to improve these processes, because vendors have to deal with multiple revisions,
variable features, different deployment environments and architectures, different
customers, different distribution media, and dependencies on external products. Also,
there are not many tools available supporting the delivery and deployment of software
product releases that are generic enough to accomplish these tasks for any product. For
a complete description of CCU we direct the reader to section 2.2.

This thesis does not stand alone in its attempt to improve CCU for product
software vendors. The work on evaluating product updaters is largely based on
an earlier evaluation model provided by Carzaniga et al [21]. Furthermore, the
entrepreneurial aspects of this work were inspired by Xu and Brinkkemper’s work on
product software [132]. The tool Pheme was largely inspired by the Software Dock [52]
and can be considered a next generation of it.

5
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Figure 1.1: Product Software Research Framework
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An integrated view of CCU is rarely presented in literature. There is, however, a
large body of knowledge about the separate CCU processes.

Release management is divided into two areas, being release support tools and
release planning. Release planning [122, 6, 20] is often seen as a wicked problem.
This thesis only touches the surface of release planning, and attempts to find a generic
process description for release planning, instead of detailed solutions for feature and
bug prioritization [92] and solutions that describe new release methods [124]. The
solutions presented focus on software products as blank artefacts. With respect to
release tools this thesis does present a fairly simple release tool. However, the
release tool presented in this thesis assumes the product is ready for delivery, whereas
others [125], do not.

In regards to software delivery no research specifically addresses delivery
of product software knowledge, with the exception of the works of Farbey and
Finkelstein [42]. Other works on software delivery [61] focus more on the technical
problems of delivery, such as trying to reduce overhead and delivery cost.

The work on deployment of components in multidimensional configurations could
not have been carried out without the work of van der Storm revealing that these
configuration spaces can be reduced to binary decision trees [123]. Other works on
deployment and updating generally only look at technical aspects of deployment. An
inspirational example of this is Nix [35], a tool that ensures complete and correct
deployment by storing a customer’s complete component configuration in a versioned
repository. This tool elegantly updates component configurations but does not at all
focus on the organizational aspects of deployment. Another example is the thesis of
Ajmani [2] who has developed a theoretical model for run-time updates of distributed
systems. Though this system is highly advanced and elegantly performs runtime
updates, it does not describe any of the organizational deployment issues, such as
dependencies on other applications and evolution of customer specific solutions.

With regards to usage and activation a research trend can be observed that
focuses more on software quality and profiling of software products in their operational
environments. Some examples of research projects focusing on usage and error
feedback are Skoll project [77], EDEM [56], and GAMMA project [96], which uses
a technique called software tomography to get valuable information from running
deployed software. The techniques proposed by Elbaum and Diep [41] have been
inspirational to this thesis, however, these techniques focus solely on where a software
application must be probed to gather information on a deployed software application.

1.1.4 Product Software Development and Maintenance
Product software development is the activity of development, modification, reuse, re-
engineering, maintenance, or any other activities resulting in packaged configurations
of software components or software-based services. Product software development
shares many processes and concepts with software engineering, although software
engineering is all encompassing for the building of software, whereas product software
development specifically looks at software products released for a market.

One of the main drivers for this research is the need to deliver working software
quicker and to deliver software of higher quality. Customers expect better software and
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shorter iterations between releases. Software developers are able to satisfy this demand
by constantly testing, releasing, and generating more code. This type of software
development is known as agile software development [10]. Some of the development
methodologies originating from the agile camp are Extreme Programming [11] and
Scrum [105] and are suitable methods to apply to product software development.

As product software vendors grow larger they find that product software knowledge
management is a critical success factor. Sales personnel must know when the next
release is coming out, what features are being developed at the moment, and what they
can and cannot show customers. Software developers need to know when the next
release is due, what customer concerns are, and what requirements deserve priority.
Also, helpdesk personnel need to know what issues are being fixed, for which issues
workarounds are available, etc. These are just some of the examples of knowledge that
needs to be managed by product software vendors.

Product software knowledge management is the driving factor behind high quality
CCU processes. For these processes knowledge is required about the product,
such as product features, relationships to third-party products, and product licensing
possibilities. Not only must this knowledge be managed internally, such that
stakeholders can acquire this knowledge at any time, but this knowledge also
needs to be shared with customers, third-party component providers and third-party
implementation partners. For the CCU processes, different types of knowledge are
required.

To release software a vendor needs to know when a product release will be finished,
what product releases have already been released, the bill of materials for a release, and
a products relationship to other products. Furthermore, a product software vendor must
clearly define its debug and release policies, which together define release planning.
Also, a vendor must define policies on how the release policy is shared with external
parties.

To deliver software a vendor needs to determine what customers already have, how
product artefacts are transported to the customer, and how often. A vendor needs to
clearly specify how product releases are published. Furthermore, a vendor must deliver
products to customers when they want products, not when the vendor feels like it. For
the delivery process the customer also plays a part in knowledge management, because
they decide when and how product usage and error feedback is delivered to the vendor.

To deploy software a vendor must make sure that all product requirements and
dependencies have been made explicit, preferably in a human and computer readable
format, and that this knowledge is at the customer side at the time of deployment.
Furthermore, the vendor needs to know exactly how a customer’s configuration can
be updated to contain a vendor’s new features and products. Also, vendors potentially
need to train customers and keep them up-to-date about product developments.

Finally, the usage and activation process are for a large part the customer’s
responsibility. They decide when a license is used to activate a product, when
knowledge about the configuration is delivered to the vendor, and how bug reports
and feature requests are sent to the vendor.
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1.1.5 Overview of Concepts
To improve the readability of this thesis the following definitions are provided. Please
note that these definitions are in part a contribution of the research.

• Customer Configuration Updating - Customer configuration updating (CCU)
is the combination of the vendor side release process, the product or update
delivery process, the customer side deployment process, and the activation and
usage processes. These processes all influence knowledge interaction between a
vendor and a customer. A customer configuration is its current configuration of a
product, the hardware on which it runs, and the services required to activate and
use a product [143, 151].

• Release Management - We define Product software release management as the
storage, publication, identification, and packaging of the elements of a product.

• Release Package Planning - Release package planning, which is part of the
release planning process, is the process of defining what features and bug fixes
are included in a release package and the process of identifying these packages
as bug fix, minor, or major updates, taking into account releases that have been
published in the past and the possible update process required to go from one
release of the product to another.

• Delivery - Product software delivery is the delivery of software products,
licenses, and software product knowledge from vendors to customers and from
customers to vendors.

• Deployment - The delivery, assembly, maintenance of a particular software
system at a customer site [21].

• Usage and Activation - The usage and activation process describes the
customer-side processes in between deployment and removal of a software
product. Processes included are the activation of the software product, the usage,
the generation of feedback, the delivery of feedback to the software vendor, and
billing of usage of the product.

• Product Update - A product revision released to enhance an older version of a
software object.

• Product Updater - A product updater is an application that evolves a customer
configuration by deploying a product update.

• Software Product Management - Software product management is portfolio
management, product roadmapping, requirements management, and release
planning [119]. Though CCU is not explicitly mentioned in this definition, it
contributes to all parts. In regards to portfolio management a vendor must know
what versions customers are running. Furthermore, product roadmapping is
directly related to bug policy making. Also, requirements management contains
customer feedback such as error reports and feature requests. Finally, release
planning includes release package planning which is a CCU practice.
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• Continuous CCU - Continuous CCU (C-CCU) is defined as being able to
continuously provide any stakeholder of a software product with any release of
the software, at different levels of quality. This way developers, testers, and even
end-users can always be fully up to date, if desirable. C-CCU requires clear
policy definitions for release, delivery, deployment, logging, feedback, and bug
resolution. Please find a detailed description in chapter 7.

• Software Supply Network - A Software Supply Network (SSN) is a series
of linked software, hardware, and service organizations cooperating to satisfy
market demands. Whereas in the past product software vendors used to be
monolithic organizations dealing with their own customers only, trends such as
components-off-the-shelf and plug-in architectures have lead to software vendors
forming into complex networks of suppliers.

• Update Package - A package that promotes a customer’s configuration to a
newer configuration.

• Bug Fix Update Package - A package that contains only bug fixes and no new
functionality.

• Feature Update Package - A package that contains only new features.

• Minor Update Package - A package that contains bug fixes and new
functionality that does not change the product structurally.

• Major Update Package - A package that contains bug fixes and new
functionality that changes large aspects of the product, such as the architecture
and underlying data model.

• Software Product - A packaged configuration of software components or a
software-based service, with auxiliary material, which is released for and traded
in a specific market.

• Software Product Lines - Engineering techniques for creating a portfolio of
similar software systems from a shared set of software assets using common
means of production.

1.2 Research Setting and Industrial Embedding
This research has been conducted in both an academic and an industrial setting. In
the following subsections is explained what part different organizations played in the
research. Furthermore, the reasons are provided why this research was conducted in
such close connection with industry.

1.2.1 Academic Research Centers
Much of the research was conducted at three academic institutes, being the Centrum
voor Wiskunde en Informatica (CWI) [128], the Center for Organization and
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Information [94], which is part of the Beta Faculty of Utrecht University, and
the Software Systems Engineering Group, which is part of the Computer Science
department of University College London [107].

At CWI the case study protocol was created and used during for nine case studies
presented in this work. Furthermore, the tool evaluation model for software product
updates was developed there, and a large part of the tool evaluations presented in
chapter 5 were conducted at the CWI as well. Finally, the Meta-Environment,
a framework for language development, source code analysis and source code
transformation developed at the CWI, [113] is used as a case study in chapter 7. The
CWI provided a fertile ground for the more technical aspects of this research.

At the Center for Organization and Information the research was conducted into
the industrial aspects of this research. The CCU model was created there, as well as
the survey to evaluate the practices of a product software vendor as well. Furthermore,
the Pheme tool was conceived at the center. The larger part of the thesis was written
here. Also, the mixed method multi theory approach was devised here. The Center for
Organization and Information has provided a useful academic network for cooperation
with different organizations, such as the Platform for Product Software and VivaCadena
[137]. Also, some work was conducted with students from this institute [136].

Finally, the Pheme prototype, described in chapter 7, was built for the larger part
at the Software Systems Engineering Group, which is part of the Computer Science
department of University College London [107]. Also, in cooperation with Anthony
Finkelstein, we further developed the modeling method for software supply networks
[151]. The Systems Engineering Group helped us with an industrial case to prove that
the modeling method contributes in discovering business threats and opportunities.

1.2.2 Platform for Product Software

The Platform for Product Software is a Dutch group of product software vendors
who have united under this name to share non-competitive business knowledge. The
Platform is unique in the Netherlands, and attempts to share knowledge between
product software vendors and academic institutions. The Platform arranges several
meetings and working groups and is planning to grow into a formal organization with
membership fees, regular product software specific courses, and a yearly convention.

The Platform for Product Software has provided different information sources for
this research. To begin with, several companies were selected from the platform to
do case studies with. Also, the survey, presented in chapter 4, was held amongst
several of the Platform’s members. Furthermore, organizing and attending the
delivery workgroup meetings brought awareness of problems in the field. Finally, the
workgroup assisted in prioritizing the questions of the afore mentioned survey.

The companies visited for this research were Exact Software, GX, Planon,
Stabiplan, Chipsoft, Nedstat, and Tribeka. These companies provided literature, design
documents, and update tools, and participated in case studies and tool evaluations.
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1.2.3 Industry Context and Applicability
Clearly this research has been strongly embedded in the product software industry.
There are a number of reasons for this.

The CCU processes are described to a limited extent in common literature, resulting
in a lack of process descriptions, from which both industry and academics could profit.
Furthermore, because product software vendors were the first to encounter problems
with CCU manageability, academia has not yet developed equally advanced solutions.
The industrial partners have also provided us with a number of critical success factors
for the implementation of these processes.

The second reason why this work is strongly embedded in industry is that the
industrial partners enabled tool evaluation from a different perspective. The product
software vendors provided us with reviews and change requests for the Pheme
prototype that is presented in chapter 7. Also, the product software vendors enabled
evaluation of proprietary CCU support tools, providing a richer dataset. These
proprietary support tools are discussed in chapter 5.

The third reason is that the product software vendors have enabled evaluation of
the process models and improvement propositions. Each case study was finalized
with an advisory report indicating strengths and weaknesses of their processes and
that proposed a number of improvements, based on the process models. These
improvements were praised and criticized by the product software vendors.

This research is, besides being highly relevant academically, a contribution to the
product software industry. Product software vendors can use this thesis as a set of
guidelines when designing CCU support tools and implementing these tools and CCU
processes into their organizations.

1.3 Research Description
Product software vendors are impeded in their growth because they cannot adequately
share knowledge with customers about products. Furthermore, these product software
organizations increasingly cooperate in complex software supply networks, where one
software vendor is the customer of another. These situations require an even larger
amount of knowledge to be shared over a web of vendors and customers. To improve
this situation software vendors need to know what knowledge they need to share with
customers and how to share it.

Knowledge about products is shared when vendors release, deliver, deploy and
when customers use a software product. These CCU processes have not yet before
been properly modeled and evaluated. Furthermore, there are few tools that support
large parts of the CCU processes. When software vendors attempt to improve CCU
three problems become apparent:

• There are no adequate process descriptions for CCU,

• There is a lack of tools to support CCU,

• Each software vendor spends a lot of time automating CCU tasks, even though
these tasks are similar for all software vendors.
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The results of these three problems is that product software vendors, customers,
and end-users experience many problems when releasing, delivering, distributing,
deploying, and using product software.

For example, the Dutch product software and embedded devices vendor TomTom
released a version of their product with a virus in 2007. Another example is when
Microsoft released an old pre-release version of Vista to all its large volume customers
on the 22nd of November 2006. Furthermore, delivery of software and knowledge,
though seemingly trivial through the Internet, is often blocked by Firewalls.

When a customer organization or company purchases a software product, it often
needs to be distributed to large numbers of workplaces. This is a complex activity,
especially when these end-user configurations need to be updated or require one
resource, such as a pool of licenses, or a database management server.

In 6 industrial case studies and a survey it was discovered that between 5% and 35%
of the deployments of new products and product updates do not proceed as planned
and require unplanned extra support from the software vendor. These organizations are
impeded in their growth, due to the fact that they cannot handle larger customer bases,
since it would result into more configurations that require maintenance and updates.

When a product has been deployed, it still needs to be activated and used. When
a product is being used, usage and error feedback reports need to be sent back
to the product software vendor. Currently there are no sufficiently adequate tools
that can send, receive, and process error and usage feedback. To illustrate the use
of customer feedback: when Microsoft implemented automatic error reporting for
Microsoft Windows they quickly discovered that 1% of the bugs caused 50% of all
the errors [18].

There clearly exists a need for CCU tools, process descriptions, and research.

1.3.1 Research Questions

The research is based on two main research questions. The first research question is

RQ1: What are the concepts and is the state of affairs of customer
configuration updating for product software?

Delivering the correct configuration of components to a customer is a complex
task for a software vendor, especially when taking into account subsequent releases
of components. Before this research, there were no complete definitions that defined
the practices of CCU. Authorative works, such as the SoftWare Engineering Body Of
Knowledge [1] only address these processes in a scattered fashion, leaving a need for
concrete process descriptions. Also, developers of tools supporting these processes
generally develop tools that are restricted to only one development technology or
process fragment. There are three subquestions (SQs) to this research question.

SQ1.1: What is the state-of-the-art of customer configuration updating and who
are the stakeholders? The state of the art and the stakeholders provide insight into
current problems being addressed by the scientific community. Furthermore, the
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state of the art provides us with typical problems and measuring tools to evaluate the
presented research.

SQ1.2: What is the state-of-the-practice of customer configuration updating for
product software vendors? The state of the practice provides us with a view of how
CCU is currently implemented at most product software vendors. This enables us to
compare “ideal” theoretical solutions with solutions that actually work in practice.
Furthermore, descriptions from the state of the practice enable us to test research
results in practical settings and the model descriptions from sub question 1. By looking
at product software vendors’ best practices can be uncovered for the product software
industry and software engineering. These best practices can be used to inform both the
scientific community and other product software vendors on what best practices exist
regarding knowledge sharing.

SQ1.3: What parts of the CCU processes are currently supported by product
update tools? Many practical problems from CCU processes are caused by the absence
of adequate tools. Before making such judgment and acting upon that by building
new prototype tools, however, an inventory is needed of what features are currently
provided by product software update tools. Such an inventory will uncover gaps in
CCU processes and tools, and enable product software vendors to make informed
decisions in make-or-buy situations.

RQ2: Can customer configuration updating be improved by explicitly
managing and sharing knowledge about software products?

The scientific motivation for the research question is to develop processes and tools
for the fully automatic consistency checking and web-based deployment, upgrading
and integration of product software. The goal of the research is to provide academics
and practitioners with comprehensive process models and tools that support the CCU
processes, enabling both groups to improve the area of product software engineering,
maintenance, and management. The economic motivation for the research question
is to strengthen the manufacturing and deployment of product software in the
Netherlands even more.

SQ2.1: What aspects of customer configuration updating can be improved by
explicitly managing and sharing customer configuration updating knowledge and can
these improvements be measured? The first step in answering this research question is
to discover which parts of the product software development process are potentially
improved. To do so a number of measures need to be developed to quantify these
improvements. Such measurements enable the explicit definition of the contribution of
this research.

SQ2.2: Are product software vendors who explicitly manage customer
configuration updating knowledge more successful? A first insight into what

14



SECTION 1.3 Research Description

areas of product software development can be improved is provided by examples of
product software vendors who are more successful because they explicitly manage
software knowledge. Detailed descriptions of how these processes are improved and
what type of knowledge is being managed and distributed in complex networks of
product software vendors and customers enable further validation of the hypothesis
that explicit knowledge sharing contributes to product software development.

SQ2.3: What functionality is required from tools managing and reusing customer
configuration updating knowledge to support product software development and the
customer configuration updating processes? Product software vendors can only
explicitly manage product software knowledge with tools that can store software facts
(in both a computer and human readable format) due to the large amount of data.
To build such tools an inventory needs to be made of software knowledge that can
potentially be managed by such tools. Furthermore, there needs to be a demand for
such tools from a business perspective. Finally, the tools need to be evaluated in
different settings to establish their contribution.

1.3.2 Research Approach

There are three views of CCU, being the practice view, the tool view, and the process
view (see figure 1.2). The practice view concerns how CCU is applied in practice
by product software vendors and open source products. The tool view looks at
CCU support tools and their specific characteristics supporting the CCU processes.
The process view concerns CCU process design and process models enabling any
stakeholder of a software product to evaluate its CCU processes.

To answer the first research question about the current state of the practice of CCU,
two studies were conducted; one through case studies at product software vendors and
one through tool evaluations found in literature and used by the case study subjects.
These case studies and tool evaluations enabled the forming of hypotheses about the
Dutch product software industry, and about CCU support tools. It was soon found
that the product software vendors encountered problems while implementing CCU
processes and that the tools did not provide all features required by these product
software vendors. This was confirmed when the tools and cases were evaluated using
two specially designed evaluation models.

The CCU evaluation model was used to establish whether product software vendors
can be compared and whether their CCU processes are a source of new problems and
solutions. The CCU evaluation model enabled the forming of hypotheses about the
Dutch product software industry. These hypotheses were then tested using the CCU
survey. We then used the survey to establish empirical evidence for further theory
building.

The CCU support tool evaluation model was used to establish what features are
usually missing in these tools, what processes still provide technical challenges, and
how these tools compare to each other. Some missing features also came from
demands made by the product software industry. To improve the product software
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Figure 1.2: CCU Research Approach

CCU processes two tools were developed. These tools were evaluated in two different
scenarios. The tools and evaluation enabled further theory building.

1.3.3 Research Methods

This research has been conducted as a mixed method multi-theory study of CCU
processes. The methods used are case studies, survey research, design research, tool
evaluation, and prototype evaluation. The applied research methods per chapter and
publication are shown in table 1.1.

Chapter Publication Case Survey Design Tool Prototype
study research evaluation evaluation

2 [143, 139, 144] X X
3 [141, 148] X X X
4 [146] X X
5 [147] X X
6 [142] X X
7 [149] X X X
8 [145] X
9 [151, 152] X X

Table 1.1: Applied Research Methods

Case Studies - Nine case studies have been conducted applying the case study
method developed by Yin [133]. The case studies have contributed to defining the
problem area, defining the state of the practice, and finding tools in the field. In chapter
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3 one of these cases is described in further detail. Also, from these nine case studies
ten misconceptions about customer configuration updating are highlighted and clarified
using cost/value evaluation in chapter 8. In chapter 9 a case study is used to evaluate a
modeling method for software supply networks. The case studies were performed with
care and rigor, using Yin’s case study method and guidelines [133]. To avoid common
pitfalls we have used guidelines and pointers from Kitchenham and Flyvbjerg [69, 43].

Survey Research - The case studies, though useful for initial investigation and
finding new phenomena, did not enable full generalization of the conclusions drawn
about product software vendors in the Netherlands. To counter this, a survey was
held among 74 product software vendors in the Netherlands. Their results enabled
generalization of our conclusions and provide a clear image of the CCU processes of
Dutch product software vendors.

Design Research - Some of the conducted research is design research [118], where
solutions are designed and evaluated in different settings. Some examples are the
CCU model in chapter 2, the product development cycle time model and the Pheme
Knowledge Delivery Infrastructure described in chapter 7, the software deployment
modeling technique and tool in chapter 6, and the software supply network modeling
technique presented in chapter 9.

Tool Evaluation - Tool evaluation in this research is seen as a specific case
study method to determine properties and features of CCU processes support tools.
To establish what tools are appropriate to support (C-)CCU processes, tools were
evaluated by testing and applying them to real-life examples in chapter 7. The result of
this research is a list of features that are currently insufficiently provided by (C-)CCU
support tools.

Prototype Evaluation - Two tools were built to demonstrate feasibility and to
establish that they actually improved (C-)CCU. These tools were evaluated the same
way as the other academic and commercial tools in chapters 6 and 7.

1.4 List of Acronyms
PDM Product Data Management

SCM Software Configuration Management

CRM Customer Relationship Management

SKB Software Knowledge Base

CCU Customer Configuration Updating

C-CCU Continuous Customer Configuration Updating

SSN Software Supply Network

COTS Components off the Shelf

ASP Application Service Provider
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1.5 Thesis Outline
The different research questions and subquestions are answered throughout the
chapters. The focus of this thesis is on two topics: the state of the practice and the
designing of new solutions that support and improve the CCU processes, which is
reflected by the two research questions. The chapters can (crudely) be divided over
the two questions as well. Chapters 2, 3, 4, and 5 consider the state of the practice
and demonstrate best practices. Chapters 6, 7, 8, and 9 introduce new processes,
techniques, and technology to support and improve the CCU processes.

Readers new to the field of CCU are recommended to read chapters 1 and 2.
Furthermore, once the foundations for CCU are laid, one should move on to chapter
4, to read more and find some of the empirical evidence for the claims made in this
thesis. Should one wish to know more about the case studies, chapters 2 and 3 describe
nine case studies and provide a detailed case study approach. These chapters make up
part II of this thesis, describing the current practice of CCU in product software and
providing evaluation models for CCU.

For those interested in CCU support tools, chapters 5, 6, and 7 provide tool
evaluation models, evaluations, implementations, and descriptions. Together these
chapters make up part III of this thesis.

Finally, for those looking for anecdotal evidence and process improvement
proposals, chapter 8 describes some process improvement proposals about release
management. Furthermore, this part describes the effect of software supply networks
on CCU. These two chapters make up part IV, describing process improvements for
CCU.

Chapter 1 introduces the thesis work and provides an overview of the thesis, the
research questions and methods, and the concepts used in the chapters.

Chapter 2 is based on joint work performed with six product software vendors and
CWI [128], and describes case studies into the CCU processes of product software
vendors. This work establishes CCU as a new area and firmly puts it onto the
software product development agenda, hence the title “Turning the Ugly Duckling into
a Swan”. The work was published in part at the doctoral consortium of the International
Conference on Software Engineering in 2006 [139], in part at the Workshop on
Interdisciplinary Software Engineering Research in 2006 [144], and presented in full
at the International Conference on Software Maintenance in 2006 [143].

Chapter 3 describes one of the case studies in full detail and shows that
integration of product data management, software configuration management, and
customer relationship management enables a product software vendor to serve 160,000
customers with minimum overhead. This work was published as a technical report at
CWI in 2004 [64], as a paper at the International Conference on Software Maintenance
in 2005 [148], and in the Journal for Software Maintenance and Reengineering in 2006
[141].

Chapter 4 describes the result from a benchmark survey amongst product
managers active in the product software industry. The survey was used to benchmark
products from different product software companies in regards to their CCU processes.
The work has recently been submitted [146].

Chapter 5 describes an evaluation model for product update and CCU tools.
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Furthermore, fourteen tools are evaluated and missing features are described. The work
was published in 2005 [147] at the European Conference on Software Maintenance and
Reengineering.

Chapter 6 describes, based on van der Storm’s theory that all differences between
two component configurations can be calculated using binary decision trees [123],
how this theory can be used on component configurations with different versions
and features. An early version was published at the Workshop on Development and
Deployment of Product Software in 2005 [138] and the full version was presented at
the Workshop on Component Deployment in 2005 [142].

Chapter 7 describes improvement in development speed and time to market for
two experimental case studies in which different CCU support tools (such as Pheme)
are applied. The work has recently been accepted for publication in the Proceedings
of the ERCIM Workshop on Software Evolution 2007 [149]. A short paper describing
Pheme has also been published at the conference on software maintenance in 2007
[140].

Chapter 8 describes ten misconceptions based on evidence from the case studies.
These misconceptions describe process improvements for release management. The
work was published at the First International Workshop on Software Product
Management in 2006 [145].

Chapter 9 has been published in part at the Caise Forum [150] and at the industrial
session of the International Conference on Software Maintenance in 2006 [152]. A
full version has been accepted for publication [151] in the Proceedings of the 8th IFIP
Working Conference on Virtual Enterprises. The work describes a modeling method
for software supply networks and describes the case study of Tribeka, an English firm
that provides hardware that “prints” software on-demand in a computer or software
store.

Chapter 10 provides answers to the research questions and lists the contributions
of this work.
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C H A P T E R 2

Turning the Ugly Duckling
into a Swan

For software vendors the processes of release, delivery, and deployment
to customers are inherently complex. However, software vendors could
greatly improve their product quality and quality of service by applying
a model that focuses on customer interaction if such a model were
available. This chapter presents a model for Customer Configuration
Updating (CCU) that can evaluate the practices of a software vendor in
these processes. Nine extensive case studies of medium to large product
software vendors are presented and evaluated using the model, thereby
uncovering issues in their release, delivery, and deployment processes.
Finally, organizational and architectural changes are proposed to increase
quality of service and product quality for software vendors.1

2.1 Introduction
With the advent of increased amounts of bandwidth, the communication between
software vendors and their customers can greatly be improved by introducing automatic
error feedback reporting, usage feedback reporting, electronic customer feedback, and
license, patch, and update distribution. Whereas in the past customers and vendors
could only communicate by mail and phone, the World Wide Web can now function
as a lifeline between customers and software vendors, allowing automatic license
retrieval, deployment and error feedback, automatic updates, and automatic provision
of commercial information to customers. Product software vendors, however, generally
do not implement any of these key practices.

To date product software is a packaged configuration of software components or
a software-based service, with auxiliary materials, which is released for and traded in
a specific market [132]. Product software vendors encounter many problems when

1This work was originally published in the proceedings of the 22nd International Conference on Software
Maintenance, entitled “Definition and Validation of the Key Process Areas of Release, Delivery and
Deployment for Product Software Vendors: turning the ugly duckling into a swan” in 2006 [143]. The
work is co-authored with Sjaak Brinkkemper.
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attempting to improve customer configuration updating of their product software.
Customer configuration updating is defined as the combination of the vendor side
release process, the product or update delivery process, the customer side deployment
process, and the activation process. To begin with, these processes are themselves
highly complex, considering vendors have to deal with multiple revisions, variable
features, different deployment environments and architectures, different distribution
media, and dependencies on external products (see chapter 6). Also, there are not many
tools available that support the delivery and deployment of software product releases
that are generic enough to accomplish these tasks for any product (see chapter 5).
Finally, CCU is traditionally not seen as the core business of software vendors, and
seemingly does not add any value to the product, making software vendors reluctant to
improve CCU.

A number of sources show that CCU is often underestimated and that it requires
more attention in the quickly changing software industry. First, the quality of
deployment and upgrade processes can increase customer perceived quality of a
software product significantly [82], making it important that these processes are
managed explicitly. Also, field research has shown that by explicit management of
CCU, software vendors are able to handle large amounts of customers as is described in
chapter 3. Finally, Niessink et al. have shown that the development of software should
be seen as product development, whereas maintenance should be seen as a customer
service, thereby improving customer interaction [87], the latter being stressed again by
the introduction of the Software Maintenance Maturity Model [5].

Even though the previous sources call for more attention to CCU, it is
underemphasized in literature. The SWEBOK, for instance, gives a generic description
in the Software Configuration Management (SCM) chapter of the processes of release
and delivery. The Capability Maturity Model (CMM) [59, 95] also does not provide
adequate descriptions for CCU, which can be explained by the fact that the CMM does
not focus on product software specifically. Attempts have been made in the release
candidate of the IT Service CMM [86], although the IT Service CMM does not provide
an elaborate description of the processes of release, delivery, and deployment either.
Clearly, even though there is a need for process definitions, there are no adequate
process descriptions available for product software vendors. This chapter attempts to
satisfy that need by shedding light on the ugly duckling that is customer configuration
updating.

The contribution of this chapter is twofold. First, it attempts to answer the need for
adequate process descriptions by presenting a model describing and identifying CCU.
Secondly, eight case studies performed at medium to large software vendors into their
development and CCU processes, are presented. These case studies provide practical
knowledge and specific process descriptions which are, similar to the presented
model, focused on customer interaction. The cases are evaluated using the model,
which reveals that several key practices are left completely uncovered, due to the
implementation effort involved, the lack of sufficient process descriptions, and the lack
of sufficiently equipped CCU support tools.

Section 2.2 describes the CCU model and its process areas, along with the key
practices belonging to each process area. The approach taken in the case studies and
the eight studies that were performed and evaluated using the CCU model are reported

24



SECTION 2.2 Process Areas for Customer Configuration Updating

CustomerOrganization

Sales
Informed
Customer

Uninformed
Customer

Advertise Update

Receive Info

Customer
Possesses Update

Rollback/
Deinstall

Receive Update

Deliver Update

Installed
Customer

Deploy/Install Update

Deployment
Feedback

Activated
Customer Deactivate

Activate Update

Remove

Reconfigure

Configure

Vendor 
Release

Repository

Product R1

Product R2

Product Rn

...

Deployment
Support

Usage
Support

Licenses

Usage Feedback

License(s)

C
ustom

er R
elationship M

anagem
ent S

ystem

SW
Development

Software 
Configuration 
Management 

System

A
ct

iv
at

io
n 

&
U

sa
ge

D
ep

lo
ym

en
t

D
el

iv
er

y
R

el
ea

se

Figure 2.1: CCU Model

in Section 2.3. A description of the results per case study is also provided there. The
key practices and combined results of the case studies are discussed in Section 2.4,
where we also defend the claims made in the chapter. Finally, our conclusions and
future work are presented.

2.2 Process Areas for Customer Configuration
Updating

In this section the key process area of customer configuration updating is modelled.
This model explicitly defines customer actions, enabling a software vendor to better
manage and predict the key practices that need extra focus. Much akin to the
CMM [98], the model uses the concepts of key practices, features, and process
areas. Key practices are practices of a software vendor that enable features. Features
are defined as properties of a process that improves product quality and quality
of service. Each process area identifies a cluster of related features that, when
performed collectively, achieve a set of goals considered important for enhancing
process capability. A software vendor possesses a feature within a process area, once
it responds correctly to one of these customer triggered actions.

To describe the key practices for CCU, its process areas need to be established.
These process areas are found using a model for software updaters that focuses
on the customer, which is described in chapter 5. Due to the fact that software
maintenance and deployment focuses solely on the customer, the model is extended
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with the organizational interactions that are required to fully support a customer’s
actions after an update is released. The CCU model, as seen in Figure 2.1, displays
the states a customer can move through after a product or update release on the
right side. On the left side, the organizational structures that facilitate interaction are
displayed. Within the CCU model four process areas are distinguished, being release,
delivery, deployment, and the activation and usage process areas. The process areas are
separated by dotted lines in figure 2.1 and are further described in the sections below.
Both the process models of the Software Dock [21] and SOFA [99] are contained in
the presented model.

Processes in the model are triggered by customer actions. These actions
are becoming aware of, downloading, deploying, reconfiguring, activating, and
deactivating the release. When a vendor receives a customer request, the Customer
Relationship Management (CRM) system is used to identify the customer. The vendor
then handles the request and interacts with the customer. The customer moves through
a number of states when about to update his configuration. At first the customer is
unaware of the update, until the customer requests information about a product. Once
received, the customer hopefully downloads, deploys and activates it for use, in the
mean time communicating with the vendor in the form of software, licenses, feedback,
and product knowledge.

2.2.1 Release Process Area
The release process area describes the release of a software product for a specific
vendor and the interaction with its customers. The features within the release process
area are:

• Release process management
• Product knowledge management

With respect to release process management a primary key practice is a formalized
release procedure describing step by step how a release is created. Another key
practice is the sharing of knowledge within the organization about the next release,
such that all employees whose jobs are in some way related to the new product
release are aware of the functionality in the next release, the release date, and the
policy on sharing such information. Such awareness creates transparency within
the software development organization, improving the relationship between the sales
and development departments. This is related to the key practice that the sales,
development, and support departments must all be aware of the product’s relationships
with other components, such that no late surprises at a customer site are possible. For
example, if a product comes in simplified Chinese, it might not be compatible with a
large number of commercial database management systems, even though the original
release of the application in English did work.

One key practice of the release process area with respect to product knowledge
management is that all versions of the software that have been released by an
organization, must be stored in a release repository that mirrors the releases in the
software configuration management system. This enables customers using older
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versions to reinstall and update their product at any time. The same way releases must
be managed explicitly, the software vendor must manage explicitly all internally used
development and CCU support tools. Finally, the vendor must manage all external
components that are included and packaged with the product.

The vendor must make a conscious effort to keep its customers updated on the latest
news and product releases using any channel of communication, such that customers
are not lagging behind in either product releases or product release information. Sales
and lead management includes the use of pilot customers that pre-evaluate and test
the software before an official release. Also, customer communication in the release
process area is most interesting to the sales department of a product software vendor.
A sales department must have insight into the purchasing guidelines and processes of a
customer organization. One relevant aspect to determine product quality is strategic
planning of product releases and updates. Customer organizations utilize product
software in such an intensive manner that an update is a costly matter, due to down
time, system instability, and the number of systems that require the update. A software
vendor must establish the best time when an update is published and what the possible
consequences are of deploying the update [5]. Microsoft, for instance, releases its
security updates for all its products on the second Tuesday of the month and they have
communicated this with their customer base.

2.2.2 Delivery Process Area
The delivery process area concerns the delivery of software, licenses, and product
knowledge to customers. The key practices belonging to the delivery process area
are focused on the following features:

• Delivery methods to customers
• Customer side delivery

To begin with software vendors must enable customer organizations to perform
deployment using whichever medium a customer chooses, such as DVD, CD, a local
area network, or the Internet. Secondly, customers must be able to remotely deploy
applications and updates onto a user system without physically having to touch it.
Thirdly, the product must supply a mechanism for automatic pull of updates, such
that the customer can check for updates and download them automatically on a regular
basis. The customer must be able to abstract from the download site of the vendor,
allowing the customer to use an internal download server. If possible, the product must
send back a deployment report after a customer has deployed the product, to inform
the vendor whether the deployment was successful or not.

2.2.3 Deployment Process Area
The deployment process area contains key practices that enable a product to be
deployed, removed, and updated. The key practices in the deployment process area
are categorized into:

• Environment checking
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• Local configuration management
• Deployment process automation

The key practices related to local configuration management are prone to many
issues, such as missing (external) components, incomplete downloads, erroneous
deployments, and overwritten customizations. To improve the deployment a
deployment tool must inspect the local configuration, to see whether external
components are missing and whether the local system provides enough resources,
such as disk space. Also, downloaded packages must be checked for integrity and
completeness. In the cases of missing components and files that do not pass their
integrity checks, some automatic resolution must be implemented. Finally, it must
be possible to rollback from an update or deployment to return to the previous
configuration.

Customizations are widely applied for specific business domains and for specific
customers. In many cases these customizations account for a large portion of
their total revenue, which proves that explicit customization management is vital to
many software vendors. A key practice for a software product with many different
customizations at different customers is that the main product is updated without
overwriting local customizations.

Once these issues have been tackled [138], the software vendor can make these
processes as quick and easy for the customer as possible by implementing semi-
automatic deployment, update, and rollback procedures. Another key practice is that
updates do not require downtime when performing an update, allowing the customer to
use the product without interruptions.

Table 2.1: Some Statistics on each organization
Software Employees CCU Customers Technology CMS
Vendor employees

ERPComp 1500 15 160.000 ASP+ Delphi Proprietary
CMSComp 65 5 140 Java SubVersion
FMSComp 160 3 900 Delphi + Java VSS + CVS
OCSComp 115 2 20 C++ CVS
CADComp 60 3 4.000 Delphi PVCS
HISComp 100 2 40 Delphi VSS
Mozilla 710 5 to 10 1.000.000+ Java CVS
Apache 388 NA 1.000.000+ Java SubVersion

Customer organizations often use different testing and acceptance stages according
to the IT Infrastructure Library (ITIL) [22] before actually implementing software in
the entire organization. This requires that deployments are done quickly, and that
configuration settings and data files are moved separately from the software. This
key practice is related to the externalization of all user and configuration data, which
enables a transparent configuration environment [36]. Within such an environment all
configuration and user data is accessed externally from the product, which allows for
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relationships to be established between configuration data between products, enabling
sharing of user configuration data such as e-mail account settings between e-mail
clients, font sizes between applications, or even appearance settings between operating
systems. Such externalization allows for the product to perform product data backups
as well, enabling quicker and more reliable backup retrieval actions.

2.2.4 Activation and Usage Process Area
The activation and usage process area concerns the activation and working of a
product at the customer site. The activation and usage process area focuses on the
following features:

• License management
• Feedback management

License management enables a customer organization to manage licenses
explicitly, and activate the product with a different license on each start-up, allowing
customers to use test and development versions, and to provide different functionality
to different user profiles. Another key practice belonging to license management is that
licenses need to be stored in some coded fashion, to hinder piracy of products. Finally,
to have maximum commercial flexibility, the licenses should control large parts of the
software, such that any functionality is activated or deactivated using the licenses.

The vendor must also explicitly manage its customer licenses. To begin with, a
vendor must be able to automatically renew a license for a customer, such that the
vendor can renew or prolong a license without much effort. To achieve this, it must be
possible to generate licenses from contracts automatically.

Feedback management allows a vendor to gather large amounts of data about
its customers and its product as it acts in the field. Feedback can come from
either automatic sources or manual customer triggered sources. Feedback is used,
in the automatic case, to provide knowledge to the vendor about product usage and
knowledge about the customer’s configuration. Finally, the user should be able to report
errors and questions to the software vendor through the software product. This allows
users to state questions and report bugs about specific screens and unclear functions in
the product.

2.3 The Cases and their Key Practices
In this section the anonymized cases are described. Some generic information is
provided on each software vendor and the reasons why the case was included in this
research are stated. A description is also given on how the case studies were performed.
Table 2.1 provides some statistics on each organization that is part of our research
set. Tables 2.2, 2.3, 2.4, and 2.5 show the key practices these software vendors have
implemented. Each of the key practices has been evaluated using a list of criteria,
which have been left out for the sake of brevity. An open circle shows that the vendor
has implemented the facilities that provide a key practice, yet it has not implemented
the key practice. These can be considered “quick wins” for the vendor.
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2.3.1 Case Study Approach
To produce these results six descriptive case studies [133] were performed at Dutch
software vendors. These case studies resulted into six case study reports [19]. During
several months of doing the case studies, facts have been collected from several
sources:

• Interviews - To study the cases and confirm our hypotheses, interviews were
held with the people responsible for the development and usage of the studied
product.

• Studying the software - Academic licenses were granted to the products. These
licenses helped to gather many facts by examining the products, using the
products, and experimenting with the product and its updating capabilities.

• Document study - Document study was performed to evaluate the development
process and cross check the answers provided by the other sources of
information.

• Direct observations - Since our research took place at the development
departments (of the non-open source cases), we were able to directly observe
and document day to day operations.

The interviews consisted of two sessions, one to explore and elaborate, and one
to cross-reference answers from other interviews. The second session was also used
to cross-reference documentation and confirm the facts stated in these documents.
Besides these reviews we also created a case study protocol and a case study database.
To ensure reliability, the case study report was reviewed by key informants. Two open
source organizations were included to evaluate their key CCU practices. For these
two cases all on-line material was used, including the source code of the products
and the products themselves were tested extensively. The open source cases’ high
numbers of employees can be explained by the fact that open source developers are
not working on a product full-time. The open source cases can therefore not be
compared to the commercial cases in terms of size. The open source cases have been
added to show that the CCU model can be used for any type of software vendor or
distribution organization. Also, the open source cases contrast with the commercial
cases in a number of interesting ways. CCU model coverage looks different for an
open source product than for the other products presented. To begin with, licensing is
an underrepresented aspect of open source products for obvious reasons and bugs tend
to be reported using other channels than the product itself (Bugzilla, for instance).

The validity threats to our case studies are construct, internal, external, and
reliability [133] threats. With respect to construct validity, the same protocol was
applied to each case study, which was guarded by closely peer reviewing the case
study process and database. To create a complete and correct overview, both the
development and CCU processes have been documented extensively. The internal
validity was threatened by incorrect facts and results from the different sources of
information. By crosschecking these results and observing the processes as they were
going on a complete view could be created. With respect to external validity, the cases
are representative for the Dutch software vendor market domain because each software
vendor has a different number of customers and is active in a different problem domain.
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Also, the general information about these vendors has been compared to other vendors
that are active in the Platform for Product Software [45], an organization that aims to
share knowledge between research institutes and software vendors in The Netherlands,
with over 100 members. The comparison shows that the six cases are a cross-section
of the Dutch software industry. Finally, to defend reliability we would gather the same
results if we did the case studies again, with one major proviso, which is that many of
the case study reports, published after the case study, lead to improvements in each of
the software vendors’ organizations.

2.3.2 Hospital Information Management System
HISComp business activities are the production and sale of medical information
systems, the customization of their products for customers, and the reselling of all
required third-party hardware and software. HISComp currently has a customer base
of approximately 40 international hospitals and currently employs approximately 100
employees.

HISComp is a typical software developer with a traditional and straight-forward
way of distributing software via CDs. Patches are released on a website and the
customer’s system manager is responsible for deploying the patch, using a detailed
list of instructions. Each customization that is built for a customer is included in
a separate customization branch, which is merged with the trunk later on. Such
variable functionality is activated using a coded license file. HISComp does not gather
automatically any technical information on customer sites and the working of the
product heavily depends on the customer’s system manager. [7] HISComp releases
patches and service packs containing multiple patches irregularly and main releases
periodically.

2.3.3 On-line ERP Information Portal for Large Businesses
ERPComp is a manufacturer of software for accounting and enterprise resource
planning (ERP) that has established an customer base of over 160,000 customers,
mainly in the small to medium enterprise sector. Through autonomous growth and
acquisitions the number of employees has grown to 2,025 in 2004. The International
Development department employs 365 developers on different international locations.
ERPProd, ERPComp’s product is a front office application that provides organizations
with financial information, multi-site reporting, and supports relationship and
knowledge management. Employees, customers and company partners are provided
with real-time on-line access to information across an entire organization.

In chapter 3 the results of the extraordinary integration a company has achieved
within its Product Data Management (PDM), CRM, and SCM. The main lesson learnt
was that a company can serve many customers as long as it focuses on making CCU
effort as low as possible. ERPComp applies the KISS (Keep it Short and Simple)
principle to such an extent that they have abolished version management. The use of a
proprietary product data management system for software products allows ERPComp
to reason and store information about their software and share knowledge about product
items throughout the company, such as compatibility information. The integration of
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their SCM and CRM systems allows customers to log into the ERPComp customer
portal and download software the customer has purchased, including a license file for
that customer. This license file is managed on both the customer and vendor side and
must periodically be renewed by the customer. Furthermore ERPComp has developed
its own product deployment and update tool, and reports the version number of the
latest download by the customer to the CRM software, such that the support department
can always see what version of the software the customer is currently using.

2.3.4 Content Management System
CMSComp is a web technology company that focuses on content management, online
application development and integration of backend systems into web portals. The
services of CMSComp include consulting, development, implementation, integration
and support of interactive web applications. These services are supported by
CMSComp products. CMSComp attempts to find a personified solution for each
customer organization. CMSComp currently employs 65 people. CMSComp has been
experiencing such rapid growth over the last years that they have had to limit growth
to keep it manageable at 6%. To serve the growing amount of customers with this
restriction, CMSComp has started a partner program, where partner companies can
provide the same services as CMSComp, using the CMSComp product.

CMSComp has only recently started focusing on their product, instead of the
services the company used to provide. The content management and display product
is generally deployed on a web server, where it will remain unchanged, until updated
manually by customers. The product is checked with an unencoded XML license file
that is accessible to the customer. License files cannot be generated automatically.
Due to the large amount of customization that is implemented during the building
of a site, the content management product has a transparent software architecture
especially adjusted to enable such customizations. Due to the complexity of the
software, deployment is a complex two hour process per web server. Due to the fact that
CMSComp generally has access to their customers’ web servers, remote deployment
and updating are possible.

2.3.5 Providing a Counter Service On-Line
OCSComp is an application service provider that provides commercial organizations
web statistics. They provide page count solutions to any type of customer, from small
counters on personal websites, to large navigation tracking counters on e-commerce
sites. OCSComp currently employs around 100 people, based on multiple European
locations. OCSComp does not deliver software to customers, since customers visit the
OCSComp portal to see the data that was gathered while people surfed their sites.

The Application Service Provider (ASP) case adds some interesting data to our
research. To begin with OCSComp is much more capable at local configuration
management and deployment processes, due to the fact that their servers are freely
accessible by the organization itself. This explains OCSComp’s presence in local
configuration management, and product data and SCM features, and can therefore
not be compared to other product software companies in this area. Due to the fact
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that customers log into OCSComp’s website on at least a weekly basis, OCSComp
uses this channel to communicate the product information and new functionality to its
customers. Finally, licensing has not been connected to CRM and requires an employee
to copy the information from a contract into the license management system.

2.3.6 Facility Management System

FMSComp is an international software vendor that produces facility management and
real estate management software for organizations. FMSComp’s products are marketed
through four international FMSComp subsidiaries and eight international partners. At
present FMSComp employs 160 full time employees. Recently, they have started
testing a new version of their software, which has been completely reimplemented
using J2EE technology.

FMSComp is an extremely good tool builder and has built many tools that are not
managed explicitly, sometimes resulting in loss of knowledge about the source code or
even the source code itself. These tools, however, have improved their development and
CCU processes. They are very strong in product development and provide services to
many large companies. They provide different types of deployment for their product,
as to allow both high network traffic, low deployment effort and low network traffic,
high deployment effort scenarios. FMSComp’s weakest area is licensing, even though
they have a (semi-)automatic license generation process. The software has an in-built
function to create a feedback report that is used to inform FMSComp of problems in
their software. However, this report must be e-mailed to FMSComp manually by the
customer.

2.3.7 CAD plug-in for Building Design

CADComp currently employs 60 employees. CADComp produces software plug-ins
for AutoCAD that support building services and building management consultants in
the Dutch industry, by creating drawing libraries, tools, and enhancements for two
three-dimensional drawing tools, being AutoCAD and IntelliCAD. CADComp and its
60 employees at present serve 4000 customers.

Due to the nature of their product, CADComp must deliver its products to customers
by unpacking a common CAD application and repacking it with their plug-in, using
InstallShield for the deployment process. They use both software and hardware
licensing mechanisms. Due to the size of their final deployment package they use
CDs for distribution. CADComp makes no assumptions about the customer’s network
connection and therefore does not do any user or deployment feedback. Backups of
user configuration data and files are complex, due to the fact that such knowledge is
stored in many different formats, databases, and files, spread out over the complete
deployment. This complexity is caused by a complex software architecture that allows
CADComp to deliver its plug-in for different CAD applications.
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2.3.8 Mozilla Firefox

Mozilla currently owns Firefox, one of the most successful open source development
projects available. The Mozilla internet browser, created by the Mozilla Foundation
provides a viable alternative to other browsers such as Opera and Internet Explorer.

Mozilla has implemented some update key practices in their product, such as an
automatic update function that is used to update the local product installation. Mozilla
does not, however, keep strong ties with each customer due to its large number (75
million downloads, according to the Mozilla website). Also, Mozilla does not report
any information back to the Mozilla Foundation, by use of feedback servers (such as
Apache’s TraceBack) or another form of automatic post-installation feedback.

2.3.9 Apache’s HTTP Server

Apache’s development began in February 1995 as a combined effort to coordinate
existing fixes to the NCSA http program. It soon became a popular and successful open
source product [81]. At present it is the most used HTTP server software for servers on
the world wide web. The product is mostly used by web server maintainers with some
technical knowledge, and therefore Apache does not have many of the key practices for
the features of local configuration management and feedback management. Another
reason for the absence of these key practices is that the Apache HTTP server is used
for public websites, where automatic deployment and feedback could compromise
security.

2.4 Evaluation of the Process Areas and Features
This section discusses and describes the impact and effort required for making
improvements in each process area. These results have been generalized for the eight
cases and are summarized in Table 2.6. Each of the following paragraphs describes the
problems and the availability of tools per feature.

The release process management feature describes the skills of a company to
plan and manage their product and update releases. The maturity of a software vendor
can often be established by looking at the key practices for this feature, because it is
essential to all other vendor side process areas. Primarily, to have all key practices
for this feature, the vendor should manage its software with a PDM system. By doing
so the vendor is forced to manage all secondary artefacts, such as manuals, boxes,
and DVDs, as explicit as the product itself. Both open source cases do not have a
release planning that is adjusted to customer requirements, due to less market pressure
for early releases. The tools used to support the key practices in this process area are
numerous, and it contains tools that support software configuration management and
many proprietary tools that support software artefact and product management.

The product knowledge management feature is strongly represented for all cases.
The vendor must manage the relationships of its products to other products in both a
human readable format, for the support, sales, and development department, and a
computer readable format to allow for automatic conflict detection and even automatic
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dependency resolution. Also, the availability of past product releases is required
such that customers can download older versions. Mozilla does not provide such
functionality, due to the fact that the source of their products is always available. The
downside of this is that a customer can never download older versions of the software
automatically to be used with a set of other applications, without having to build the
source code. Another example is ERPComp, which only provides the latest version
of the software and no other, such that users will always use the latest version. The
question remains whether a vendor wishes to provide customers with more flexibility,
or whether this simplification and therefore cost saving method does not scare off
customers. Many tools are available for knowledge management and distribution,
however, each organization has its own channels for distribution.

The delivery methods to customers feature is dependent on many different factors,
such as bandwidth, network policies, security, and infrastructure. Coverage of all key
practices in this process area is rather weak, with the automatic pull key practice as an
extreme. To improve in this process area, a software vendor must carefully review
whether the software architecture and the vendor organization itself do not restrict
customer communication. Integration of the CRM system throughout the complete
organization is required to gain serious improvements in this area. There are some tools
available that are already supplying such integration, though a lot of customization is
required [148].

The customer side distribution feature is dependent on the format of deployment
and installation packages, the product software architecture, and possible storage
locations. The key practice to allow a customer to use any medium for deployment
enables customer organizations to freely deploy software using its proprietary methods
of deployment. An example encountered in the cases is when customers request for
Microsoft Installer packages (msi) because their internal deployment and distribution
tools require msi packages. Since the customer does not allow each user system to go
on-line individually and download the latest updates from the vendor but forces them
to download patches and products locally, much bandwith is saved. Tool support is
found in package managers, such as rpm-update, Portage, and Microsoft’s open source
project Wix [130].

Environment checking, a feature of deployment, requires the deployment
application or software product to first scan the system on which the update will take
place, for the availability of required components and possible resource constraints
such as disk space. If such constraints or missing components are encountered, these
issues must be resolved automatically. There are not many tools available (besides
package managers) that can support these key practices, mostly due to the complexity
and number of different deployment environments.

The Local configuration management feature is highly dependent on the
operating system and deployment tools used by the customer. Some deployment tools
have integrated the build process into the management of software packages [33],
whereas other tools are primarily focused on copying of files from one location to
another, such as InstallShield [58]. Implementing the key practices in this process
area requires large development efforts and changes to the software architecture, such
as the rollback key practice, which is generally not implemented because changes
to the data model cannot be rolled back [64] [62] without a versioned database
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management system. Subsets of the key practices in this process area are often covered
by the operating system, such as the deployment capabilities of Gentoo’s Portage or
the registry and the deinstall key practices for Microsoft Windows. Customization
key practices are hardly represented in the presented case studies, showing a large
opening for product and service quality improvements. Customization management
requires heavy development effort and integration with the CRM system to store
customer configuration settings, such as network architecture, used database system,
and operating system. This information is used to deliver the appropriate updates
and fixes to specific customers and to perform market and requirements research.
The backup of data key practice is usually provided through commercial database
management tools, and therefore the results presented in Table 2.4 might be misleading.
However, providing a mechanism to backup all external data and configuration
information with the press of a button is a valuable key practice, because customers
are allowed to perform quicker and more reliable backups. Some of the key practices
of customization management are supported by development platforms such as J2EE
that forces developers to store configuration information in external XML files.

To improve the feature of deployment process automation the two previous
features must be combined. Both automatic dependency resolution and local
configuration management must be automated to perform automatic updates and
deployments. Tools that support such automation are not widely available and an
automatic update and deployment solution requires a specially adjusted software
architecture.

License management consists of both license management on the customer side
and the vendor side. Customer side license management is usually easy to implement,
since many license management mechanisms, such as to renew the license, are already
implemented under the bonnet. To provide the key practices within customer side
license management development effort is required. Vendor side license management
requires changes to the CRM system, such that it can store and distribute licenses, and
requires organizational changes, such that license generation and renewals are done
automatically by the sales department. Improving vendor side license management
requires little effort, due to the fact that some type of CRM and license management
is usually already present in an organization. Customer side license management
solutions exist, such as ManageSoft’s [75] software management suite. Dedicated
vendor side license management systems, such as Hasp [4], provide many key practices
that are required in this process area.

Improving in the area of sales and lead management may require changes to the
product, such that the products are used to communicate with the user, by form of
a daily pop-up, or a message to the sales department if a user attempts to use an
unpurchased feature a number of times. The reasons for this key practice are numerous.
Often a customer will have an old version of the software running, requesting outdated
and expensive support on old (and even buggy) functionality. Also, when customers are
not aware of the newest functionality within a product, they might opt for a competitor
who simply told the customer first about one market sensitive characteristic of their
product. Pilot customers can pre-evaluate the software and have a say in the final set
of requirements and in commercial cases use the product at a discount price. Pilot
customers increase market awareness for the vendor and improve relationships with
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some of its primary customers. New functionality can also be made available to
customers using temporary licenses, which allows customers to test new functionality
before actually purchasing it. This process area is limited by trust and network
infrastructure issues. It will require some changes to the CRM system to get messages
to the right customer organizations. Some commercial tools are available in the form of
PDM and CRM systems, but once again integration and customization effort are large,
and structural communication between the sales and development departments about
new product features is required.

The feedback management feature is valuable to a software vendor because it
will introduce new requirements on the product, show what the most used functions of
a product are, and where most errors occur. Though improvements in this process area
requires a lot of effort, the products discussed in this chapter already implemented
different error logging mechanisms, sometimes even with a “send error report to
vendor by e-mail”-button. No commercial tools were found to handle such feedback
although some tools such as Mozilla’s TraceBack and the components presented in the
work by Renaud et al. [102] provide similar functionality. Network infrastructure,
privacy, and security should be taken in consideration carefully when improving
these areas. Effort to improve this feature is low, whereas the implementation of
feedback is highly profitable. Such feedback reports can even be linked to customers,
informing the vendor of its customers’ configuration. This information is used by
the support department to determine a customer’s configuration, but also to inform
the development department of “proven” configurations. A well-known example
of feedback error reporting is the feedback function in Microsoft’s Windows XP.
However, other mechanisms are imaginable [41], such as usage reports (which can
also be used for pay-per-usage scenarios) that can help improve the knowledge about
which functionalities are most used by customers.

2.5 Discussion
Now we put the key process area of CCU up for discussion. The first question that
needs to be answered is whether a software vendor’s success relies on its customer
relationships. In the commercial cases encountered and presented in this chapter 50%-
70% of their yearly revenue was coming from existing customers, which in our view
shows that customer retention and the maintenance of relationships is essential to
survive in the current industry. In the case of open source products, where many
of the users of the product are also developers, testers, and quality assurance team
members, the same premise on customer relationship management holds. Since CCU
is a customer focused process, the improvement of these processes will lead to better
customer relationships and possibly a higher customer retention rate. By applying the
CCU model onto the eight presented cases, Tables 2.2, 2.3, 2.4, and 2.5 lead to the
following observations:

• Software vendors focus insufficiently on customer side configuration
management

• Licensing and contract integration is rare
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• Software vendors do not focus on deployment and usage feedback
• Software vendors neglect explicit product knowledge management

With these observations and customer retention, product quality and quality of
service in mind, a number of conclusions can be drawn.

Even though some of the cases reported that up to 15% of their deployments
failed at the customer side, Table 2.4 shows that software vendors do not implement
key practices in the area of customer side configuration management. The
most commonly reported causes for deployment problems are faulty configurations,
incompatible updates, and customizations. By implementing the key practices stated
for the deployment process, these problems can partly be avoided [142].

Also, vendor side license management, which includes contract registration and
automated license creation, is not sufficiently represented in the cases. This area leaves
open an opportunity for an integrated contract and license management tool that plugs
into any CRM system. For obvious reasons license management is not such a large
issue in open source software, although some sense of consciousness throughout the
industry about open source licenses would improve customer organizations’ awareness
of their acquired (open source) products. Often redistribution rules are not respected,
simply because customer organizations are not aware of them. Another example where
licensing is not such a big issue are the B2B (business-to-business) software vendors
we researched. CMSComp, for example, provides unencoded XML license files to its
customers that could easily be altered, and defends that choice by saying that trust in
B2B markets is more important, since CMSComp will simply offer the functionality to
them if the customer chooses to change the license file.

All cases do not sufficiently implement the key practices of usage and deployment
feedback. Such feedback, however, is used to gather essential product knowledge,
such as product incompatibilities, common user errors, and usage statistics of product
functionality. This knowledge is translated into requirements for future products
and product fixes. For the two open source cases customer feedback seems to be
underrepresented, whereas deployment and user feedback seem to be integral parts
of the open source development process. Open source software products, however,
can improve their development process by implementing automatic usage and error
feedback as well.

To process customer usage feedback, to store product compatibilities, and to handle
the huge volume of requirements on a product, a software vendor must have a high-
level product knowledge infrastructure. Such a product knowledge infrastructure is
used to communicate product information throughout the development department, the
organization, and even its customers.

Interestingly enough, many key practices in the areas of customization
management, internal product relationship management, and product data and
software configuration management are an integral part of software product line
development [16]. Especially the explicit manner in which products and product
configurations are managed by the PuLSE approach [9] sets an example for product
software companies. The combination of the concepts of this research and PuLSE
paves the way to an integrated software product data management system that manages
all artefacts and information for a software product family.
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In our search for tools that can provide the key practices presented in this chapter
and in chapter 5, undiscovered product niches have been encountered. To begin with
it seems that there are no product data management systems that explicitly manage
licenses, software products, their fixes, and their patches, in such a way that customers
can log in and download them. Secondly, feedback sending and feedback analysis
applications seem to be in short supply. Finally, operating systems and deployment
tools [21] generally do not support the key practices for local software configuration
management.

If anything can be learned from this research, it is that software vendors must
integrate their CRM, PDM, and SCM [148] systems to automate the processes related
to CCU. Such automation provides more efficient methods to perform repetitive tasks
such as license creation, license renewal, product updating, error reporting, usage
reporting, product release, and manual configuration tasks, such as backups. The
second main lesson is that usage of feedback reports supplies software vendors with
the largest test bed imaginable, and therefore deserves more attention. The presented
CCU model can be used as a guideline for software vendors or for the development of
a software manufacturing and software product data management system.

2.6 Future Work
The presented material allows for a larger evaluation of the customer configuration
updating process. Next to the case studies we will perform in the future, we are
planning to build a benchmark site where software vendors can evaluate their own key
practices and position themselves in the market. This evaluation technique, however,
requires a new classification of software product companies, which is used to further
analyze the results from such research. As a continuation on one of the cases we
have been offered the opportunity to implement a subset of the presented key practices
within that organization. We will investigate the implementation of these key practices
and use it to validate the results of this research. We are currently negotiating with
several software vendors whether the concepts shown by Elbaum et al. [41] can be
implemented within their products, to evaluate the usefulness of such functionalities
and to get more practical experience with field data gathered from customers.
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C H A P T E R 3

A Case Study in Mass
Market ERP Software

The maintenance of enterprise application software at a customer site
is a complex task for software vendors. This complexity results in a
significant amount of work and risk. This article presents a case study of a
product software vendor that tries to reduce this complexity by integrating
Product Data Management (PDM), Software Configuration Management
(SCM), and Customer Relationship Management (CRM) into one system.
The case study shows that by combining these management areas in a
single software knowledge base, software maintenance processes can be
automated and improved, thereby enabling a software vendor of enterprise
resource planning software to serve a large number of customers with
many different product configurations.1

3.1 Integrated Development and Maintenance
The complexity of the maintenance, release, and deployment processes of product
software is a result of the enormous scale of the undertaking. There are many
customers for the vendor to serve, who all might require their own version or variant
of the application. Furthermore, the application itself will consist of many (software)
components that depend on each other to function correctly. On top of that, these
components evolve over time to answer the changing needs of customers. As a
consequence, the release and deployment of these applications take a significant
amount of effort and is a time consuming and error-prone process.

To date product software is a packaged configuration of software components or
a software-based service, with auxiliary materials, which is released for and traded
in a specific market [132]. Customer Configuration Updating (CCU) is defined as
the combination of the vendor side release process, the product or update delivery

1This work was originally published in the Journal of Software Maintenance and Evolution: Research
and Practice, entitled “Integrated development and maintenance for the release, delivery, deployment, and
customisation of product software: A case study in mass market ERP software” in 2006 [141]. The work is
co-authored with Sjaak Brinkkemper, Gerco Ballintijn, and Arco van Nieuwland.
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process, the customer side deployment process, and the activation process [143]. To
alleviate these processes I envision a Software Knowledge Base (SKB) that contains
facts about all product artefacts together with their relevant attributes, relations and
constraints [19]. In this way, high-quality software configurations can be calculated
automatically from a small set of key parameters. It also becomes possible to pose
“what-if” questions about necessary or future upgrades of a customer’s configuration
[142]. The need for a distributed software knowledge base comes from literature.
Meyer is the first one to introduce the concept of a centrally available software
knowledge base [80]. Others, such as Klint et al. [70] and Robillard et al. [104]
emphasize the need for explicit knowledge management during development and
maintenance.

Exact Software (ES)2, a Dutch software manufacturer that serves 160,000
customers worldwide, has implemented an SKB to manage and improve its software
maintenance, release, and deployment processes. The SKB used by ES is
implemented in their own commercial product called e-Synergy. In this article I
show that ES successfully supports its large customer base with an integrated product
data management, software configuration management, and customer relationship
management system, thereby alleviating the process of software product maintenance.
The article describes how the processes of development, release, and deployment have
been improved by integrating processes that were previously managed by utilizing
different isolated systems. The article also demonstrates how a central software
knowledge base, containing all the relevant knowledge about software products, is
implemented and used to support the processes of software maintenance. Finally, the
article describes four principles employed by ES to deal with general complexities in
the software engineering discipline with respect to software maintenance.

Figure 3.1 displays the overall architecture of the integrated CRM, PDM, and SCM
systems in e-Synergy. The integration of these systems enables efficient maintenance
of software configurations at a customer site. The CRM system contains a contract
module, in which all products that have been sold to a customer are stored. Each
contract applies to a product that can be downloaded and activated by a customer. The
products stored in the PDM system are associated with their corresponding artefacts
in the SCM system, which enables a customer to download the correct files that are
required for a product update or deployment. Finally, the PDM system generates a list
of files on the vendor side that is compared to the list of files on the customer system.
When differences are encountered the required files are downloaded by the customer
automatically to update the customer configuration.

The software maintenance processes on the vendor side also have improved by
the integration of different systems. The integration of the SCM and PDM systems
allow product managers to quickly oversee whether work still needs to be done on
deliverables before the next release. The integration of the SCM and workflow
management system enables traceability of changes on deliverables, thereby improving
product quality. The integration of the SCM and PDM systems also allows for quick
deployment and testing of test versions for the quality assurance department. These

2Please note that this research took place in 2003 and 2004. Some of the presented results no longer
represent daily ES practice
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Figure 3.1: Integration of CRM, PDM and SCM

and other improvements are discussed further in Section 3.3.
The rest of this article is structured as follows. Section 3.2 describes the objective

of our research at ES and a motivation. Section 3.3 describes ES and the tools it uses
to integrate its SCM, PDM, and CRM systems. Section 3.4 describes the maintenance
processes of the products at the vendor site and of the configurations at the customer
site. Section 3.5 discusses the lessons learned from ES and what functionality I feel is
lacking in Es’s SKB. Related work is presented in Section 3.6 and finally Section 3.7
concludes our article with a discussion.

3.2 Research Approach

3.2.1 Problem Overview
Two important parts of the maintenance process are release and deployment of
software. The release and deployment processes for a software product involve a large
amount of risk and effort for a software vendor. These processes, however, have been
documented insufficiently in literature. The SWEBOK [1], for instance, gives a generic
description in the SCM chapter of the processes of release and delivery. The Capability
Maturity Model (CMM) [98] also does not provide adequate descriptions for these
processes, which is explained by the fact that the CMM does not focus on product
software specifically. Attempts have been made in the release candidate of the IT
Service CMM [86], although the IT Service CMM also does not provide an elaborate
description for the processes of release, delivery, and deployment. Clearly, even though
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there is a need for process definitions, there are no adequate process descriptions
available. The goal of our research is to simplify the software release and deployment
effort. I propose to do so by managing all the knowledge about a software product
explicitly. The explicit management of software knowledge enables the evaluation of
“what if” scenarios, such as, what will happen to the current configuration of customer
X, if she upgrades application component Y? These evaluations help in assessing the
risk of the deployment process, and these assessments, in turn, improve interaction
between customer and software vendor because the vendor can guarantee whether a
combination of components can function correctly together.

Managing software knowledge is, however, only part of the story. The software still
has to be delivered to customers. I aim to support dynamic delivery of software via the
Internet, both in the form of upgrades and of full packages. The previously mentioned
product and component knowledge is used to compute the difference between the
existing software configuration at a customer and the desired configuration. This
difference is used to create required upgrades [124]. Central to the maintenance
activities I envision, is the software knowledge base. This software knowledge base can
be seen as an integrated SCM/PDM/CRM system that stores all information about all
the artefacts that are part of the applications life cycle. The SKB stores the information
of all available applications in all available versions at the vendor site, whereas at the
customer site the SKB stores information about the installed applications, application
settings, and configurations. Both the vendor and the customer can request or receive
information from the configuration of the other party, such as regular updates, product
information, usage and error reports, product knowledge, and licenses.

As part of our research, I have been conducting case studies [62] [7] at product
software companies to evaluate the state-of-the-practice of software vendors in the
Netherlands, such as ES. ES is relevant to our research because ES has implemented
one of its own products, e-Synergy, to support the processes of release and deployment
and to function as an SKB, which partly validates the theory that an SKB can improve
software release and delivery.

3.2.2 Exact Software
ES is a manufacturer of software for accounting and enterprise resource planning
(ERP), based in Delft, the Netherlands. Since its founding in 1984, ES has established
an international customer base of over 160,000 customers, mainly in the small to
medium enterprise sector. Through autonomous growth and a number of acquisitions
the number of employees has grown to 2025 in 2004 (see Table 3.2.2). Twenty percent
of these employees are active in the development of software on several international
locations with most of them (180 employees) working in Kuala Lumpur.

A typical application sold by ES is Exact Globe, a back-office application that
integrates business processes, such as finances, logistics, PDM, and CRM. A recent
product is e-Synergy, a front office application that provides organizations with
real-time financial information, multi-site reporting, and relationship and knowledge
management capabilities. Employees, customers and partners are provided with real-
time access to information across an entire organization.

Based on more than 20 years of experience in developing software products for
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Department FTE Percentage
Support 546 27,0
Services 263 13,0
Sales and Marketing 445 22,0
Finance and Administration 142 7,0
Staff and General Management 223 11,0
Development 294 14,5
Quality Assurance 96 4,7
Release and Deployment 15 0,7
Total 2024 100

Table 3.1: ES full-time employment (2004)

the small to medium enterprise market, ES enforces four main principles for product
development:

• Uniform architecture - All software developed by ES has a three layered
architecture. The user application layer (a browser or a standalone client), the
application server layer (containing the business logic), and the database layer.

• One-X - ES has developed a strategy for developing its ERP software, called
One-X, which aims to develop all software around one single instance of truth,
making the data available to all ES applications, such that the data can be created
and provided to all the stakeholders. The idea behind One-X is that data needs to
be entered just once and that extensive navigation is possible through integration.

• KISS - To support such a large customer base within such a complex problem
domain, ES follows the principle of KISS (Keep It Small and Simple) for its
development process. The use of KISS within ES has resulted in a development
cycle where a fully functional prototype is produced by a spearhead team first.
Once the prototype is released, the product enters a maintenance cycle and
the product can then only be changed by the maintenance team through well-
defined maintenance procedures. All procedures are monitored by a large quality
assurance team, as seen in Table 3.2.2. These procedures allow ES to keep the
maintenance of its products simple and controlled.

• Eat your own dogfood - ES uses its own software products to support internal
processes, which is called “eat your own dogfood” by Microsoft [28]. This
internal use provides the maintenance department with early bug reports and
feedback.

These principles are enforced with one fact in mind. Revenue statistics from ES
show that since 2003, the largest stream of income cines from maintenance contracts,
whereas previously money came for the larger part from license sales. This made ES
management realize that investment in the maintenance process was required.
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3.2.3 The Case Study

There were three reasons for performing the case study at ES [64]. To begin with, I
wished to prove the hypothesis that explicit management of software knowledge on
both the customer and vendor site can improve the CCU processes. Secondly, ES
provided us an example SKB and showed how an SKB can be applied. They also
allowed us to review the reasons for implementing an SKB to support its processes.
Finally, ES gave us an opportunity to see the advantages and disadvantages of using an
SKB in daily life. During the three month case study, facts have been collected using
several sources:

• Interviews - To study ES and confirm our hypotheses, interviews were held with
the people responsible for the development and usage of the e-Synergy product.

• Studying the software - ES granted an academic license for the e-Synergy
software. This license helped to gather many facts by examining, using, and
experimenting with the software.

• Document study - Many of the documents found in the document management
system of e-Synergy supported the research and gave an in-depth view of the ES
maintenance processes.

• Direct observations - Since our research took place at ES’s International
Development department, I was able to directly observe and document day to
day operations.

The validity threats to our descriptive case study are construct, internal, external,
and reliability [133] threats. With respect to construct validity, the protocol used for this
study was applied to a number of case studies [62] [7], which was guarded by closely
peer reviewing the case study process and database. To create a complete and correct
overview, the development and release, delivery, and deployment processes have been
documented extensively. The internal validity was threatened by incorrect facts and
incorrect results from the different sources of information. The interviews that were
held consisted of two sessions, one to explore and elaborate, and one to cross-check
documentation found in the document management system of e-Synergy and to confirm
facts stated in other interviews.

With respect to external validity, a threat is that this case is not representative
for the Dutch software vendor market and the ERP domain. This threat was dealt
with by comparing general information from ES to other vendors that are active in
the Platform for Product Software [45], a national organization that aims to share
knowledge between research institutes and software vendors, with over 100 members.
The comparison shows that ES, though being one of the largest ERP manufacturers in
the country, is similar to other ERP manufacturers. Finally, to defend reliability similar
results would be gathered if the case studies were redone, with one major proviso,
which is that many of the improvements proposed in the case study report, published
after the case study, were implemented by ES.
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Figure 3.2: Abstract Architecture of e-Synergy

3.3 The SKB and its use within ES

ES uses its proprietary product e-Synergy, to support all its business processes. ES
uses all e-Synergy modules for its activities, such as document management, workflow
management, and financial accounting. An implementation of e-Synergy provides
four optional Internet portals (see Figure 3.2), which are used to provide customers,
employees, resellers, and suppliers with their specific views on the data. With respect to
maintenance e-Synergy is used to support two forms of maintenance. On the one hand
e-Synergy is used to support the maintenance department in performing the product
composition, development, bug fixing, and workload division amongst developers. On
the other hand e-Synergy is used to supply customers with an interface to the latest
releases of products.

The SKB used by ES, e-Synergy, is a front office application that integrates seven
modules: project management, workflow, human resource management, document
management, CRM, logistics, and financial activities, as seen in Figure 3.2. Through
the One-X architecture, each module can use the data in other modules enabling users
to easily navigate from one item to another. The logistics module of e-Synergy is a
PDM module that manages conventional products, the CRM module stores information
about customers, and the project and workflow modules are used to distribute activities
among personnel. Development workflow activities are classified as bug reports and
change requests and can be attached to other workflow, documents, and deliverables.
These attachments are used to quickly produce reports on how many tasks are still
attached to a deliverable or a document. Since all tasks have different defined levels of
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impact, projections can be made about the amount of work and the cost associated with
that work, which enables status reporting.

Before e-Synergy was implemented, ES was utilizing different isolated systems for
the processes of software maintenance, release, and delivery, such as daily build servers
and conventional concurrent versioning management tools for SCM. ES experienced
many problems within the setting of isolated systems. To begin with, many of the
tasks performed included the duplicate entry of data into different systems. A second
problem experienced by ES was that deliverables were not managed explicitly, delaying
deadlines and often producing incomplete sets of deliverables for customers. The final
problem relevant to this case study was that multiple worldwide departments needed
access to the software repositories twenty-four hours a day. To solve these problems
ES implemented their own web based e-business product, e-Synergy.

3.3.1 SCM

The SCM system in e-Synergy consists of five repositories, in which five concurrent
releases of all deliverables and corresponding source code are stored, as shown in
Figure 3.3. Each of the five repositories contains a release of all the source files, help
files, binary files, executables, resources, and SQL scripts, for one product, such as
e-Synergy or Globe. Periodically, depending on the quality criteria for each repository,
the full repository is manually promoted (copied) from one repository to another.

All 294 developers perform their operations, such as committing, on the
development release stored in the D repository. When all uploaded bug fixes and
new functionalities have been checked in by the programmers on the release stored
in the D repository, that release is promoted to the C repository on a weekly basis,
overwriting the release previously stored there. The quality assurance department
checks the release and reports errors back to the development department. Every 10-20
weeks QA freezes the C repository for three weeks to check that release intensively.
After approval from quality assurance, that release is copied to the B repository. The
release stored in the B repository is, if possible, used internally by all ES personnel
and is thereby thoroughly tested. This testing again generates new bug reports or
functionality requests.

When the release stored in the B repository is deemed stable enough by primary
internal users, such as the director of ES Finance and Administration, the release
is copied to the A repository, which is open to external pilot customers who report
their experiences back to an experienced support employee. After the release in the
A repository has been used for a minimum of eight weeks, the release is copied to the
NULL repository containing the official product release, which is sent out to customers
on CD-ROMs or through the Internet. To remove the complexities introduced by the
concurrent versioning systems, ES now uses one single development version to manage
software artefacts. Versioning of files is therefore not possible, which is different from
common practice, but one of the results of the KISS strategy of ES. New functionality
releases occur approximately four times a year.
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Figure 3.3: Repository Promotion Scheme and Promotion Periods

3.3.2 PDM

When ES started designing e-Synergy, ES decided that their commercial PDM system
could just as well manage its software products and control its (software) product
deliverables. PDM systems generally implement a classification of artefacts to support
reuse [60]. The PDM system implemented in e-Synergy makes use of atomic entities
called “items” by ES. An item is used to represent any business item, such as a
promotional sweatshirt, a printout of a manual, or a software product’s executable.
Items are categorized, of which the relevant categories for this case study are sales
items, source items, and deliverable items.

• Sales items - ES uses sales items to encapsulate all sellable goods. A sales
item is a service agreement, a manual, a software product (including its paper
manual and CD-ROM), or any other good sold by ES. From each sales item a
bill of materials can be generated, stating what items are necessary to complete
the product (such as the deliverables for a software product).

• Deliverable items - Deliverable items depend on source items, even if they are
simply direct copies of those source items. Deliverable items include digital
manuals, resource files, library files, and executable files.

• Source items - Source items are source files that are required to create a
deliverable. Source items are source code files, resource files, etc. Companies
producing conventional products use the source items to store their basic raw
materials and resources with which they create their products.
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Figure 3.4: Sales and Developer Product View of an Example Product

ES’s products are represented in e-Synergy in different ways at the development
sites of ES, whereas instantiation information for products at customers is stored in
the contract management facility, the product data management facility, and locally at
the customer’s site. These two different views are based on the assumption that sales
personnel do not need to know all the implementational details, whereas developers
are not concerned with sales knowledge. An example is that the sales department sees
products as decomposable modules that can be sold separately, whereas development
sees the product as a large set of deliverables containing all modules, which are later
activated or deactivated at runtime by the license file. Figure 3.4 displays a generic
product structure and the two different views of that structure:

Sales View - From the point of view of the sales department it is not relevant
what deliverables and sources look like. For this view it is required to know what a
product costs, what options there are to a product, what kind of sales agreements are
possible, and what materials make up a product. Sales personnel thus share no interest
in source files. A product, consisting of sales items connected by the one-of, more-of,
mandatory, and optional relationships, is instantiated by binding these relationships.
The binding of these relationships corresponds with the product information stored in
a license file. The relationships defined here are similar to the relationships defined for
feature diagrams [67, 123].

Development View - Developers are concerned with deliverable files and source
files. As developers always work in the context of a product, and they know the
complete structure of that product, however, developers usually do not use sales items.
A developer considers a product as a complete set of deliverables, therefore there are
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only two relationships available for the development view, the Sources relationship,
meaning the file is a source file for some parent deliverable item, and the Deliverables
relationship, meaning the file has corresponding sources.

The ES PDM system stores lists of all the mandatory deliverables for a product
and these deliverables have sources as their children. This results into the fact
that dependencies amongst deliverables are not explicitly stored. The ES Product
Updater [147], a proprietary tool that is used to update all ES products, uses the list
of deliverables for products to compare that to the list of installed files at the customer.
Also, even though the PDM relationships such as more-of and one-of are used to
deliver packages of only the purchased components to a customer, all deliverables for
a product are delivered to a customer. The e-Synergy product currently is represented
by approximately 8000 source items, tools, and deliverable items in ES’s PDM system.
The largest part consists of source files that are not delivered to customers. Other items
are tools that are required to produce the product, but are not delivered to the customers,
such as developer tools. The deliverable items are executables, dll files, sql definitions,
manuals, boxes, CDs, and promotional material. ES’s PDM system stores artefacts
in product lines. Product lines are collections of products that share items (files) to
support reuse.

3.3.3 CRM

With respect to customers ES has attempted to increase customer contact, scale down
support, reduce the complexity of the delivery process of software products, and reduce
piracy of its products. ES believes that product (experience) improvement by intensive
customer contact will retain more customers [68]. Customers log into the ES portal
to see their contract information, to see the status of their support calls or bug reports,
and to download (renewed) license files. Because customers are expected to visit the
ES customer portal regularly, customers are notified of new NULL releases and other
products through the ES e-Synergy customer portal.

Customers can use the information portal of e-Synergy to access the CRM system
and see the status of their contracts, see their support questions, find new products, and
find where customers can download license files to activate their purchased products.
e-Synergy’s contract management facility stores a link to the customer information,
purchased product information, the license file for each product, the version number of
the latest sent out version, and a link to customer support calls and service status. The
purchased product information lists what variants of products have been purchased.
The corresponding license files are only available for download by customers. License
files are generated every twenty-four hours, depending on whether a new contract has
become available or needs to be renewed. The license file is published on the customer
portal of e-Synergy so that customers can download the periodically renewed license
file.
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3.4 Maintenance and the SKB

3.4.1 Maintenance at the Development Site
Before the systems of SCM, PDM, and CRM were integrated, the concurrent
versioning system RCS [110] was used to support development. Besides RCS, ES
used daily build servers, so that the quality assurance department could check the
work of the day before. During the implementation of e-Synergy, ES drew up standard
requirements for change control, team support, status reporting, process control, and
audit control. Aside from these standard requirements, ES had the following non-
generic requirements [76] in the area of SCM:

• Version control - In the past too many resources were absorbed by legacy
support and customers were confronted with complex upgrades and bug fixes.
As a consequence of the KISS principle, ES decided to reduce complexity for the
customer and development by no longer supporting and storing multiple versions
of a product.

• Configuration support - Because bandwidth and disk space are relatively
cheap and development is expensive, ES concluded that installing the full set
of deliverables for a product and activating purchased modules according to a
license is more efficient than doing partial delivery. Also, to improve service
and product quality, ES wished an automated check of the validity of a product
configuration before it is deployed.

• Build support - ES previously used separate build servers to build products
overnight. That build was tested the next day by quality assurance. As ES grew
larger internationally and developers were working on code twenty-four hours a
day, there was no down time left for servers to build the software. A new way of
partially building was required to facilitate these needs.

ES promotes some key starting points for its development process. To begin
with, developers have private ownership of deliverables and source code and they
include their compiled deliverables when comitting their source code. This introduces
pessimistic locking (where no two developers can be working on one source file)
and enables management to assign responsibility for deliverables to one developer
specifically. ES uses very strict maintenance procedures and role based workflow for
each task such as functional requests or bugs. First the development manager evaluates
the task. Once evaluated the developer executes the task. Finally, quality assurance
tests whether the task was successful and approves the task.

ES has development sites in multiple time zones covering twenty-four hours, which
eliminates the option to perform nightly builds. This caused the decision for building
the end product on the developer’s workspace. The solution where developers upload
their compiled deliverables creates a repository that always contains the most recent
build of the software, removing the need for nightly builds. This solution also enables
ES to have a latest running version available twenty-four hours a day at all departments
worldwide.

• Manage deliverables - Previously, source files were the focus of management
instead of deliverables. A compiled version of the software created on the build
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server and a manual from the manual department were the only deliverables.
As product complexity grew, however, ES desired to be able to manage the
deliverables individually and attach workflow and documents to deliverables to
increase its traceability. Also, previously developers determined, depending on
the requirements, what the variabilities of a product would look like. ES decided
that sales departments should be able to influence at what level a developer
introduces variability.

• Ease of delivery - ES wished to automatically update its products with an
evolving set of deliverables because ES consultants had often been confronted
with complex manual update procedures.

To manage the deliverables and ease the maintenance process at the customer
site, e-Synergy’s PDM module was employed. The PDM functionalities were
implemented as a central system to the process of maintenance. e-Synergy connects
the PDM system and the human resources management system to enable ES to assign
deliverables to specific developers and hold developers responsible for the quality of
their deliverables. Before e-Synergy was introduced, when deliverables were mostly
unmanaged, automatically reusing modules for different products was impossible.
Since deliverables can now be linked together to form new products, ES can create
new products from a standard set of components. Because currently all deliverables are
stored explicitly in the PDM system, the Product Updater can automatically retrieve a
list of deliverables for a product from the PDM system and install them if necessary.
The fact that all deliverables are retrieved this way eases the process of software
delivery to customers.

Combined SCM and PDM support is provided by the logistics module of e-Synergy
because it stores the product data, the deliverables, and the source code. ES has
combined the PDM and SCM systems in e-Synergy because ES believes that building
a software product is fairly similar to building physical products and can be done using
a commercial and generic PDM system. Developers see the SCM system primarily
as one repository in which both the source and their corresponding deliverables, such
as executables, are stored. For sales personnel the PDM system primarily consists
of physical objects and software objects, to which documents, software deliverables,
and workflow activities can be attached. Finally, the PDM system supplies customers
with a link to the published repository from which they can download the most recent
versions of the artefacts that are part of the products the customers have purchased.

ES uses e-Synergy to manage all tasks with the concepts of tasks and projects. A
task has four states, being open, approved (in progress), realized, and processed. These
states can be changed by both the assigner and the assignee when appropriate. Projects,
which are collections of tasks and subprojects, enable a project manager to assign tasks
within a project and view the status of a project by looking at task overviews. A typical
task is setup when a bug report is processed by quality assurance to a bug fix request.
The request will be assigned by the quality assurance team member to a developer, in
such a way that the task comes back to the quality assurance team member after the
developer finishes the task.

A typical recurring project is the promotion of a product from the B release to
the A release. The release to the A repository requires special care due to the fact
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that the A repository is open to pilot customers. This requires the product and all its
artefacts to be available and up to date, before a release can actually be promoted. A
release project thus consists of different subprojects, such as approval steps, artefact
testing, and quality checking projects. An interesting aspect of a product release is
internationalization. ES uses generic replaceable terms for its applications, which are
replaced by dictionaries for each language in which a product is available. Obviously,
these dictionary artefacts need to be complete and available at release time. One
product release subproject thus is the translation of the dictionaries. Also, since
manuals are delivered with the product, the PDM system must contain a valid manual
for each language the product is released in.

3.4.2 Maintenance at the Customer

Figure 3.1 depicts a small subset of the information stored in the integrated system. The
CRM system stores information on customers and their contracts. The contracts are
used to generate licenses and store what product(s) a customer presently has purchased.
The products, as stored in the PDM system, are linked to the artefacts that make up that
product and that must be deployed at the customer site when the customer owns the
rights to that product. Finally, the artefacts are linked to source artefacts that are used
to build the deliverables. The SKB implemented by ES consists of the SCM, PDM,
and CRM modules in e-Synergy and are integrated through the One-X architecture.

ES has chosen to deliver the full set of deliverables for a product to a customer,
abolishing the need for elaborate dependency information among software modules.
The reasons for this approach are that development costs for a partial delivery system
are high while disk space and bandwidth are relatively cheap. Besides e-Synergy,
there is one external tool that performs actions on the repositories. The Product
Updater downloads and installs all deliverables for a release from a selected repository.
The Product Updater establishes what deliverables are present at the client site and
downloads (new versions of) the required files. The Product Updater also has some
scripting capabilities to install the application and create and transform the tables in
the database.

Before e-Synergy was implemented, ES only used a proprietary product Globe for
CRM. However, when maintenance matters had become too complex the overall goals
became to reduce complexity of delivery, intensify customer contact, and reduce the
cost of the support department. These lead to the following non-generic requirements,
which were met by e-Synergy:

• Facilitate custom solutions - The ES customer base still depends for a
noteworthy part on custom solutions to extend current functionality in ES
products. They wanted to reduce complexity of delivery, yet still facilitate
custom solutions and extensions to its products, and ES wanted to remove the
expensive need for consultants at the customer site to perform an update of the
product.

• Unify licensing and CRM - ES realized its software was being copied and
distributed illegally. To trace back illegal licenses ES wished to link a license
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directly to a customer, whereas in the past its licensing was done through license
numbers provided with the distribution CD-ROM.

Custom Solutions

Ever since ES produced standard out-of-the-box applications a Custom Solutions
department has been needed to create specific solutions for customers. To do so in
e-Synergy a specific messaging architecture has been created to enable the addition of
extra components. Custom solutions are created using a dedicated e-Synergy software
development kit (SDK). Custom Solutions produces two types of customisations,
being building blocks and customer specific solutions. Building blocks are standard
customisations that are applicable to specific market niches, such as equipment rental
companies or educational organizations. Customer specific solutions are requested
by customers and are not generalizable to other customers. Finally, customers can
purchase the option to create customisations themselves.

All three types of customisations are built using the same SDK and are facilitated
by a messaging architecture. The messaging architecture created by ES is kept as stable
as possible, such that custom solutions that worked with older versions of e-Synergy do
not break down due to an update. If a customisation changes a file that belongs to the
product itself, such that an update would remove the customisation, the customisation
developer can mark the file as unfit for update. The Product Updater will then simply
skip the file during the update process. Obviously, it is impossible to guarantee that the
product remains fully functional after an update when changes have been made to the
product itself and therefore ES focuses on communicating regularly with its customers
that implement customisations.

When the Custom Solutions department creates a customisation for a customer,
that customisation is stored in a Custom Solutions SCM. The dedicated SCM system
enables customers to update a custom solution automatically when the Product Updater
is run. When a product for which a customisation is built is updated, Custom Solutions
cannot cost effectively test the customisation that was made for one specific customer
in each possible updated configuration and only building blocks are tested for each new
(maintenance) release. However, due to the fact that updates do not break compatibility
in the SDK, customer specific customisations generally do not break down after an
update.

Contracts and License Files

Some of the results of the integration of the PDM and CRM systems are the contract
management functionalities and the license files. The version number that is stored in
the contract management facility for each customer’s product is changed automatically,
when a customer downloads an update, or manually, when a CD-ROM is sent out
to a customer. The version number is used for support purposes, telling the support
department what version a customer is currently using. The link to the customer
support calls and service status is used to see how many calls a customer has made,
and whether a customer is still allowed support. Using the support information leads
to a stricter way of dealing with support and results in less support calls.
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At the customer site a data file and license file are stored. The data file contains
a list of all the deployed deliverables and the license file states all the modules that
have been purchased by a customer. The license file also contains information on the
expiration date of the license, since licenses need to be refreshed periodically (yearly
for most products). Finally the license contains, if available, a pointer to a download
location for a custom solution. The download location is used by the Product Updater
to update the custom solution for a customer. The deployed data file stores the version
number and the install location for each deliverable. When updating the data file is used
by the Product Updater, by comparing the deployed data file to the list of available
deliverables for a product. After an update the data file is updated to contain all the
newest information. The local settings for a product are stored in the database of the
client.

In an attempt to reduce piracy a license checking mechanism was implemented.
Periodically the license file is renewed and must be downloaded again to keep the
product active. Currently there is no data available to prove whether piracy has
effectively been reduced. ES is unique because they provide customers a direct link to
their individual contracts and their license files. ES is also unique because e-Synergy
stores the version number of a product deployed at the customer, improving support.
The usage of license files to encapsulate product instantiation information is common
in the software industry.

3.5 Discussion
The customer base of ES has shown a constant growth over the last 15 years. Related to
the area of maintenance and development ES has dealt with this growth by integrating
its CRM, its PDM, and its SCM systems. The solution implemented by ES teaches us
three lessons.

• Integrated support systems for maintenance - The first lesson is that
integration of these three systems is highly profitable. The integration has
resulted in a reduction of effort required for the processes of maintenance.
Explicit management of deliverables with the PDM system has enabled ES to
attach workflow to them, thereby providing a software maintenance process
which is easy to manage and enables quicker releases. The integration of the
CRM contracts facilities and PDM enable ES to quickly and automatically
manage the delivery of software and licenses to customers through the Internet.

• Integrated maintenance of customer configurations and published releases
- Secondly, ES teaches us that by mapping maintenance of configurations
at customers onto the published deliverable repositories simplifies customer
configuration updating, because this process is reduced to comparing the list
of local artefacts against the list of released artefacts.

• Development simplification - The third lesson lies in the fact that ES attempts
to simplify all processes, thereby eliminating complexities that would normally
result in more effort. Their decision to deploy the full set of deliverables
has removed the complexities of partial delivery and removed the need for
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dependency tracking among modules, enabling ES to focus more on the delivery
process.

According to our experiences, delivering the full set of deliverables is common
practice for software developers practicing KISS. Another decision with major impact
is the decision to remove build servers that would perform daily builds, and introduce
the concept of developers committing deliverables with their sources. ES has also
chosen to build all its products on one universal data model, the One-X architecture,
enabling applications to share data among each other. Finally, ES uses a maintenance
cycle instead of a development cycle to improve its software. There are two advantages
to the maintenance cycle. First, it reduces complexity for developers and ensures
quality because developers do their activities in a maintenance cycle with predefined
workflow. Secondly, the workflow module stores the processed workflow, making
activities traceable.

There are downsides to the strategies employed by ES as well. ES keeps track of
dependencies among source modules only by adding textual notes to sources, which are
hard to maintain. Another downside of the simplification strategy is that ES performs
destructive updates, disabling customers to move back to older versions of the software.
Finally, ES does not allow developers to branch development in its SCM system to
simplify the maintenance process, thus restricting concurrent development.

ES’s implementation of e-Synergy can be seen as a software knowledge base
(SKB). The SKB consists of (A) a vendor side SKB that stores all product and
component knowledge and (B) a local software knowledge base consisting of the data
file containing all deployed deliverables, the configuration information of the tools
stored in the database, and the license file storing a list of all activated modules and
licensing information. It is the SKB that has allowed ES to expand its customer
base. Before the implementation of the SKB, too many resources were used up by
maintenance tasks to allow growth to 160.000 customers.

The case study has influenced our research in the following ways. First, the ES
solution is not easily applicable to products in domains that do not wish to send out
all deliverables, wish to provide incremental updates that can be rolled back, or wish
to maintain a high level of reusability among products. In contrast, I wish to create a
generalizable solution. Secondly, the case study shows us that integration of software
knowledge, as I suspected, is a powerful tool in the maintenance of software. ES,
however, also showed us this software knowledge is effectively used in other processes,
such as workflow management, human resource management, and customer support.
As such, the ES case shows that a simplified instance of the concept of an SKB
improves a company’s ability to handle large amounts of customers.

ES manages six large product lines, with each product line containing
approximately ten solution areas (that in turn can contain large amounts of products and
product modules), consisting of a total of one million lines of source code. The source
code is managed by 294 software developers, who commit their sources a number
of times per day. Customers connect to the release repository of ES approximately
250.000 times per year to download updates. I thus strongly believe that the integration
of the PDM, CRM, and SCM system is the best way to automatically manage an ever
growing amount of customers in need of updates, licenses, and support.
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3.6 Related Work
The techniques applied by ES to integrate SCM and PDM are similar to those described
by the book on the integration of PDM and SCM systems in Finnish industry [60]. The
execution of case studies performed by Tiihonen et al. [111], Bosch et al. [17], and
Davenport et al. [31] are similar to the way in which the ES case study was performed.
All three describe one or more case studies with qualitative, rather than quantitative
results for software products and development processes. The work presented by
Tiihonen et al. and Bosch et al. is different from our research because it focuses on
the state of the practice of software product configuration in software product lines and
because both apply a problem focused approach. Davenport et al. describe a model of
knowledge management that is later put into practice at Siemens, and differs from our
work in that their model is first compared to the current practices and then implemented
to provide extra grounds for evaluation.

The aim of the presented research is to provide qualitative results to the current
body of knowledge of knowledge management and case studies in product software
companies in software maintenance in general. The techniques applied by ES are
clearly centered around the SCM system, and have been integrated upwards with the
CRM and PDM systems. With respect to the SCM system, I have positioned it in the
framework created by Conradi and Westfechtel [25]. The SCM system under study, by
their definition, is a state based tool-kit that applies a database to store coarse grained
extensional product compositions for any problem domain. The product configurator
applies functional rules to provide an interactional model to its users. Finally, the case
studies performed by us [62] and Ballintijn [7] are of the same format as the work
presented here. These two case studies show, similar to the ES case but to a lesser
extent, that explicit software knowledge management can improve the CCU processes.
The main differences between the ES case and these cases is that they describe much
smaller organizations (160 and 100 employees, respectively) and that they have not yet
integrated PDM, SCM, and CRM to such an extent as ES.

3.7 Conclusion
If anything can be learned from this research, it is that software vendors must integrate
their CRM, PDM, and SCM systems to automate the processes related to CCU. Such
automation provides more efficient methods to perform repetitive tasks such as license
creation, license renewal, product updating, error reporting, usage reporting, product
release, and manual configuration tasks, such as backups. The second main lesson
is that usage of feedback reports supplies software vendors with the largest test bed
imaginable, and therefore deserves more attention. The presented research can be used
as a guideline for software vendors or for the development of a software manufacturing
and software product data management system. In our search for tools that can
provide the key practices presented in this chapter, an undiscovered product niche
was encountered. It seems that there are no (other than ES’s e-Synergy) commercial
product data management systems that explicitly manage licenses, software products,
their fixes, and their patches, in such a way that customers can log in and download
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them.
This article describes a case study of a software knowledge base at Exact Software.

The case study helps to provide evidence that the complex maintenance tasks of
enterprise application software for a vendor is best managed with an SKB. Our
contribution is twofold. First, I showed that explicitly managing software knowledge
improves the processes of release and deployment for a software vendor selling
different enterprise resource planning software products. Secondly, I showed that
integrating the knowledge with other systems, such as PDM and CRM systems
optimizes the processes of maintenance and delivery, and enables vendors to serve
a large customer base. I also use the results of this case study in comparisons to other
case studies I am performing at other software manufacturers [141] and I will use the
results to build, in cooperation with industry, prototype tools related to SKBs.
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C H A P T E R 4

A Benchmark Survey into
the Customer Configuration

Processes and Practices of
Product Software Vendors in

the Netherlands

Product software vendors do not invest enough effort into release, delivery,
deployment, and usage and activation of their software products. Not
spending effort in these customer configuration updating processes leads
to high overhead per customer, which impedes growth in customer
numbers. This chapter presents the results of a survey that provides
product software vendors with an overview of their customer configuration
updating processes and practices, and benchmarks their practices against
competitors using similar technology, of the same size, and active
in the same market. These benchmarks contain customized advice
to the respondent company that can be used to strategically improve
their customer configuration updating processes to gain efficiency and
effectiveness. The survey was held in the Netherlands, and 74 software
vendors responded. Amongst other conclusions, a significant positive
correlation was found between success of a software product and a
vendor’s recent investments into customer configuration updating. 1

4.1 Introduction
The product software industry in the Netherlands is flourishing. Computer games,
ERP products, and navigation systems are just some examples of successful products,
nationally and internationally. Though these businesses have a large body of knowledge
available to them about generic software development and engineering, none of it is

1The work has recently been submitted [146].
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specific to product software development. One area that is specific to product software
vendors is the fact that they have to release, deliver, and deploy their products on a wide
range of systems, for a wide range of customers, in many variations. Furthermore, these
applications constantly evolve, introducing versioning problems. This chapter presents
a benchmark survey into the customer configuration updating processes of 74 product
software vendors.

To date product software is a packaged configuration of software components or a
software-based service, with auxiliary materials, which is released for and traded in a
specific market [132]. Customer configuration updating is defined as the combination
of the vendor side release process, the product and update delivery process, the
customer side deployment process, and the usage and activation process (see chapter 2).
The release process is how products and updates are made available to testers, pilot
customers, and customers. The delivery process consists of the method and frequency
of update and knowledge delivery from vendor to customer and from customer to
vendor. The deployment process is how a system or customer configuration evolves
between component configurations due to the installation of products and updates.
Finally, the activation and usage process concerns license activation and knowledge
creation on the end-user side.

Vendors encounter many problems when attempting to improve customer
configuration updating. To begin with, these processes are themselves highly
complex considering vendors have to deal with multiple revisions, variable features,
different deployment environments and architectures, different distribution media, and
dependencies on external products (please see chapter 6). Also, there are not many
tools available that support the delivery and deployment of software product releases
that are generic enough to accomplish these tasks for any product (please see chapter 5).
Finally, Customer Configuration Updating (CCU) is traditionally not seen as the core
business of vendors, and seemingly does not add any value to the product, making
vendors reluctant to improve CCU.

This chapter presents the results from a survey of 74 product software vendors. The
respondents are product managers for one product from one product software vendor.
The object under study is the release, delivery, deployment, and usage and activation
processes from each vendor for one of its products. These four CCU processes consist
of two to four practices. Each practice consists of capabilities. A vendor’s capabilities
are measured using between three and five questions per capability. The aims of these
scores are to establish a vendor’s position compared to competitors. The overall goals
of this research are to see what the CCU landscape in the Netherlands looks like,
to establish whether CCU process scores are directly related to product success, and
whether a survey can be used as a knowledge dissemination method.

In the following section the processes and practices of customer configuration
updating are described in detail. In section 4.3 the research design, consisting of
the hypothesis and research approach, is presented. In section 4.4 the survey results
and respondents are presented, including the results for each process area and for the
hypotheses. Finally, in section 4.6 we present our conclusions and discuss our future
work in regards to CCU process improvement.

66



SECTION 4.2 Customer Configuration Updating

4.2 Customer Configuration Updating
The four process areas and their corresponding practices used in the benchmark survey
are defined using the SPICE model for process assessment [93]. The SPICE model,
which enables self analysis for vendors, defines a process as “a statement of purpose
and an essential set of practices that address that purpose”. These practices are software
engineering or management activities that contribute to the creation of the output (work
products) of a process or enhance the capability of a process. In this section CCU and
practices are defined, together with their relationship to the CCU model and current
literature.

4.2.1 Processes and Practices
We define CCU as the release, delivery, deployment, and usage and activation processes
of a software vendor. These processes consist of two to four practices, each with a
number of elementary capabilities. For instance, the release process is made up of four
practices. One of these practices is release frequency and quality. The capabilities
falling under the release frequency practice are that a vendor must frequently release
major, minor, and bug fix releases, that a vendor must synchronize these releases with
customer demand, and that releases are tested by pilot customers before they are made
publicly available.

The Release process is based on four release practices. The first practice is how
often versions and updates of a product are released and how this is planned within
the organization. The second practice is how releases are shared within the company
and between customers and the software vendor. Thirdly, all dependencies between
components, be they products that have been built by the vendor or purchased from
another, must be managed by making explicit dependencies between these products
and components. Finally, versions of external components, such as components-off-
the-shelf, must be managed explicitly to maintain high quality releases.

With regards to the delivery process there are two practices. The first practice
prescribes that vendors must use every possible channel for the distribution of products
and product updates [52]. The second practice states that every possible method for
delivery must be applied, such as automatic push or pull.

There are four practices for the deployment process of a vendor. To begin with,
a product must be removable without leaving any remnants of data on a system.
This is required because a new installation preferably must not be contaminated with
old data. Secondly, if issues are encountered during the deployment of a software
product, automatic resolution must take place to resolve these issues. Such resolution
mechanisms are capabilities such as automatic downloading of missing components,
freeing up resources when required, or even automatic renewal of licenses. The third
practice for the deployment process is that updates and installations must be able to
cope with customizations made by customers or third parties. A vendor supports this
practice when a special software architecture is in place that enables customizations.
The fourth practice is deployment reliability, which is ensured by capabilities such as
validity checks, feedback reports, and externalization of customer specific changes and
data [33].
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Finally, a vendor’s activation and usage process is based on three practices. First,
a vendor must (semi) automatically handle all license requests and distribute licenses
with a maximum amount of flexibility within the organization. A vendor supports this
practice once customers can explicitly manage their licenses, once licenses expire, once
temporary licenses can be generated for sales and test purposes, and once licenses are
generated automatically as soon as a sales contract is signed. Secondly, vendors must
make use of feedback to gain as much knowledge about the product in the field as
possible. A vendor is considered adequate for this practice once it makes use of both
usage reports and error feedback. The third practice is that vendors must be aware of
their customers’ configurations. Vendors scores for this practice when they are aware
of the software and hardware components that are used by its customers.

4.3 Research Design
This research has been conducted to find out more about the CCU practices and
processes of product software vendors, to benchmark a product software vendor’s
practices, and to generalize some of the conclusions of earlier work we applied in a
multiple case study (please see chapter 2).

4.3.1 Hypotheses
The work has been conducted for two reasons. The first reason is to perform a
benchmark for product software vendors about their release, delivery, deployment, and
usage and activation practices. Secondly, we wished to prove or disprove the following
hypotheses, which have been formulated in earlier research [143]:

H1: A product software vendor’s scores for the CCU processes are positively
correlated to the age of the company, the age of the product, the number of natural
languages in which the product is available, the number of developers working on
the product, and the number of customers of the product. Many different tools are
built around software products during their lifecycle. Furthermore, customers come
and go, making the need for good CCU processes and tools even larger. Also, as a
vendor’s customer base grows, this needs increases further. Also, with more developers
on board, more time can be spent on CCU improvement. We therefore expect H1 to be
true.

H2: A younger technology platform will result into weaker performance of the
CCU processes. When a product software vendor starts using a new technology there
are not many CCU support tools available for that technology. This implies that older
technology platforms will have better CCU support, improving a vendor’s CCU score.

H3: When a vendor explicitly manages CCU knowledge they are more
successful. When a product software vendor changes the CCU process it improves
customer experience and enables a product software vendor to spend less resources
per customer. This frees up resources to further develop the product or do more
maintenance. This hypothesis is two sided, however, due to the fact that a more
successful product software vendor will have more resources available to spend op
CCU processes.
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Process Practice Average
score

Maximum
score

Release Releases are frequent and of high quality [143] 6.08 17
The vendor maintains an explicit release planning
[142]

2.26 7

A formalized release scenario that describes what
happens on release day [143]

8.73 18

Manage external products, such as commercial-
off-the-shelf components [62]

4.73 9

Total 21.8 51
Delivery Vendors must use every possible channel to stay

into frequent contact with customers [52]
11.91 30

Every possible method for delivery must be
applied [143]

11.28 38

Total 23.19 68
Deployment Explicit dependency management for correct

deployment [21, 121]
3.35 7

The product can be uninstalled and rolled back
[147] [89]

2.7 4

The vendor uses update tooling and manages
customizations [37] [147]

11.8 26

Update reliability and semi-automatic problem
resolution [142]

14.49 32

Total 32.34 69
Usage and
activation

Licenses are can be renewed and trialled and
activate components of the software [143]

6.97 7

Licenses are explicitly managed within the
organization and generated from contracts[143]

2.65 9

Vendors know how customers use products and
take advantage of this knowledge [135, 148]

9.24 14

Total 18.86 30
All Cumulative Total 96.19 218

Table 4.1: Scores for Practices and Processes
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4.3.2 Approach and Survey Design

The research hypotheses are proved or disproved using a web survey that establishes
scores of CCU processes and different maturity indicators for product software vendors
and their products. The benchmark survey consists of eleven parts. Each part contains
between three to twelve questions. There are closed as well as open ended questions in
the benchmark survey. The closed questions are used to establish scores for practices
of vendors and consist of yes/no questions and multiple choice questions. The open
questions establish the generic or numeric information on the vendor, such as the
vendor’s name, the amount of customers of the product, the amount of users of a
product, etc. Three open ended questions have been added to the end of the survey
to find out in which parts of CCU the vendor will invest in the future and what tools
they feel are missing in the range of CCU support tools.

Each of the practices stated in Section 4.2 has three to five questions that assesses
the vendor’s practice score. The practices have been derived from the CCU model,
as described in Section 4.2. When all practice scores for one process are added up
we obtain the process score. As is suggested by Saywell [30], methods that force
your public to evaluate their own process actively by participation (in a benchmark
survey, for instance) are a valid method for knowledge dissemination. When sending
out the benchmark report we attached a small paper survey, with a stamped return
envelope, to evaluate Saywells claim. We received 26 responses of which only one was
negative. All others responded positively to the usefulness of the benchmark report as
both a knowledge dissemination tool and as being useful to use in future improvement
projects.

4.3.3 Sample Selection

The respondents have been selected based on 2 criteria: First the submitter must be a
product manager or a development manager who is close to the process and can answer
each question. Secondly, the software product must specifically be a software product
that is delivered to customers and executed at the customer’s site. These requirements
are specified in the invitation e-mail and at the beginning of the benchmark survey
itself.

The vendors have been selected through the Platform for Product Software [45],
the yellow pages, and the Netherlands business index for ICT [84]. The potential
respondents have been approached by e-mail twice. No two respondents belonged
to the same product software company.

4.3.4 Survey Tool

The open source PHP/MySql tool used for this benchmark survey is called PHP
Surveyor [47]. The tool is still under development and the fact that it is open source
has enabled some final customizations, such as the addition of question types and
custom data analysis methods. The survey tool has been selected specifically because
the submitter can save the survey results up to a certain point, to allow him or her to
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find answers to questions he or she does not know at the time of asking. The previous
answers can then be reloaded at a later point.

4.3.5 Benchmark Survey
The benchmark survey is an initiative of the Platform for Product Software [45], a
scientific initiative that attempts to unite Dutch product software vendors to improve
the industry by disseminating knowledge from the academic world. The benchmark
was created to serve both our academic interests and the interest of the platform. To
be of use to the platform the results from the survey are used to automatically generate
a customized benchmark report for each of the respondents. Such a report includes
comparisons of a respondent’s practices to other product software vendors using similar
development technology or are active in the same market. Besides providing a dataset
for research, the report spreads knowledge and provides new insights to product
software vendors. The survey can be found in section 4.7.

One question asks the software vendor to prioritize six reasons for CCU
improvement. These CCU improvement priorities were to serve more customers, serve
customers more cost-efficiently, reduce deployment problems, reduce the time in which
bugs are found, shorten release cycles, and apply a more flexible pricing model.

Furthermore, the customized benchmark reports include specific advice for each
of the product software vendors. The advice, such as “You must introduce a formal
release scenario” included a full description (1 paragraph) and a relevance indicator.
This relevance indicator (low, medium, and high) is based on the above mentioned
prioritization question. For example, if the respondent put “Shorten release cycles”
as a top priority, the release scenario advise example received a high relevance rating.
Each advice was assigned to between one and three CCU improvement priorities, based
on the CCU evaluation model.

To evaluate whether the benchmark reports are a useful tool for knowledge
dissemination, a second survey was sent with the benchmark report. This second
survey contains questions such as “Has the report provided you with new insights into
the release process?”

4.3.6 Validity Threats
To make sure that we draw the right conclusions from the results, we defend construct
validity, reliability, and external validity.

Construct validity - In this study concepts come directly from literature and from
our earlier practical case study work. The questionnaire was pre-tested by a small
working group of four software vendors and by five researchers. Their comments lead
to approximately 10% of the survey having been changed. These four software vendors
were excluded from participation.

Reliability - To stimulate correct answers the submitters were all promised a full
report, complete with customized advice to specifically fit their product. Furthermore,
we promised the submitters that the results would only be published anonymously.

External validity - We strongly believe that the results of this survey are
generalizable to other countries. The OECD states that the Netherlands is the fourth
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largest exporter of product software in the world [44]. It must be noted that three of
the larger software vendors in the Netherlands replied (in a country where there are
only a handful). Even though we estimate that our dataset covers 6 percent of the total
number of software vendors, we expect this number to be much higher when looking
at the number of employees active in the product software industry.

This work is specific to product software vendors. During the research we were
approached by a number of on-line application service providers, asking whether they
could participate. These requests have been declined, because too many questions
were about concepts that are not applicable to software providers, such as delivery of a
product and its updates, usage and feedback reports.

4.4 Results

In table 4.1 the average process and practice scores are listed for CCU. The first
column listst the process for which this practice is applicable. The second column
describes each practice and provides references to other work in which these practices
are described and discussed. In the third column the average score is provided for
each practice, obtained by the vendors. The final column lists the maximum score that
could have been earnt. The processes and practices of the CCU evaluation are based
on the CCU model [143], the SOFA model [99], and some capabilities of the Software
Dock [52] and have been recorded into the SPICE based evaluation model. Please
note that the total scores for each process cannot be compared to the scores of other
processes. We believe that the four processes are equally important. In tables 4.3, 4.4,
4.5, and 4.6 the average scores for the release, delivery, deployment and usage and
activation practices and processes are listed. The tables describe the questions that are
posed to determine each practice score for the processes. The scores that can be earned
per question have been determined by a committee of five representatives from four
product software vendors. The scores for each practice are determined by between two
and five questions each.

4.4.1 Respondents

74 product managers submitted the survey, from software vendors ranging from 1 to
460 employees (see table 4.2). Three were excluded from the dataset on the grounds
of being from the wrong country or for being a web service provider. Statistics
Netherlands estimates that there are 1400 software vendors in the Netherlands, giving
a 5 percent coverage of the total product software industry. Furthermore, when
asked the product managers to categorize their business by checking at least two
categories (see table 4.2), by far the largest part of product software vendors is building
business productivity tools and enterprise resource planning systems. The product
managers were also asked to provide the development technologies they used (results
in table 4.2). Please note that for the technology and business category questions
respondents were allowed to submit more than one answer.
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Practice Question or description Average
Score
of all
vendors

Highest
possible
score

A1 How often do you publish a major release of your
product?

5

How often do you publish a minor release of your
product?

5

How often do you publish a bugfix release of your
product?

5

Are releases timed in sync with customer requirements? 2
Total A1: The vendor addresses release package planning

to maintain high quality releases[143]
6.08 17

A2 Does your organisation use a formal release planning
that states the times until the next major, minor, and
bugfix releases?

5

Is this planning published in such a way that all related
personnel can access it?

1

Is there a formal publishing policy towards the outside
world in regards to this document?

1

Total A2: The vendor maintains an explicit release
planning [142]

2.26 7

A3 Is there a step-by-step description (release scenario) of
what happens on the day of a release?

2

Releases are stored in a versioned repository? 6
All major, minor, and bugfix releases can be
downloaded by all product stakeholders?

6

The latest release can be downloaded by all
stakeholders?

4

Total A3: A formalized release scenario that describes
what happens on release day [143]

8.73 18

A4 All tools that are built to support CCU are managed as
if they are externally acquired products.

2

All other tools (such as development tools) are managed
explicitly as well?

2

Are these components stored in a versioned repository? 5
Total A4: Manage external products, such as commercial-

off-the-shelf components [62]
4.73 9

All Release Process 21.8 51

Table 4.3: Scores for Release Practices and Processes
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Practice Question or description Average
Score
of all
vendors

Highest
possible
score

B1 All major, minor, and bugfix releases can be
downloaded by all product stakeholders?

6

The latest release can be downloaded by all
stakeholders?

4

You inform your customers using different channels? 10
Does your product automatically send back error
reports?

3

Customers report bugs via different channels. 5
Does your product generate usage reports and send
these back to you?

2

Total B1: Vendors must use every possible channel to stay
into frequent contact with customers [52]

11.91 30

B2 Your products can be delivered using different types of
media?

15

You inform your customers often and regularly? 5
Your product can be delivered through automatic
pull/push methods?

16

Your product updater can download product updates
from any location?

2

Total B2: Every possible method for delivery must be
applied [143]

11.28 38

All Delivery Process 23.19 68

Table 4.4: Scores for Delivery Practices and Processes
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Practice Question or description Average
Score
of all
vendors

Highest
possible
score

C1 Are external relationships managed between your
product and other products?

2

Are these products stored in a versioned repository? 5
Total C1: Explicit dependency management for correct

deployment [21, 121]
3.35 7

C2 Is it possible to uninstall your product without complex
manual steps?

2

Is it possible to undo an update? 2
Total C2: The product can be uninstalled and rolled back

[147] [89]
2.7 4

C3 Please indicate whether your update tool can be used for
major, minor, and/or bugfix releases.

8

Does your product use an update tool? 5
Can the update tool deal with customer data and
customizations?

5

Can the product be deployed in a Development, Test,
Acceptance, Production (DTAP) environment?

3

Can your product be updated at runtime? 5
Total C3: The vendor uses update tooling and manages

customizations [37] [147]
11.8 26

C4 Does the product installer or updater extensively check
a customer’s configuration before updating?

7

Are any of these problems automatically resolved? 6
Which of your updates are checked by pilot customers? 4
Can a customer run a tool to check the completeness of
its deployment of your product?

3

Are all product specific data and customer settings
stored separate from the product?

3

Are you well aware of how customers generally use the
product?

3

Are you well aware of the hardware customers use? 3
Are you aware of all customer specific solutions for
your product?

3

Total C4: Update reliability and semi-automatic problem
resolution [142]

14.49 32

All Deployment Process 32.34 69

Table 4.5: Scores for Deployment Practices and Processes

76



SECTION 4.4 Results

Practice Question or description Average
Score
of all
vendors

Highest
possible
score

D1 Do you use license agreements? 5
Can an end-user choose which license he/she will use at
startup?

1

What type of data is stored in your license files? 1
Total D1: Licenses are can be renewed and trialled and

activate components of the software [143]
6.97 7

D2 Can a customer renew its license without your
intervention?

3

Do your licenses expire? 1
Do you often supply temporary licenses? 2
Are licenses generated from contracts automatically? 3

Total D2: Licenses are explicitly managed within the
organization and generated from contracts[143]

2.65 9

D3 Are you aware of how customers use your product? 3
Are you well aware of the hardware customers use? 3
Are error reports automatically sent when a product
crashes?

3

Does your product create usage reports? 2
Are you aware of all customer specific solutions for
your product?

3

Total D3: Vendors know how customers use products and take
advantage of this knowledge [135, 148]

9.24 14

All Usage and activation process 18.86 30

Table 4.6: Scores for Usage and Activation Practices and Processes
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4.4.2 Hypotheses Results

H1: A product software vendor’s scores for the CCU processes are positively
correlated to the age of the company, the age of the product, the number of natural
languages in which the product is available, the number of developers working on
the product, and the number of customers of the product.

There exists a strong positive correlation between the number of customers a
product software vendor has and its CCU scores, for all CCU processes. The strongest
positive correlation is found between deployment process scores and the number of
customers. Clearly, the higher the number of customers, the more likely a vendor is
to spend time on minimizing overhead by managing and improving CCU processes.
Unexpectedly, there is hardly any correlation between product age and process scores.
Though the scores vary greatly, older products do not necessarily have higher CCU
scores. The product age (ranging from 0 to 22 years) only showed a slight upward
trend for the deployment process scores, possibly meaning that only the deployment
process score is influenced by the age of a product. In regards to FTE developers there
exists a strong positive correlation between all processes except usage and activation
(where there is a hint of a negative correlation). An explanation for this phenomenon
has not yet been found. The hypothesis thus only holds partly true.

H2: A younger technology platform will result into weaker performance of the
CCU processes. To prove or disprove this hypothesis, we have listed the technologies,
the average CCU scores, the average separate scores per process, and the technology
age.

Some technologies do obtain much higher scores than others. At the top of the
list are Visual FoxPro, C#, Visual Basic, and Java. At the bottom of the list are C,
C++, and the scripting languages PHP and ASP. Furthermore, there is a strong negative
correlation between development technology age and the deployment process score,
suggesting that newer technologies have better deployment support.

H3: When a vendor explicitly manages CCU knowledge they are more
successful. A series of three questions was asked to establish a causal relationship
between explicit CCU knowledge management and product success over the last two
years. To the first question, whether the product was more successful, 62 answered they
were more successful, confirming our belief that product software is booming business.
Of course there are many more factors that influence the success of a software product.
To remove this variable the respondent was asked to value the relationship between
product success and recent CCU improvements, from “of no influence at all” to “mostly
caused by”. We found a direct relationship between the success of a software vendor
and its investment into the CCU process over the last two years (r = 0.26, p ≤ 0.05),
taking into account the answers to the question on the relationship between product
success and CCU improvements.

4.4.3 Open Questions

To the open question “Into what area of CCU will your organization soon invest” most
respondents answered they would invest into delivery methods of updates (40%) and
into update tools and methods (35%). In regards to delivery the respondents explained
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they wished to deliver through different media such as FTP sites and portals and
with different methods, such as scheduled automatic updates. Regarding update tools
some answered they were investing into Microsoft Windows Vista and some that they
were using commercially available installers such as InstallShield and Wix. The third
problem that was discussed frequently was release planning and scheduling (12%).

When asked how recent CCU improvements had affected the product most
respondents answered that higher product quality had been reached (23%) and that
the product had become more reliable (21%). A close third and fourth were less
deployment problems (16%) and lower development cost (16%). The less popular
choices were less time to find bugs (11%), more knowledge about customers (5%) and
shorter release cycles (9%). The submitters answered questions on how many people
were active in the areas of CCU (release managers, version system managers, etc)
and development (quality assurance, programmers, etc). When dividing the number
of employees supporting or managing CCU processes by the number of development
personnel, an average of 16% is found. This tells us that research contributions in CCU
can potentially affect on average 16% of software development personnel on average
at product software vendors.

According to this survey the most important reasons for CCU improvement are to
serve more customers and to serve them more cost-efficiently on a shared first place.
The runner-up was to reduce deployment problems. In contrast, these three were at the
first place of software vendors’ lists 19 times each, whereas the other three ended up
at the top of the list six times each. The scores are computed by awarding 6 points for
priority 1, 5 points for priority 2, etc. Please note that all columns and rows (excluding
the scores) add up to 74.

4.4.4 Suggestions for CCU Improvement
Each of the 74 product software vendors received a personalized and customized report,
with up to eight CCU improvement suggestions per process area. These improvement
suggestions were then annotated with a relevance rating, based upon the ordering of
a product software vendor’s reasons why they would improve CCU. The submitters
received an average of thirteen improvement suggestions per survey report. The
frequency of improvement suggestions displays relevant issues in CCU.

For the release process vendors generally do not use a formal release planning.
Furthermore, many product software vendors set shortening release cycles or reduce
the time in which bugs are found as a prime priority. This led to the advice “Introduce a
formal release planning and share this within the organization” being issued to 47 of the
74 product software vendors. The advice “Store external components and development
tools in a versioned repository with the product” was provided least often (13 times out
of 74) due to the fact that most of the vendors already do this.

For delivery the advice issued most frequently (47 times) was “Seek contact with
your customers more often through alternative channels”, especially to those vendors
who set “Serving more customers” and ”Reduce the time in which bugs are found” as
their first and second priority. This advice was especially provided to those who do
not use the product itself, for instance through pop-ups and in-product messages, for
knowledge delivery.
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In regards to deployment the advice “Explicitly manage all relationships between
external products and yours” given 46 times, especially to those vendors who set
“Reduce deployment problems” and “Serve customers more cost-effectively” as their
top priorities. Another improvement suggestion was 46 times as well, but with a lower
average relevance rating, was “Enable your product update tool to facilitate custom
solutions by customers and partners” because many product vendors do not leverage
the advantages of a software supply network yet [152, 151].

Finally, in regards to usage and activation “Send automatic error reports” was
advised 53 times to those software vendors with the top priorities “Reduce deployment
problems” and “Serve customers more cost-effectively”. Furthermore, improvement
suggestions often concerned licenses, such as “Enable the customer to renew their
license without your manual intervention” and “Generate licenses automatically after
entering a sales contract” (43 and 44 times). With the report sent back to the product
software vendors a small survey is included that is used to evaluate the applicability of
the advice.

We received 19 responses from the short survey. All short surveys reported that the
benchmark had changed their view of the CCU processes and that they increasingly
saw the CCU processes as interconnected. Of the 19 surveys two reported that they
planned no new changes based on the benchmark report, two reported that they would
make large changes to their CCU processes, and the other 15 reported they would make
small changes based on the report. The advice was rated per process on a Likert scale.
17 surveys reported that the advice given in three of the four processes were useful. All
recommendations for the processes were rated equally and averaged between useful
and very useful. Some of the open suggestions were that we change the survey for
smaller companies and that we include other subjects such as support and user interface
in our benchmark.

4.4.5 Exploring Relationships
The benchmark survey delivered us with a large set of data, consisting of answers
to yes/no questions, multiple choice questions, and a large amount of open ended
questions. We attempted to find new relationships between yes/no questions using two-
sided Pearson’s goodness of fit chi-square tests. We used an algorithm to find whether
relationships existed between all yes/no questions. We (obviously) found strong
relationships between conditional questions, where the submitter could only provide
an answer if the submitter had answered yes or no to the previous question. Some of
the relations of interest are described below. Please see all the found relationships in
table 4.12.

Many obvious relationships surfaced: first, there exists a relationship between
whether a product’s licenses expire and whether a product software vendor can provide
temporary licenses (r = 16.1141, p ≤ 0,0002). Secondly, the ability the update at
runtime and the use of a commercial update tool are related (r = 4.6423, p≤ 0.0313).
Thirdly, the ability to check a customer’s configuration for completeness is related to
the use of components off the shelf that are included in the product (r = 7.0652, p ≤
0.008). Finally, the capability to send feedback and usage information from customers
to the vendor is related to the expiration of licenses (r = 9.6038, p ≤ 0.002), sending
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of automatic error reports (r = 3.9422, p ≤ 0.0472), and the checking of a customer’s
configuration for completeness (r = 5.8311, p≤ 0.0158).

We have defined two major practices, the use of a concrete release planning that
states release dates for major, minor, and bugfix releases, and the practice to have
a release scenario that states exactly what needs to happen on the day of a release.
These two practices are related to eachother (r = 6.9163, p ≤ 0.0086). Furthermore,
the release planning practice is related to explicitly managing dependencies between
a vendor’s product and external components (r = 7.9383, p ≤ 0.0049). The
release scenario practice is strongly related to the practice that the software vendor
explicitlymanages CCU and development support tools created by the vendor (r =
8.1318, p ≤ 0.0044), the product Components off the Shelf (COTS) (r = 4.5867, p ≤
0.0323), and the practice that the product can be deployed in a development, test,
acceptation, and production (DTAP) environment (r = 7.7168, p ≤ 0.0056). We find
the relationships between the release planning practice, the usage of COTS, and the
explicit management of development tools easy to explain. As the software supply
network surrounding a software product grows, so do its dependencies [151]. These
dependencies must be managed explicitly, including a specific planning of when the
software product will include or support newer versions of COTS or other products.
The use of a DTAP environment is beneficial when a product must be deployed in
complex environments with many dependencies, including when a product uses COTS.

The ability to undo an update is related to the fact that the product can deal with
customizations and extensions (r = 5.8681, p ≤ 0.0155) and the fact that the product
can be deployed in a DTAP environment (r = 6.6069, p = 0.0102). We do not find
these results surprising because if an update can be undone it is much easier to use in
a DTAP environment (“if update is not approved undo”). The undo update feature is
beneficial when a product is full of customizations and one needs to be sure that the
update does not damage any of the customer specific functionality.

From these statistics a number of things can be concluded. First, we see that once a
vendor periodically initiates contact with its customers for one purpose, other purposes
soon follow. Secondly, when a vendor starts using COTS, release planning is required
to further enable the product to be maintained. Thirdly, the ability to undo an update
provides customers with more flexible methods of deployment and enables a vendor to
make the update process more reliable.

4.5 CCU Practice Results

4.5.1 Release

Typically, software vendors will have their major releases checked by an average of
5 pilot customers. Furthermore, bug fixes are published every one to six months. 10
respondents publish daily bug fixes. Minor releases are published every two to twelve
months. Major releases are published every one to three years. Please note that only
seven respondents did not publish all three types of releases. We can safely assume
that the major, minor, and bug fix release schedule is universal. 37% of organizations
use a formal release planning with dates attached. Of this 37%, 70% have a formal
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publishing policy towards this planning. Furthermore, of these 37%, 45% of the
vendors take into account when the release of a product or update suits customers.

Only 52% of the respondents have a formal release scenario or plan that describes
the steps taken for a release. Releases are stored most of the time on a shared network
drive within the organization, with a versioned repository as a close second. Frequently
respondents answered that their old releases are available to customers. In 55% of the
cases tools that have been built by the respondent’s organization are only managed as if
they were commercially purchased. 69% of the respondents use COTS integrated into
their products. In 75% of the cases these products are saved alongside the product in a
release repository, ensuring version compatibility.

As product software vendors and their products become more mature, more
knowledge becomes available about the product and needs to be shared with larger
numbers of stakeholders (assuming that product software vendors grow). We see that
product software vendors implement less than half of the release process practices.
This is largely caused by the low number of product software vendors who frequently
publish releases, who maintain a release planning, and who use a release scenario.
Many of the software vendors see the release process as a low priority process that does
not require formal planning documents. The many failed deployments and published
bugs can be drastically reduced if product software vendors put more effort into the
release process. As an example, a company that builds navigation software for PDAs
and embedded devices, recently released a version of their software containing a
virus [129] due to low quality of the release process.

4.5.2 Delivery
Product customers are contacted most frequently by e-mail and the software vendor’s
website. Only 12 of the 74 respondents inform customers using their own product.
Bugs are reported most frequently through e-mail, by phone, and by an on-line bug
system. Furthermore, 15 of the vendors send automatic feedback reports when the
product encounters an error. Customers are kept up to date yearly, every three months,
or monthly in regards to product information.

Regarding delivery methods software is mostly delivered through a website, with
CD-Rom as a close second. Furthermore, 12 of the respondent’s products are delivered
by USB stick. 47 of the respondents’ products are delivered when a customer manually
pulls it from the vendor. Only 12 of the 74 respondents have developed their product
to automatically download updates on a regular basis. In 55% of the cases software
products can be downloaded by the customer from any location, instead of from a
preset site, encouraging customers to just download an update once from the vendor
for any amount of workstations. 75% of the products are sent to customers in full, and
later on parts are (de-)activated by a license file. The other 25% deliver the product to
customers on a get-what-you-paid-for basis.

These numbers show that many software products and updates are still being
delivered using CD-Roms and e-mails. CD-Roms and e-mails as a type of delivery,
which needs to be managed by hand, is time inefficient and informal. Product
software vendors must improve these processes to lower delivery costs, and to ensure
that customers get the right updates and products. Product software vendors only
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implement one half of the practices of the delivery process. The low scores can
be explained by the fact that product software vendors stick to just one method for
software and knowledge delivery and that products are not delivered using (semi-
)automatic push and pull delivery. We strongly believe that customer retention is a
critical success factor for product software vendors, due to the fact that often more
than half of their yearly revenue comes from existing customers. To retain customers,
however, vendors must seek more creative methods to contact customers about their
products.

4.5.3 Deployment
Respondents estimate that on average 4.26% of deployments fail and require extra
assistance. Some respondents, however, report up to 35% of failed deployments.

Approximately one fourth of the respondents use InstallShield to deploy their
products. Furthermore, MSI (19%) and ZIP (24%) are popular formats for delivery.
Only 3 of the cases deliver their products as open source. 52% of the respondents uses
an update tool to update their customers’ configurations. Customer data and content is
separated from product files by 68% of respondents. Furthermore, 40% of respondents
has functionality for correctness checking of a customer’s configuration. Product
update and installation tools check most often for harddisk space, with the operating
system and already present customer data as a close second and third. The end-user’s
hardware is checked least often (6%). 21 respondents report that their deployment tool,
if any, cannot automatically (attempt to) resolve deployment problems. For those tools
that can resolve deployment problems, the detection and use of data from previous
installations is most common.

In 49% of the respondents’ products, the product update tool can deal with
customizations. Update tools are most commonly used for major and minor updates.
The tools are less commonly used for patch updates and content updates. In 34% of
the cases the product update tool can update the product at runtime. Furthermore, 85%
of the tools can be deinstalled without complex manual steps. Furthermore, in 51% of
the cases minor updates can be undone. Finally, in 84% of the cases the product can be
installed in a Development-Test-Acceptation-Production environment.

In regards to tools product software vendors generally do not apply their update
tool to all release types and their tools generally cannot be used at runtime (although
we expect this to be situational). In regards to update reliability many product software
vendors are unaware of their customers’ configurations and do not store product data
separate from the product executables. We believe that this is caused by a lack of
product update tools and technologies that provide these capabilities. We expect
product software vendors to grow over time, both in customer numbers and employees.
As they grow, product software vendors will try to reduce deployment problems and
increase overall product experience.

4.5.4 Usage and Activation
95 percent of the respondents use license files, containing information on the purchased
modules, the number of users, and the customer name and address. Customers pay
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most often per floating user or per user name. Pay per usage is quite popular as
well, with 19 of the 74 respondents using it to bill their customers. 45% of the cases
uses licenses that expire. 13 product software vendors have mechanisms in place that
enables customers to renew a license without the intervention of the vendor. 65% of
the cases provide temporary licenses on a regular basis. In 20% of the cases licenses
are automatically generated from contracts.

28% of the vendors make use of usage feedback reports. 78% of the vendors is
aware of all customizations that have been built on top of their products. In 30% of the
cases software vendors send back error reports in case of a crash or error.

The average scores per practice are quite high, which explains that product software
vendors perform well when it comes to license management. Furthermore, they provide
many different reporting features in their products (which are sent back to the vendor
in only 30% of the cases, mind). Product software vendors perform well when it comes
to license management and product usage reporting. This does not necessarily mean
that this area does not deserve attention, though. We believe there is still much research
to be done when it comes to the mining of data from feedback reports.

4.6 Conclusions and Discussion
This chapter presents the results of a survey of 74 product software vendors in the
Netherlands. The survey was created using the CCU process evaluation model, which
is presented in detail. The survey allows us to generalize conclusions from earlier
research that CCU processes of product software companies are generally implemented
to a very limited degree. Furthermore, the results from the survey show that CCU
improvements have a significant positive effect on product success. Finally, the results
demonstrate weak points in CCU processes, such as a lack of CCU tools.

In earlier work the CCU evaluation model was presented [143], and validated at
nine product software vendors. This work, however, could not easily be generalized
to be applicable to a larger group of product software vendors. The survey enabled
a further detailing of the model, adding weights to practices and capabilities using an
expert panel. Furthermore, the survey enables us to validate our hypotheses from the
nine case studies and to show that CCU is an area that urgently requires more research.

The survey results show that CCU is an underdeveloped area that requires more
attention and tooling. The areas that deserve most attention are the release, delivery,
and deployment processes, due to the fact that product software vendors on average
only implement between one third and one half of the capabilities of each practice.
The main results of such research will improve customer retention rates for product
software vendors, product success, and product update and deployment reliability.

CCU research and tools should be geared towards release planning, knowledge
delivery, component updating, and feedback reports. This is indicated by four facts.
First, only 37% of the software vendors uses a formal release planning. Secondly, only
20% of the software vendors use their own product to share knowledge with customers,
such as product knowledge and product news. In the area of deployment many product
software vendors do not perform any configuration correctness checking or provide any
checks before installation of a product. Finally, only 30% use automatic error reporting
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from customers for the usage and activation process.
One of the most important contributions of the survey is that CCU improvements

show a significant relationship with software product success. When also taking into
account that 16% of product software development personnel is involved in CCU
related processes, CCU proves to be a fruitful area for research and evaluation. Part of
our future work will be to explore a so-called organizational maturity indicator, where
we attempt to find several measures (company size, product age, lines of code, etc) to
establish at what level the CCU processes of a software vendor should be performing,
based on the indicator. In the future we also hope to do the survey internationally.
Currently the survey is still active (in Dutch) /citeotherKCUSite. Also, we are currently
using the survey for one organization that has 46 product lines that all use different
methods to support the CCU processes.

The fact that many software vendors underperform in crucial CCU processes and
the many suggested products by vendors that are currently unavailable on the market,
suggest that CCU is a developing process area of software engineering. When looking
at software products currently available to support CCU processes it becomes clear that
especially in the area of knowledge interaction between customers and vendors there is
a lack of support tools. As a result of this we have started working on the Pheme [114]
prototype communication infrastructure for knowledge delivery. This infrastructure
consists of small server applications that are installed on different nodes (for instance
customers, vendors, and release servers) that share different knowledge packages, such
as updates, product information, product feedback, etc. We hope to implement the tool
at a number of the respondents of the survey.
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4.7 The Survey and the CCU Relationship Tables
In this section we provide the survey questions. Furthermore, the relationships between
yes/no questions are provided, including their Pearson value and their probability.

Question Question
Type

Section

Please provide the name of your organization String Company
Profile

How many people are currently working within your
organization?

Numeral Company
Profile

What is the name of your company? String Company
Profile

Please specify the number of people working in your organisation. Numeral Company
Profile

Please provide your products name. String Product
Profile

Please provide a short description of your product. The answer to
this question might be presented to other submitters of the survey

String Product
Profile

How many active users are there to your product currently? Numeral Product
Profile

Please specify the number of lines of code that make up all
components of your product in KLOC.

Numeral Product
Profile

Please specify the languages or development technologies used to
develop your product.

Numeral Product
Profile

Please specify the number of active licenses there are to your
product.

Numeral Product
Profile

Please specify the industry type for your product. Numeral Product
Profile

How much time (in FTEs again) is spent on the processes
described in this survey?

Numeral Product
Profile

In how many natural languages is your product available? Numeral Product
Profile

How many developers are currently working on the product in
FTEs?

Numeral Product
Profile

How many years have passed since the first line of code was
written for your product?

Numeral Product
Profile

Table 4.7: Survey Part 1
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Question Question
Type

Section

How often do you publish a major release of your product? (
Daily, Weekly, Monthly, Every 3-6 months, Every 6-12 months,
Every 1 to 3 years, Every 3-5 years, 5+ years, We haven’t had a
minor release yet, Not applicable )

Option
list

Release
Frequency

How often do you publish a minor release of your product? (
Daily, Weekly, Monthly, Every 3-6 months, Every 6-12 months,
Every 1 to 3 years, Every 3-5 years, 5+ years, We haven’t had a
major release yet, Not applicable )

Option
list

Release
Frequency

How often do you publish a bugfix release of your product? (
Daily, Weekly, Monthly, Every 3-6 months, Every 6-12 months,
Every 1 to 3 years, Every 3-5 years, 5+ years, We haven’t had a
bugfix release yet, Not applicable )

Option
list

Release
Frequency

Which of your updates are evaluated by pilot customers before
actual releasing the update? ( Major releases, Minor releases,
Bugfix releases, Content releases )

Option
list

Release
Frequency

Please also state how many pilot customers on average test the
product before (any type of) release.

Numeral Release
Frequency

Does your company use a formal release planning that states dates
or durations for the next major

Yes/No Release
Planning

Is the release planning published in such a way that all employees
who are involved with the product can see it (whenever)?

Yes/No Release
Planning

Is there a formal publishing policy with regards to this document? Yes/No Release
Planning

Are releases planned according to customer demands? Yes/No Release
Planning

Is there a formalized release procedure or scenario that states
exactly what happens on the day of a release?

Yes/No Release
Planning

Releases are stored: ( in a versioned repository, on a network
drive, on CDs/DVDs, at customers )

Option
list

Release
Planning

The latest (published) release can be downloaded or requested
by: ( All release personnel, All development employees, All
employees, All partners, All customers, All sales personnel )

Option
list

Release
Planning

All tools created by your organization that support the CCU
process (release, delivery, deployment of your product) are
managed explicitly as if they were commercial products.

Yes/No Release
Planning

Are external relationships managed explicitly such as MyProduct
requires MSSQL?

Yes/No Release
Planning

All commercial tools that are used to support the CCU process
(release, delivery, deployment of your product) are managed
explicitly as if they were commercial products.

Yes/No Release
Planning

Does your organisation use COTS components that are shipped
with the product?

Yes/No Release
Planning

Are these COTS components stored in a repository in accordance
with the releases of your product?

Yes/No Release
Planning

We inform our customers of new releases through: ( e-
mail, our website, a paper newsletter, domain specific channels
(conferences),through the product, phone, We push the update to
the customer automatically )

Option
list

Release
Planning

Table 4.8: Survey Part 2
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Question Question
Type

Section

Customers inform us of bugs by: ( An on-line bug system, e-
mail, phone, fax, the product itself automatically sends an error
message to us )

Option
list

Knowledge
Delivery

We inform our customers about the product on at least a: ( daily
basis, weekly basis, monthly basis, 3 monthly basis, yearly basis,
never )

Option
list

Knowledge
Delivery

Our products can be delivered using the following methods:
( our website, CD-ROM, floppy, secure phoneline or internet
connection, e-mail, DVD,USB Stick )

Option
list

Knowledge
Delivery

Our products are delivered using the following mechanisms: (
manual pull, automatic pull, manual push, automatic push )

Option
list

Knowledge
Delivery

Our product’s update facility can be used to download updates
from ANY location

Yes/No Knowledge
Delivery

Is your product delivered to customers on ( a “get-what-you-paid-
for” basis, by sending the full set of components to customers
where a license (file) later deactivates the unpurchased modules?
)

Option
list

Knowledge
Delivery

What types of payment do you use? ( Pay per usage, Pay per
user(name), Pay per time unit, Pay per floating user, Pay for
services, Lump sum )

Option
list

Licensing

Does the license file contain information on: ( The customer name
and address?, The amount of users?, The modules that have been
purchased?, The customers’ server or CPU id?, The customers’
contract id? )

Option
list

Licensing

Can the license be renewed or downloaded by the customer
without intervention from you?

Yes/No Licensing

Do your licenses expire? Yes/No Licensing
Can you provide temporary licenses? Yes/No Licensing
Can the customer manage the license explicitly? Yes/No Licensing
Are licenses generated from contracts automatically? Yes/No Licensing
What tools do you use for the following processes? Please type
p̈roprietaryı̈f you have developed the tool yourself.

String CCU Tool
Support

What tools do you personnally believe are lacking in the industry
for support of the CCU process?

String CCU Tool
Support

How many percent of your deployments are unsuccessful the first
time?

Numeral CCU
generic

What can be done to reduce this number? String CCU
generic

Table 4.9: Survey Part 3
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Question Question
Type

Section

In what release formats is your product released? ( rpm, exe
(wise install), Portage, zip/rar archive, exe (installshield), msi, msi
WIX, exe (PowerUpdate), APT-GET, Proprietary installer format,
source bundle )

Option
list

Deployment

Is it possible to check the configuration of components for
completeness regularly?

Yes/No Deployment

Can updates cope with customisations made by customers or
third-parties?

Yes/No Deployment

Is the configuration of a customer checked before deployment to
see whether the product can safely be deployed?

Yes/No Deployment

Can updates be done at runtime? Yes/No Deployment
Is the update process semi-automatic? Yes/No Deployment
Is it possible to uninstall your product without too many manual
steps?

Yes/No Deployment

Is it possible to rollback from an update? Yes/No Deployment
Can your product be deployed in a DTAP environment? Yes/No Deployment
Are you aware of each customer’s configuration with regards to
customisations the customer has built into your product?

Yes/No Deployment

Does your product use usage reports? Yes/No Usage and
Activation

If errors are encountered are they automatically resolved? Yes/No Usage and
Activation

Does your product do automatic feedback reports in case of
errors?

Yes/No Usage and
Activation

Are you aware of each customer’s configuration with regards to
her/his operating system and hardware configuration?

Yes/No Usage and
Activation

Are you aware of each customer’s configuration with regards to
your product?

Yes/No Usage and
Activation

Table 4.10: Survey Part 4
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Question Question
Type

Section

What process discussed in this survey will you invest in in the
near future?

String Generic

Please indicate how your release, delivery, and deployment
processes have developed over the past two years. ( Not at all,
Small improvements (new configuration management system),
Large improvements (completely automatic license generation
from contracts), Complete process redesign )

Option
list

Generic

Please indicate how these improvements (if any) have influenced
your organization. ( Lower costs, Better product quality, Shorter
release cycles, Less deployment errors, Shorter bug discovery
times, Better product stability, More knowledge about customers
)

Option
list

Generic

When compared to competitors ( lagging behind, at a comparable
level, much better )

Option
list

Generic

Please prioritize the main reasons why you wish to improve or
have improved the release, delivery, deployment, or activation
and usage process. ( To serve more customers, To shorten
release times, To shorten the time before bugs are found, To
serve customers more cost effectively, To decrease deployment
and update failures, To improve a customer’s product experience,
To provide a more flexible licensing and pricing model. )

Option
list

Generic

Please indicate the development of your product over the last
two years (when possible). ( The product is highly successful
compared to two years ago, The product is fairly successful
compared to two years ago, The product has been neither
successful nor unsuccessful. , The product is less successful than
two years ago, The product is a lot less successful than two years
ago. )

Option
list

Generic

Please indicate how this development over the last two years
has been influenced by process improvements made to the
release, delivery, deployment, and activation and usage process.
( The product’s development was highly influenced by the
improvements, The product’s development was fairly influenced
by the improvements, The product’s development was not at all
influenced by the improvements. )

String Generic

Please provide the company’s correspondence address. String Contact
Data

Please provide your e-mail address for future correspondence. String Contact
Data

Please provide your name. String Contact
Data

Table 4.11: Survey Part 5
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QID Question Pearson
value

Probability

125 Does your product use an update tool that updates the
customer configuration?

Related to

102 Can your product update during runtime? 4.6423 0.0312
103 Can your update tool deal with customizations,

extensions, and customer specific solutions?
4.6875 0.0304

24 Does your organization use a formalized release
scenario that describes step-by-step what happens
when a product is released?

4.5068 0.0338

19 Does your organization use a formalized release
planning that states dates for the next major, minor,
and bugfix releases?

14.4317 0.0001

58 Do you regularly provide temporary licenses? 13.7601 0.0002

19 Does your organization use a formalized release
planning that states dates for the next major, minor,
and bugfix releases?

Related to

24 Does your organization use a formalized release
scenario that describes step-by-step what happens
when a product is released?

6.9163 0.0085

32 Are relationships between external components
and your product explicitly managed, such as
“ourproduct requires MySql”?

7.9383 0.0048

102 Can your product update during runtime? 6.1945 0.0128

57 Do your licenses expire? Related to
58 Do you regularly provide temporary licenses? 16.1141 0.0001

59 Can the enduser specify under which license he/she
will use the application before start-up?

Related to

100 Is it possible to undo an update? 6.5526 0.0105

106 Is it possible to check a customer’s configuration for
completeness regularly?

Related to

103 Can your update tool deal with customizations,
extensions, and customer specific solutions?

9.1168 0.0025

89 Does your product include COTS? 7.0652 0.0079
90 Are these COTS stored in a repository, to maintain

version compatibility?
10.2774 0.0013

Table 4.12: Relationships Between Yes or No Questions (part 1)
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QID Question Pearson
value

Probability

100 Is it possible to undo an update? Related to
103 Can your update tool deal with customizations,

extensions, and customer specific solutions?
5.8681 0.0154

108 Can the product be deployed in a DTAP
(development, test, acceptance, production)
environment?

6.6069 0.0102

112 Does your product regularly report the usage of your
customers by usage reports?

Related to

57 Do your licenses expire? 9.6038 0.0019
111 Does your product send automatic error reports if a

problem occurs on the customer site?
3.9422 0.0471

106 Is it possible to check a customer’s configuration for
completeness regularly?

5.8311 0.0157

32 Are relationships between external components
and your product explicitly managed, such as
“ourproduct requires MySql”?

Related to

112 Does your product regularly report the usage of your
customers by usage reports?

4.1983 0.0405

57 Do your licenses expire? 6.6359 0.0100
106 Is it possible to check a customer’s configuration for

completeness regularly?
4.5352 0.0332

83 All commercially purchased development support
tools are managed explicitly, including which version
of the product has been used to supply a development
task?

11.5870 0.0007

Table 4.13: Relationships Between Yes or No Questions (part 2)
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QID Question Pearson
value

Probability

39 Can your product settings be changed such that
updates and products can be downloaded from ANY
location?

Related to

103 Can your update tool deal with customizations,
extensions, and customer specific solutions?

6.9543 0.0084

28 All development and support tools built by your
company are managed as if they were purchased
externally.

Related to

32 Are relationships between external components
and your product explicitly managed, such as
“ourproduct requires MySql”?

6.0092 0.0142

113 Are you aware of all customer specific solutions that
have been built for your product by third parties and
customers?

4.5003 0.0339

83 All commercially purchased development support
tools are managed explicitly, including which version
of the product has been used to supply a development
task?

19.9523 0.0000

24 Does your organization use a formalized release
scenario that describes step-by-step what happens
when a product is released?

Related to

28 All development and support tools built by your
company are managed as if they were purchased
externally.

8.1318 0.0043

102 Can your product update during runtime? 6.1830 0.0129
83 All commercially purchased development support

tools are managed explicitly, including which version
of the product has been used to supply a development
task?

14.2998 0.0002

108 Can the product be deployed in a DTAP
(development, test, acceptance, production)
environment?

7.7168 0.0055

89 Does your product include COTS? 4.5867 0.0322

Table 4.14: Relationships Between Yes or No Questions (part 3)
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C H A P T E R 5

A Process Framework and
Typology for Software

Product Updaters

Product software is constantly evolving through extensions, maintenance,
changing requirements, changes in configuration settings, and changing
licensing information. Managing evolution of released and deployed
product software is a complex and often underestimated problem that
has been the cause of many difficulties for both software vendors
and customers. This chapter presents a framework and typology to
characterize techniques that support product software update methods.
The framework is based on a detailed process model of software updating.
Finally, this chapter assesses and surveys a variety of existing techniques
against the characterization framework and lists unsolved problems
related to software product updaters.1

5.1 Product Updating
Managing evolving software is a complex task for software distributors and vendors.
Moreover, maintaining a large software system, such as a business ERP application,
can be particularly difficult and time consuming. The tasks of adding new features,
adding support for new hardware devices and platforms, system tuning, and defect
fixing all become exceedingly difficult as a system ages and grows.

One particular area of software evolution that requires more research, is the
evolution of released and installed applications. To deal with the evolution of released
software, distributors and vendors currently have the choice of either buying an
(expensive) general product updating tool or building proprietary tools. After a
thorough analysis, to be presented in this chapter, we conclude that both approaches
unfortunately have significant problems since existing software update tools usually do

1This work was originally published in the proceedings of the 9th European Conference on Software
Maintenance and Reengineering, entitled “A Process Framework and Typology for Software Product
Updaters” in 2005 [147]. The work is co-authored with Sjaak Brinkkemper.
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not provide all the required functionalities and the effort and risk of building product
update tools “in house” is often underestimated.

The contribution of this chapter is threefold. First, a framework is provided that
embodies the software update process and the uncovered areas of deployed software
evolution. Secondly, a typology is provided to classify software product updaters.
Finally, the framework is used to compare current techniques and technology, and to
indicate what areas still need to be covered.

Updating software can be seen as moving from one configuration to another
by addition, removal, replacement, or reconfiguration of software functionality. A
physical software update contains the applicable functionality and configuration
alterations. By this definition, changing a license or some configuration setting can
also be seen as part of the software update process. A software updater automates the
process steps involved with software updates. To discuss the concepts and technologies
of this chapter, we introduce the notion of software product updaters.

The remainder of this chapter is organized as follows. Section 5.2 describes what
the software update process looks like. The update process is modelled and explained.
We also provide a typology for updaters and finally evaluate current software updaters
in relationship to the framework. Section 5.3 further defines the steps of delivery and
deployment and uses the detailed descriptions to evaluate the same updaters against the
detailed descriptions. Finally, we discuss the presented framework and our future work
in Section 5.4.

5.2 The Product Software Updating Process

5.2.1 Update Process Framework

This Section describes the software product update process framework and a detailed
description is given of the steps of which the update process consists. The update
process model has two participants: the customer and the vendor. The framework,
shown in Figure 5.1, is based on customer states and vendor-customer interaction, and
has been derived from other update model descriptions and the evaluated tools. The
customer blocks are states in this diagram, with the bold lined states being final states.
The “Uninformed Customer” state is the start point for the process. Solid arrows are
state transitions, which can be activated by both the vendor and by the customer. The
dotted arrows show interaction between the vendor and the customer. Once the vendor
offers the customer the ability to update a product of that vendor the update process is
initiated. The following list describes the process steps:

Advertise Update - An update will first be made available in some release
repository. When a vendor wishes to provide updates to its customers, the customers
first need to be informed through the available communication channels.

Receive Information - Customers inform themselves about updates from a vendor
through commercial channels, such as web sites, mail, e-mail, and portals. Other
channels are memory resident notifiers, such as the Windows Update Notifier, and
memory resident processes that automatically start downloading an update once a
customer accepts the update that is sent.
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Vendor
Informed
Customer

Uninformed
Customer

Advertise Update

Receive Info

Customer
Possesses Update

Rollback/
Deinstall
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roduct

Deliver Update

Installed 
Customer

Deploy/Install Update

Vendor Feedback

Activated
Customer

DeactivateActivate Update

Remove

(Re)configure

(Re)configure

Figure 5.1: Update Process Framework

Receive Update - A customer can receive an update automatically and manually.
Issues for receiving the update are security, authenticity of the update, and integrity
checks. Another issue is the checking of pre-download dependency checks such as
available disk space and the presence of dependent components.

Remove Update - The presence of the update data that has been downloaded during
the Receive Update step, enables switching between configurations and redistribution
of updates. For this reason the remove update is an explicit step in the update process
framework.

Deliver Update - Once a customer has been informed of an update, the vendor
wishes to transfer the update to the customer site by mail, e-mail, a website from
which the customer can download (pull) the update, or a memory resident process
that automatically receives and installs an update. Several issues, which are partly
discussed in this chapter, arise when the transfer of an update occurs, such as security
problems and the format in which the update is sent to the customer.

Install/Deploy Update - A customer installs an update wishing to gain
functionality, improve performance, and fix problems. The deployment of updates
is the most complex software update process step, and is explained in further detail in
Section 5.3.

Rollback/Deinstall Update - When a customer wishes to go back to a previous
configuration, an update must be rolled back or deinstalled. Deinstallation
introduces requirements on the software architecture and its extensibility, such as
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state transformations to the older configurations, and incremental updates instead of
destructive updates.

(Re)configure Update - An update can be (re)configured before activation and
after activation. These settings can often be changed at run-time or by editing some
configuration file, such as the httpd.conf file for the Apache webserver.

Vendor Feedback - An opportunity that is often missed by software producers, but
widely used by for instance Microsoft and Exact Software [141], is the use of vendor
feedback after the deployment of an update or component. Feedback generated by the
deployer of the update can be sent back to the vendor to be used for future testing and
feedback on the deployment process.

Activate Update - After deployment the update must be activated so that the update
can be used by the customer. The activation process step is threefold and consists of
configuration, a license approval, and running the update. The configuration binds all
unbound variabilities that have been introduced by the update. Licensing, if necessary,
makes sure that the software update is used according to the vendor-customer contract.

Deactivate Update - Deactivation is required when a user does not want or is not
allowed to use the update anymore. The most important part of deactivation is the
return of a license key to the licensing system or deployment and distribution system.
If a deployment and distribution system is present, the deactivation process can also
signal the server so that future updates for the deactivated software are no longer sent
to this workstation or workspace.

For our research we have evaluated the coverage of these process steps for a number
of techniques currently used in the field or implemented by academia. The evaluation
shows what parts of the process framework are still uncovered, how process steps have
been implemented by the techniques, and what requirements are imposed by these
implementations.

Each of the process steps has specific requirements and problem areas. Two process
steps that are crucial for the framework, being delivery and deployment, are further
explained in detail in Section 5.3. The release and derelease steps on the vendor side
have not been included in this model. The reason for this is that in this chapter we
do not focus on the processes that take place on the side of the software vendor. At
present our focus lies on the implementation and framework of product update software
and we are less interested in the development process of the software that is actually
distributed.

5.2.2 A Typology for Product Updaters
In order to obtain more insight in the available product update technology we
distinguish three types of product updaters. The typology is created because it creates
more insight into the specific available technology and draws out the framework for
evaluation of product software update techniques. The three types are distinguishable
by looking at delivery and deployment methods and policies, and by looking at process
coverage.

• Package Deployment Tools - During the evaluation of update tools many
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package deployment tools (PDTs) were encountered. These deployment
technologies are based on the concept of a package, and on a site repository that
stores information representing the state of each installed package. A package is
an archive that contains the files that constitute a system together with some
meta-data describing the system. Examples of these package tools are Red
Carpet, APT, Loki-Update, RPM-update, Nix [37], SWUP, and Portage. RPM,
Portage, and Nix are the most advanced.

• Generic Product Updaters - Generic product updaters (GPUs) are updaters that
attempt to be usable for any product. Two generic product updaters that are
available commercially are InstallShield [58] and PowerUpdate [115].

• Vendor Product Updaters - Vendor product updaters (VPUs) specifically
facilitate the update process of one product, such as Microsoft’s Windows XP
update, Exact Software’s Product Updater [141], and Symantec’s LiveUpdate.

The typology described above is largely inspired by Carzaniga’s grouping [51] of
deployment techniques and Ajmani’s listing of update techniques [3]. One specific
technology has not yet been included in the typology, being runtime updaters, which
are further discussed in Section 5.4. This technology, however, can still be described
using the updater typology.

5.2.3 Evaluation of Update Process Coverage
In Table 5.1 is displayed how the evaluated update techniques cover the process
steps that make up the update process framework. The process coverage for update
techniques shows different classes of updaters and enables identification of updaters.
The process coverage also displays what areas certain techniques focus on and what
process steps need more research from both academia and the industry.
• Means that a process is completely covered. ◦ Means that the process is only

partially covered. Coverage has been evaluated based on a number of characteristics
of each process step, but for the sake of brevity we cannot go into more detail. For
instance, partial support for “send update” means that there are means to get the update
to the customer, such as a release repository and communication channels. Full support
for “send update” means that push technology is also available.

5.2.4 Discussion
When looking at the process coverage of the various techniques, there are clear
distinctions between the types. One of those distinctions is that current package
deployment tools do not support any form of vendor feedback. We will not discuss
each type of updater.

The generic product updaters (GPUs) cover many of the process steps. Especially
in the area of licensing and customer interaction the GPUs are strongly represented.
Firstly, the GPUs have to be used by different parties, sometimes even using different
platforms, and therefore need to provide as many different update scenarios as
possible. Secondly, the GPUs in this evaluation are, with the exception of the Software
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Dock [52], commercial tools, and therefore licensing and customer interaction are
required. Finally, when compared to other updaters, the GPUs have most options for
vendor feedback, which is a commercially attractive solution for getting feedback from
customers.

The package deployment tools (PDTs) are tools specifically designed to deploy
and install packages on (usually) open source based systems. These systems are
often extended with external tools, which are ignored in this research. The tools
therefore cover all standard process steps, but in the areas of customer interaction and
licensing they are not sufficient. The reasons for this are part of the nature of package
deployment. Firstly, issues such as vendor feedback are solved on another level, usually
through bug reporting systems and developer communities. Secondly, licensing is not
an issue, since most of the software available in the open source community is free.

Vendor product updaters (VPUs) are generally weaker in the areas of transferral
and deployment, yet stronger in the areas of customer interaction and licensing. In the
area of customer interaction the VPUs are strongly represented, because that is their
”bread and butter”. One clear distinction between VPUs and GPUs is that removal and
rollback is not supported in most VPUs. Whereas GPUs assume that the deployed
products will be removed, VPUs assume their products and updates will remain
deployed forever, which is not surprising in the case of updates for a virus removal
tool or security updates. VPUs are have restricted functionality, because they have
been designed to perform these steps for one product and one way of vendor-customer
interaction. We see that many of the methods used in VPUs are simplifications of the
more complex software update models.

5.3 Delivery and Deployment
Two steps in the proposed process model form the core of our model, being delivery and
deployment. In this Section the process steps of delivery and deployment are further
explained. The updating techniques are then evaluated against the provided definitions.

5.3.1 Delivery
Delivery formats identify many characteristics of updaters. Some updaters, such as
PDTs focus on the sole delivery of packages, whereas GPUs attempt to support the
full myriad of delivery formats. Delivery formats affect the size of updates that are
delivered to customers. The choice of delivery format therefore affects the total model
of delivery, especially in an environment with limited resources.

New configurations can be delivered to customers in different ways. The
configurations can be transferred in the following formats:

• Packages of Components - A package of components can be delivered to a
customer. Usually these packages first need to be unpacked, before they can
be installed and activated. Examples of techniques that use packages are RPM-
update, APT, DeployMe, Red Carpet, Portage, and Nix.

• Components - A separate component consists of a batch of files.
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• Files - The simplest form of transfer data are separate files. These files can be
licenses, configuration settings, and binaries.

• File deltas - Differences between a customer site configuration and a vendor site
configuration can be expressed as file deltas. File deltas can be transferred using
efficient algorithms such as Rsync [117]. A file delta is a listing of differences
between two file versions, with which any of the two versions can generate the
other version. Sending just the difference between files is more efficient than
sending the complete file.

Without some pre-processing at the customer site, each of these formats would
place some restrictions on the final deployment environment. However, when correctly
assembled before deployment these formats are interchangeable. For example, file
deltas for a complete component can be used to generate the new component. The
chosen delivery format(s) affect different factors, such as the size of updates and the
deployment method, and together with the deployment issues and deployment policies
uniquely identify an updater. Service packs are similar to component packages in our
delivery formats.

5.3.2 Deployment
The process of installing updates introduces most complexity for software vendors.
The software architecture of a system determines the extensibility of the system,
whether the update can occur at runtime or not, and whether there are scripting tools
available to perform certain tasks (such as Make). Finally, dependencies need to
be checked during deployment, such as dependencies on the operating system, the
presence of certain components, the compatibility between the update and the current
customer configuration, and many others.

To deploy or install the delivered software, a choice for an appropriate deployment
method needs to be made. Some of these methods are:

• Overwrite - The deployment method employed most often by software vendors
is the method of overwriting the application files, license files, or configuration
settings. The solution bases itself on the assumption that the deployed set of files
or components does not change over time due to external forces. There is no way
to rollback an overwrite, unless the customer is using a versioned file system.
One example of an overwriting update method is the Windows Updater which
will first unregister a dll, overwrite it with a newer version, and register it again.
Another example is the Exact Software Product Updater, which compares all the
versions of the locally available files to the available files on the release site.
When there are differences, the product updater overwrites only the different
files on the customer site.

• Plug-in - Plug-ins are often used to create extensible configurations. The method
of using Plug-in architectures simply support the extensions of a configuration
by addition and removal of unique Plug-ins. Other Plug-in architectures such
as the one presented by Ajmani [2], can handle different versions of the same
Plug-in as well.
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• Deinstall/Reinstall - For many applications an update starts with the
uninstallation of all previous installed versions of that application (Examples
are: NullSoft Winamp, LavaSoft Ad-Aware, etc).

In the open source community applications are often delivered and deployed as
source distributions. These source distributions first need to be compiled, which can be
seen as a separate step in the deployment process. Well known systems that assist
with source distributions are Maak [34] and RTools [53]. It should be noted that
the three deployment methods mentioned above can just as well be applied to source
distributions.

Other issues that deal with deployment are the ability of a technique to provide
scripting, to do dependency analysis, to perform integrity checking, to deploy multiple
versions of the same component, and to enable push technology. Each of these abilities
puts specific requirements on the deployment and implementation architecture.

Scripting is used to perform post deployment configuration on an update. Such
scripts can be used to execute, activate, configure, compile and build an update. Scripts
can be shell scripts, which are often used by package deployment tools, but also a
specifically designed language that registers or unregisters Plug-ins. In the framework
presented in Figure 5.1 we did not yet introduce verification of an update, such as
synchronization checks, signatures, and completeness checkers. In each of the three
final states, a customer should be able to perform verification steps.

Dependency analysis is a much studied area of deployment [73] and aims to provide
a complete and consistent set of components. To achieve this goal many problems
need to be tackled, such as support for multiple versions of components, automatic
resolution of dependencies, and explicit management of the dependencies. One specific
ability of dependency checking that places extra requirements on the deployment
architecture is the support for multiple versions of a component. Multiple version
support is therefore part of the evaluation framework and is a technology that enables
switching between configurations and having two components depend on different
versions of another component. Finally, push technology puts extra requirements on
the implementation of the messaging architecture of an updater. A customer needs to
be able to receive updates automatically and the vendor needs to be aware of all the
customer workspaces.

5.3.3 Evaluation of Delivery and Deployment
The evaluation of the following techniques includes more specific definitions of the
delivery and deployment process steps than the evaluation done by Carzaniga et
al. [21], because the definitions need to be made more explicit. The evaluation shows
that updaters grouped by just the process coverage framework do not distinguish
subtle yet important differences in delivery formats and deployment policies. These
differences have been listed here, and provide a more detailed and defined evaluation
framework. To obtain the detailed framework, we have focused on delivery and
deployment. Delivery and deployment are more complex than the other process steps,
because there are more alternatives to efficiently achieve the goals that are part of these
process steps.
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The evaluation in Table 5.2 includes a description of what formats of delivery are
used by each updater. The evaluation also describes what deployment methods and
architectures are supported by each updater. Finally, some issues that uniquely identify
an update technique are evaluated. The criteria for evaluation are similar to those for
Table 5.1.
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Table 5.2: Update technique Business and Deployment Issues

From the evaluation of the updaters against the descriptions of delivery and
deployment we deduce the following. To begin with, the generic product updaters
(GPUs) support all different delivery formats. The two most advanced tools in this
category, PowerUpdate and InstallShield, are the only tools able to deal with all formats
of delivery. These are also the only tools that are able to send across file deltas,
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instead of complete files. The GPUs are not well represented in the deployment feature
area, because these features are specific to deployment environments, which the GPUs
must ignore to reach larger markets. However, GPUs are quite able when it comes
to commercially interesting push technology, especially when compared to the other
updater categories. GPUs generally do not make use of Plug-in technology, which can
be explained by the fact that Plug-ins are largely dependent on the Plug-in software
architecture. GPUs generally supply the scripting feature since it is required to perform
post installation configuration steps.

The package deployment tools (PDTs) support only package deployment and
generally only support deinstallation and reinstallation to update a package. Scripting
and dependency analysis are always present in package deployment systems, to enable
post deployment configuration and completeness checking with other components.
PDTs do not use push technology, which can be explained by the fact that (open
source) users of these PDTs often do not want others to be in charge of their software.
PDTs are strongly represented in the areas of dependency analysis and integrity
checking. The dependency analysis is required for PDTs because packages have
many dependency relationships with other packages. Automatic resolution of these
dependencies therefore is a valuable feature. Integrity checking prevents instability
and ensures authenticity.

Finally, the Vendor product updaters (VPUs) all depend on files as the primary
format of transfer to the customer. These files generally overwrite the previous
installation, except when these files are special Plug-ins, such as virus definitions for
LiveUpdate or unregistered dlls for Microsoft SUS. The VPUs do not incorporate much
dependency analysis, scripting, or integrity checking. Finally, the VPUs do not make
use of push technology.

5.4 Discussion and Future Work
The aim of this chapter is to show that there is no product updater that provides all
functionalities required by software vendors. On the other hand the development of
VPUs is not an efficient solution, since each software vendor is implementing a subset
of the process steps shown in our framework. It is surprising that no GPU has yet been
adopted universally by the industry. One of the reasons for presenting the framework
in Figure 5.1 and the typology is to redefine the requirements on and re-establish the
need for such GPUs.

5.4.1 Typology
The types presented in the typology all have specific requirements and functionalities.
To begin with GPUs are generally commercial tools focused on deploying software on
Windows based systems, with the exception of PowerUpdate, which is now focusing
on multi platform deployment.

Secondly, the discussed PDTs have some interesting characteristics. Nix, for
instance, is a “stop the world” system, whereas Portage and RPM simply extend
current functionality. Nix, however, stores components in isolation from each other in
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a part of the file system called the store, where each component has a globally unique
name that enables pointer scanning. The construction of component configurations
and the resulting closures are described using Fix store expressions. Safe deployment
is achieved by distributing these expressions, along with all components in the store
referenced by them.

Another interesting PDT is Portage. Portage, as most other package management
system, can resolve dependencies; but one feature that makes it different is the fact that
it also supports conditional dependencies. By changing one configuration variable in a
Portage configuration file it can disable optional support (and thus the need to depend
on it) for particular features or libraries at compile time. In addition Portage enables
multiple versions of packages installed simultaneously to satisfy the demands of other
packages. The traditional approach to this problem has been to treat different versions
of the same package as different packages with slightly different names, such as with
RPM and APT.

Thirdly, there are advantages and disadvantages to VPUs. To begin with there
are commercial advantages to VPUs. An important reason for software vendors to
use VPUs instead of GPUs is that they themselves are responsible for the update
processes of their products. For Norton Anti-Virus for example, Norton is completely
responsible for security procedures, network management, and all other aspects having
to do with product updating. Often VPUs are a cheap solution over GPUs, however,
VPUs can only cover a small problem area compared to general product updaters
and the complexity of the software updating process grows as requirements increase.
When requirements are stated for the product updater to support different versions,
customers, customizations, and licenses, it soon becomes apparent to the software
vendor that specialized knowledge is required. The limited availability of such tools
and the cost of implementing a GPU, have lead many software vendors to develop
their own VPUs and essentially reinvent the wheel. Another disadvantage is that the
updaters commonly perform destructive updates. Microsoft Software Update Services,
for instance, overwrites dlls, without any rollback functionality.

A category of update technology that is not specified in this chapter is runtime
updating, because run-time updating is not widely applied for software products
yet. Much work has been done in the areas of runtime and dynamic updating [55].
Providing a service or system that is available 24 hours a day is a commercially
attractive solution to many problems. These systems of course also evolve with time,
thereby requiring some extensible mechanism. We shall not list these mechanisms
here, but Ajmani has created a list of mechanisms and component frameworks [3].
There are two important factors to consider when looking at runtime updating, being
continuity and state transfer [78] [12]. An interesting technique, designed by Ajmani
and Liskov [2], attempts to support many different versions of one component at
runtime, thereby enabling runtime extension. Runtime updaters, however, are generally
focused around one technology, such as CORBA or J2EE, and do not focus on any
other process modules than transferral and deployment. Simple versions of these
technologies are often used in other product updaters, such as Microsoft SUS or
LiveUpdate.
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5.4.2 Delivery and Deployment

The discussed features of the deployment process introduce many questions about
software updating techniques. To begin with, the file delta format and push technology
is not (yet) strongly represented among the evaluated software updaters. The absence
of the file delta format can be explained by the fact that bandwidth and disk space
are cheap nowadays and therefore the time and money invested in such technology
is not profitable. The fact that push technology is hardly available can be explained
by the type of software evaluated. Most of the techniques mentioned in this chapter
are product updaters and customers are more interested in having a working product
than a product that is acutely and always up to date. Secondly, multiple versions
are only supported by technologies from academia (software dock, Nix) and Portage.
The complexity of dealing with multiple versions of the same component, which is
crosscutting through a system, has not received sufficient attention. Finally, practically
all tools perform some deployment environment checking, whether the tool checks for
disk space, such as the Exact Product Updater, or provides an advanced customizable
checking mechanism, such as the PowerUpdate and InstallShield GPUs.

5.4.3 Future Work

One requirement that has as of yet not been discussed is what Carzaniga et al. [21]
refer to as site abstraction, the ability to abstract from the vendor-customer model and
introduce one or more redistribution sites into the model. Carzaniga et al. already
refer to a redistribution tool, the Interdock, in their model, yet no implementation has
yet been created. An open research issue is to redefine such an architecture where
(re)distribution of components, files, licenses, and configuration settings are modelled.

The aim of the issues listed in this chapter is to explicitly define software update
problems experienced in the field. One striking conclusion that can be drawn from
the evaluation is that re-configuration is generally unsupported for product updating.
Another problem can be found in the fact that many of the requirements of software
vendors for product updaters are not yet satisfied by GPUs.

The listed techniques can support the industry and can be inspirational for those
designing their own technique. The presented material paves the way to build a
generally applicable product updater. However, many of the problems mentioned in
this chapter have already been solved by tools such as Nix and the Software Dock. Our
plan is to reuse some of these techniques.

5.4.4 Related Work

Carzaniga et al. [21] described some of the techniques mentioned in this article,
however, recent developments have lead to new insights and techniques. For the
evaluation, a list of techniques focused on runtime updating from Ajmani [3] has been
used. On the lower levels of component update architectures, Clegg [23] provides an
evaluation of component update methods for implementers of run-time updating.
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5.4.5 Conclusion

The contribution of this article is threefold. To begin with we present a framework
that models the software update process and uncovers the areas of deployed software
evolution that require more research. Also, we provide a typology that classifies
software updaters. Finally, we use the framework to compare current update tools.

5.5 Short Description of Update Technologies Used

PowerUpdate - PowerUpdate is a commercial multiplatform software updating and
delivery tool designed to maintain software applications. PowerUpdate can be
integrated into integrated development environments and supports features such as
environment analysis and cross platform deployment. PowerUpdate can also check
integrity of products on the customer side.

InstallShield - InstallShield is PowerUpdate’s largest competitor and differs
from PowerUpdate in that it is only suitable for deployment on Microsoft based
environments and cannot do integrity checking.

Red Carpet - Red Carpet is a software deployment tool for Linux. Red Carpet
works through installation channels that can be used to communicate and deploy
updates at customers. Red Carpet supports automatic dependency and conflict
resolution. One important feature of Red Carpet is that they provide Ximian, which
is basically a server that contains many different packages that can be deployed for
free.

Software Dock - The Software Dock, a project that started at the University of
Colorado, is a system of loosely coupled, cooperating, distributed components that are
bound together by a wide area messaging and event system. The components include
field docks for maintaining site specific configuration information by consumers,
release docks for managing the configuration and release of software systems by
producers, and a variety of agents for automating the deployment process.

FileWave - FileWave is quite similar to Red Carpet but provides less features.
Mostly, FileWave focuses on deployment of applications on Mac OS X environments,
though recently they have started to support Microsoft based environments as well.

APT - The Advanced Package Tool installs packages and manages dependencies
automatically for Debian environments. APT has been implemented for Red Hat by
Connectiva.

RPMupdate - RPM is the Red Hat Package Manager.
Nix - Nix is a system for software deployment developed by the Trace research

group. It supports the creation and distribution of software packages, as well as the
installation and subsequent management of these on target machines.

SWUP - Swup is short for “Software Updater” and can automatically update
packages together with cron, independent of the package manager.

Portage - Portage is the package manager for Gentoo Linux. Portage has
some slight advantages over the other package deployment tools, such as conditional
dependencies.
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Loki Update - The Loki Update Tool is a small tool written to support the most
trivial tasks of updating, such as downloading and installing.

Exact PU - The Exact Software Product Updater provides the mechanisms for
delivering packages and updates to the customer. When the product updater is run at
the customer site, it needs to be provided with an installation location (CD ROM or the
Web), a license file and a local installation that is updated.

Microsoft SUS - Microsoft Software Update Service is used for Microsoft Office
Update and Windows Update to deliver service packs, bug fixes, and security updates
to customers. The updater works mainly at runtime.

LiveUpdate - Symantec provides different types of protection systems for
computers connected through a network. Symantec’s Antivirus and Firewall software
is widely used, and are updated through LiveUpdate. Our evaluation also includes the
license tool LiveSubscription, because it covers a relevant part of the update process.
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C H A P T E R 6

Modelling Deployment using
Feature Descriptions and

State Models

Products within a product family are composed of different component
configurations where components have different variable features and
a large amount of dependency relationships with each other. The
deployment of such products can be error prone and highly complex
if the dependencies between components and the possible features a
component can supply, are not managed explicitly. This chapter presents a
model driven deployment method that uses the knowledge available about
components to ensure correct, complete, and consistent deployment of
configurations of interrelated components. The method provided allows
the user who has all required knowledge to perform analysis on the
deployment before the deployment is performed, thus enabling exception
and impact assessment before making any changes to the system. The
method and model are discussed and presented to provide steps towards
an alternative to current component deployment techniques.1

6.1 Component Deployment Matters
The deployment of enterprise application software is a complex task. This complexity
is caused by the enormous scale of the undertaking. An application will consist of
many (software) components that depend on each other to function correctly. On top
of that, these components will evolve over time to answer the changing needs and
configurations of customers. As a consequence, deployment of these applications takes
a significant amount of effort and is a time consuming and error-prone process.

Software components are units of independent production, acquisition, and
deployment [108]. Software deployment can be seen as the process of copying,

1This work was originally published in the proceedings of the 3rd Working Conference on Component
Deployment, entitled “Modelling Deployment using Feature Descriptions and State Models for Component-
Based Software Product Families” in 2005 [142]. The work is co-authored with Sjaak Brinkkemper.
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installing, adapting, and activating a software component [52]. Usually the only way
to find out whether a deployment has been successful is by running the software
component. This leads to frustrating and complex deployment processes for both the
software vendor and the system manager. There are many reasons why components
that have been deployed onto a system cannot be activated and run. The factors that
increase complexity during the steps of building, copying, installing, adapting, and
activating a component are numerous.

To begin with, there are relationships amongst components. Components can
explicitly require or exclude a specific revision of a component. Some components
allow for only one version of the component to be deployed onto one system, placing
a restriction on the components that are to be deployed onto that system. If such
relationships are not respected the deployments will result in missing components and
inconsistent component sets. Secondly, deployments are also complex due to the fact
that components can be instantiated in different shapes and forms, to provide variable
functionality with the same component [65]. A component that supports variability
can have different features that are offered to the user, which are bound and finalized
at different times during the deployment of that component. The binding time of a
component can be at different stages of the component deployment, such as build-
time or run-time. Thirdly, the order in which components are deployed can determine
whether the deployment process of a set of components is successful. Components
require other components during the deployment process and these can be removed
when the system has a limited set of resources. Also, when components exclude each
other and different deployment orderings are possible, the possibility arises that one
of these orders does not ensure correct deployment. The above holds especially for
component based product families [17], where many different variants of one system
are derived by combining components in different ways.

A components’ lifecycle consists of different states, such as source, built, deployed,
and running. Many parts of the process of a component going through these
phases have been automated to do such things as Components off the Shelf (COTS)
evaluation, automated builds, automatic distribution, automatic deployment, and
automated testing. Current component lifecycle management systems, however, do
not support different component (lifecycle) types, variability, component evolution,
and are not feature driven. One of the main reasons for initiating this research as
described in chapter 5, is that the current tools for component deployment do not take
into account variability, different types of distribution (source, binary, packaged), and
different binding times [29].

There are tools that can manage the lifecycle of components, such as Nix [37],
the Software Dock [52], and Sofa [57]. These systems have downsides however.
To begin with, Nix is a technology based on an open source environment that can
guarantee consistency between components and allows for concurrent installations of
components. The biggest downside of Nix is that it requires a system manager to ”stop
the world”, i.e., to adjust all the components the system uses to include a component
description and reinstall the system. The Software Dock can be used to deploy
software using the XML based Deployable Software Description [50] for describing
the software. The Software Dock does not support the complete lifecycle of a software
component. It does, however, focus on the complete deployment process of software,
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including such states as activated. Finally, SOFA is a CORBA based component
model that uses the OMG Deployment and Configuration specification [89], and is
also focused on the deployment of generic components. Sofa, Nix, and Software Dock
assume simple lifecycles with four states, being source, built, deployed, and running.
Of these three component tools, only Nix focuses on variable features provided by
different instantiations of components, and only Nix discusses the opportunities for
a transparent configuration environment [36]. Software component developers often
use their own specific deployment tools or custom built checks to see whether the
system on which the component is deployed satisfies all requirements for consistent
and correct deployment [21]. The developer therefore must develop its own models
and formalizations to ensure a correct component deployment.

The situation described above calls for a generic modeling technique that can
handle the complex issues that are introduced by the use of variable components that
can be instantiated in different versions and forms on one system. Such a system
requires a central knowledge base that stores the variables that initialize the different
varieties of component instances and a categorization of such knowledge. This
functionality is not provided by any of the systems described above (see chapter 5).
This chapter presents a modeling technique that can support the deployment of a
component in different versions and variants, and still guarantee consistency and
correctness. The modeling technique is based on a central storing of the restrictions and
knowledge about component features and the system, thus allowing all components to
use such information for correct build, release, testing, deployment, and activation of
software. The deployment method presented here can be classified as goal oriented or
model driven deployment [109].

The rest of this chapter is structured as follows. Section 6.2 describes the
knowledge that deals with a software component and its different features, revisions,
and states. Section 6.3 describes how the knowledge can be used to create an
instantiation tree of component instantiations by using the provided algorithm, thus
enabling the user to reason about deployment of software components. The algorithm
is clarified with an example. Finally, we discuss the proposed methods and models
in Section 6.5 and describe the conclusions reached throughout this research in
Sections 6.6 and 6.6.

6.2 Component Descriptions
Currently used component models generally do not support consistent and complete
deployment. Most models used by conventional technology [147] such as InstallShield
and RPM-Update, focus on the artefacts that make up a component. These technologies
perform some very general dependency resolution and only support the “Requires
Always” relationship. These tools often have some scripting capabilities that can be
used to check whether the right resources are available, if required components for
the deployment processes are available, and to perform some pre- and post-installation
checking of the artefacts. These qualities, however, are underemphasized.

The model proposed here is based on three viewpoints. To begin with, a
component is not merely a set of artefacts. A component has a context that describes
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the relationships to the components, hardware, and configuration information that
affect the component upon and after deployment. A component also has internal
variability, influencing that context, which is bound at different times. Secondly, if
a component model supports variability, component features must be communicated
to the user. This allows for the user to select these features at different stages of the
deployment, changing the context as the component is built, activated, copied, and run.
Thirdly, components are available in different revisions. When relationships amongst
components can be specified with a specific version number, many deployment
problems can be averted. Most deployment tools, including Nix [35] and RPM-Update,
already have advanced versioning and dependency resolution mechanisms.

To summarize; there are four factors that make the deployment of a software
component with internal variability complex. Each of these factors is handled by the
presented model using specific modeling techniques and model extensions. These are
as follows:

• States - Components can exist on a system in different incarnations
simultaneously. These incarnations, such as a source incarnation or installed
incarnation, have relationships to each other. States enable the modeling of the
complete build and deployment process, by describing such relationships as “to
build this component the source is required first”. The introduction of states
leads from Figure 6.1(a) to 6.1(b).

• Revisions - Components are generally available in different revisions. Different
revisions have different states, thus leading to a separate set of states for each
component revision. Such revisions are modeled in Figure 6.1(c).

• Features - A component can have variable internal functionality, depending on
parameters that have been bound at several times during the deployment process.
Such points in time are known as binding times. These features can be modeled
using a feature description language. In the model provided, each revision of the
component source leads to a new feature description, since the code and thus the
variability options might have changed. In Figure 6.1(d) this is displayed by the
addition of feature trees per revision.

• Relationships - Component states have explicit and implicit relationships to
each other. An example:the built state of an e-mail client requires both an
instance of a source state of the e-mail client (explicit) and an instance of
a running build tool state with a C++ compiler feature (implicit). These
relationships can be further classified into “Requires Always” and “Requires
Once” dependencies. An example of a “Requires Always” is that a running state
instance requires a library at all time during the existence of the instance. An
example of a “Requires Once” relationship is when a build instantiation requires
the compiler only during its instantiation.

To support the presented techniques a component description describes the
component name, revisions, the revision’s states, and the revision’s feature diagram.
This definition shows that a component has one or more revisions. Each revision
consists of a set of component states, a feature diagram, and a number of feature
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Figure 6.1: Expanding Model for Software Components

restrictions expressed by feature logic. The component states describe the shape or
form in which a component can be present on a system. Examples include built,
activated, and running. Component states can have relationships, such as e-Mail client
running always requires e-Mail client installed or e-Mail client built requires a running
build tool once. In the following sections these component states are described further.
The feature diagram is used to describe the features a revision of a component supplies
to the user and is defined using a feature description language (FDL) [67, 126]. The
feature restrictions describe whether features exclude or require each other. Figure 6.1
does not show feature constraints. These constraints are, however, an important part of
our model. Features and FDL will also be explained further in the following sections.

6.2.1 Component States and Instantiations

The introduction of component states has many reasons. To begin with, component
states force a developer to manage component relationships, restrictions, and
deployment environment from the moment the component is created. Component
states allow for a more detailed specification of component requirements. Some tools,
such as Nix and SOFA, already include implicit state models with the states source,
built, installed, and finally running. Also, component states enable the component
developer to specify and manage the process of how to create a component state
instance.

A component state can generally be seen as a portable encapsulation format for a
collection of artefacts, relationships to other component states, and a number of state
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instantiations. A state instantiation is a list consisting of actions and requirements
that upon fulfilment of all the requirements performs the list of actions to reach
the requested component state (when fired). In the presented model component
states belong to one revision. A revision of the component can thus have a set of
component states in which it can reside. The component state definition describes the
component state’s name, its instantiation list, and its relationships to other component
states. The component state has relationships to other component states including
Requires Always and excludes. These requirements are actually expressed as a
combination of a component state and provided feature(s). This allows for a component
state to have a relationship with a component state with a specific feature, such as
excludes(eMailClientRunning, Pop3) which can be interpreted as “this component state
cannot exist on a system concurrently with the eMailClientRunning state instance that
provides the Pop3 feature”.

Once the developer is forced to consider component states many possibilities arise.
To begin with, the processes of automated building, testing, and deployment can all be
performed using the same component state model. Secondly, since the developer can
describe any type of component [23] the component model described here can be used
to manage different component types, such as Corba or Java components, using the
same model. Thirdly, since component state instances are portable, component state
instances can be distributed amongst different systems. The model allows for derivation
of component dependencies, and can therefore be used to create complete packages of
component state instances to be delivered to customers. Finally, a component state
model allows developers to model and reason about component updates. Component
states can have relationships with component states from other revisions, thus enabling
modeling of complex patch or update processes. Such processes are, after all, nodes in
the instantiation tree, which represents the full update process.

Previously some criticism was expressed toward a four component state model.
The main reason for this is that evidence was found, during case studies at a number of
software vendors, that there is a need for more states. The software vendor Planon [62],
for instance, has a component state model with seven states, being source, built,
packaged, packaged with license, installed, activated and running. Another software
vendor applies six states, being the same ones as Planon but without the packaged
with license. This software vendor builds plug-ins for Autocad for which the software
vendor actually adjusts the component state model. The software vendor first unpacks
Autocad from its installation package, then binds some variabilities, and then packages
Autocad with their plug-in. In this real life example a component state has been added
to the Autocad state model as well.

A component state description is only a description and does not have any effect on
a system. To create a state instance on a system, a component instantiation is required.
A component state instantiation consists of a list of actions and a list of component
state instances that are required to execute the instantiation and create an instance.
The component instantiation consists of a Requires Once list and an action list. The
Requires Once list shows what component states and features are required once the
instantiation is activated. The built instantiation will generally require a compiler and
a component instance of source. The actions are specified as a tuple of (precondition,
action, post condition). These actions usually are operations on artefacts, such as copy
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Figure 6.2: Compilation Component Example

or edit actions, but also scripts that modify the database of a product.
As mentioned earlier a component state can be instantiated to create a component

instance on a system. The component instance is actually a simple data structure,
containing a lists of artefacts created for this instance and a list of features this instance
provides. It is well possible that a system contains multiple instances of a component
state. An example is when a developer creates a debug build and a production build
on his system. Another example is when a user concurrently starts two instances of an
application.

To clarify the concepts of component state description, component state
instantiation, and component state instance the following example is used. Figure 6.2
displays a compilation component, its feature tree, and the binding time of the feature.
The feature tree can be interpreted as follows. The compilation component has one
main feature, that is bound as soon as the component is instantiated, called “build”.
The compilation component also has two features that mutually exclude each other
(one-of). The next section provides more information on the feature descriptions at
hand. When executed, the compilation component can build either C++ and Java code.
The user binds this feature at run-time, i.e., when a developer wishes to compile his
Java code, he will state at start-up time that the code to be compiled is written in Java.
The R in figure 6.2 stands for running and corresponds to the running component state.
It is necessary to remind the reader that the figure does not show anything about the
state of the system. A system can contain just the knowledge about this component,
but also multiple instances of this components’ states, such as two installed versions
and one running.

For this example a system containing an installed version of the compilation
component is used, implying that the component state installed has been instantiated
on the system once. This component state instance can be used to create a running
instance. The relationship for the build tool is “Compilation Component Revision 1:
State Running Always Requires Compilation Component Revision 1: State Installed”.
The fact that it is a Requires Always relationship can be derived from the fact that it is
the state that requires another state, and not an instantiation that requires another state.
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The Requires Always relationship describes that as long as a component state instance
is present on a system, the required component must be present too.

The relationship described in Table 6.1 is common for all component revisions that
have a running state, implying that the installed state instance cannot be removed as
long as there is a running instance depending on it.

Once the presence of the installed state instance has been confirmed, we must check
for feature bindings. In this case that means a choice must be made between Java or
C++. Once the right language has been chosen the instantiation of the component
state can be performed. As mentioned before, it is well possible to instantiate a
state multiple times, for instance to do a parallel compilation of different source files.
The aim of the algorithm described in Section 6.3 is to create an instantiation tree
of component state instances, instantiations, and features. An instantiation tree for
this component revision is quite simple, since no instances from other components are
required and the component only has one revision. It will consist of two nodes, with
the node “Compilation Component Revision 1: Running” depending on “Compilation
Component Revision 1: Installed”.

6.2.2 Feature Diagrams
Components often provide different features depending on variables that determine the
final configuration of a component. Such variabilities can be bound at different times,
such as build-time, package-time, or run-time [121], depending on different variables,
such as user preferences, compiler flags, other components, operating system type, or
hardware restrictions. Both the different features provided by a component and the
binding time of these variabilities must be defined as part of the component description
to be used during the process of deployment.

Using these features and binding times during the process of deployment in
combination with the component state models provides many advantages. To begin
with, it becomes possible to request a specific feature from a component. Also,
to enable automatic binding of variabilities at specific times requires a developer
to externalize the actions that bind these variabilities thus creating a transparent
configuration environment [36], where all configuration options, binding information,
and configuration settings are externalized and managed separate from the component
artefacts.

To express variability we use the varied feature description language (VFDL).
VFDL is a succinct, natural, and non-redundant language [15] that can be used to
express features of components or products within a product family that contain any
number of other components. The VFDL describes and, or, mutex, xor, and requires
feature relationships. The and relationship is described by using a variation point that
states that each of the features must be selected, by stating “S..S”, where S equals the
number of available features. An xor relationship can be described by introducing a
variation point with two children stating “1..1”, which means that one and only one
feature can be selected. In case an or relationship must be represented a variation point
is introduced stating “1..S”, where S is the number of nodes and 1 means that at least
one must be chosen. An optional relationship is described by adding a variation point is
added stating “0..1” and using F node is added that can either be chosen or be ignored.
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Figure 6.3: Varied Feature Description Language Example

If two features exclude each other, they share a top variation point (using “1..1”), and
each feature is optional.

To explain this situation, we provide these relationships in an example, shown in
Figure 6.3. The diagram shows a short feature description of a soda vending machine.
The vending machine can sell either bottles or cans. The machine can accept one or
more types of currency. The credit card feature is optional.

The advantages of using a feature description language to express variability are
numerous. FDL allows us to describe complex composition relationships, such as
one-of, optional, and more-of, for features. If we then annotate these features with
component state requirements it enables the creation of large component compositions.
This is best clarified with an example of an e-Mail client that can both support the
IMAP and Pop3 protocols (see Figure 6.4 for its feature tree). The binding time of
these features is at install time. This means that one or both of these protocols can
be installed. If these features have Requires relationships with an IMAP and Pop3
component, it becomes possible to deploy (and build) only the minimal required set,
which is useful for space restricted systems such as mobile phones. If a user chooses
the IMAP protocol, only the IMAP component needs to be deployed onto his system.

Another advantage of using FDL to describe our feature model is the fact that
there are many tools available to perform calculations and operations on the feature
descriptions. More specifically, the techniques developed by van der Storm [123] allow
for automatic composition of components using feature trees. Many of his techniques
are reused here.

To satisfy the research goal of incorporating binding times as well, each
relationship between two features, such as one-of and more-of is annotated with a
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Figure 6.4: e-Mail Client Feature Tree including Binding Times

binding time. Binding times are directly related to component states in our model so
each of these relationships is annotated with a pointer to a component state. Next to
that, features have two lists of requirements attached to them, being Requires Once and
Requires Always. Features can require component state instances and other features.

State or Feature Component State with Feature(s)
Requires Always

ECR1: State Running ECR1: State Installed
ECR2: State Running ECR2: State Installed
CCR1: State Running CCR1: State Installed

Table 6.1: Requires Always Relationships

6.3 Instantiation Trees
To sum up the previous section the presented model consists of components. A
component can be instantiated in different states. Furthermore, components can have
different revisions. Component revisions have feature descriptions with binding times
attached. Component states require other component states (with specific features) to
be instantiated. Features can also require other component states with specific features.
We will now use this knowledge to create instantiation trees.

6.3.1 Example 1: Instantiating the Pop3 Component
The aim of the following example is to clarify the workings of algorithms 1 and 2,
to be presented in section 6.3.3. In Figure 6.5 five components are displayed. The
components are an e-Mail client (EC), a Pop3 protocol implementation component
(P3), an IMAP protocol implementation component (IM), a binary patch component
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Ins No. Instantiation Component State with Feature(s)
Requires Once

1 ECR1: Instantiation Built ECR1: State Source
1 ECR1: Instantiation Install ECR1: State Built
1 ECR1: Instantiation Built CCR1: State Running with Java
1 ECR1: Feature Pop3 P3R1: State Built
1 ECR1: Feature IMAP imR1: State Built

1 ECR2: Instantiation Built ECR2: State Source
1 ECR2: Instantiation Package ECR2: State Built
1 ECR2: Instantiation Built CCR1: State Running with Java
1 ECR2: Instantiation Install ECR2: State Package
1 ECR2: Feature Pop3 P3R1: State Built
1 ECR2: Feature IMAP IMR1: State Built

2 ECR2: Feature Pop3 P3R1: State Built
2 ECR2: Feature IMAP IMR1: State Built
2 ECR2: Instantiation Built ECR1: State Built
2 ECR2: Instantiation Built PAR1: State Built

1 P3R1: Instantiation Built P3R1: State Source
1 P3R1: Instantiation Built CCR1: State Running with Java

1 IMR1: Instantiation Install IMR1: State Source
1 IMR1: Instantiation Install CCR1: State Running with C++

Table 6.2: Requires Once Relationships
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Figure 6.5: Component Definition Examples

for the e-Mail client (PA), and a compilation component (CC) that can compile Java
and C++ source files. The e-Mail component is the focal point of our example and
to instantiate the e-Mail client with certain features, all these other components are
required. For the sake of brevity, a naming convention is used that individually
identifies each component state, being CNRX: State, where CN stands for component
name abbreviation, RX stands for revision number X, and State describes the state we
are referring to. If we want to describe the second revision of the e-Mail client in its
running state, it shall be referred to as “ECR2: Running”.

To ease the reader into the creation of instantiation trees, a small example tree is
created first as shown in Figure 6.6. The figure displays the instantiation tree for the
first revision of the Pop3 component for the state built. The tree can be used to establish
an order in which these states must be instantiated. The example allows for only one
instantiation order, and requires that both the source code of the Pop3 component and
the installed state of the compilation component are present.

The main function is called as follows: createTree(P3B1, Built, {}). First the
algorithm checks whether the requested feature or state is already present on the
system, and if so, the node is returned as a bottom node with the alreadyExists flag set to
true. If the feature or state is not present, the algorithm will check whether it is possible
to provide the feature set requested in requestedFeatures. If these features do not result
in an inconsistent or incomplete set the user is approached with questions. To begin
with, the branches are created of component state instantiations this component directly
depends on. Secondly, the branches are created of instantiations for this component
state. A component state can have multiple instantiations, as we will later see in
our larger example. The example shown, however, only has one instantiation branch
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Figure 6.6: Instantiation Tree for Component State P3R1: Built

with one other dependency. The dependencies for this example are listed in Table
6.2. The first table is the Requires Always dependency table. The second table is the
Requires Once dependency table. The instantiations and states are identified by their
abbreviation and their revision. For the current example the components compilation
component and Pop3 are abbreviated to CCR1 and P3R1, where the R1 stands for
revision 1. The first entry in table 6.2 for instance reads “to get the e-Mail client in its
running state, it must be installed at all times during its run”. The example can now be
used to tell us that before we can instantiate the built state of the Pop3 component, we
must first instantiate the compilation component with feature Java.

1. First call createTree(P3R1, Built, {})

2. We see no features being requested, and no illegal feature set. Nu customer
intervention is required at this point in time.

3. We look up what other components are always required (requiresAlways) and
what components are required only once (requiresOnce). The lookup tables are
tables 6.1 and 6.2. We find no “requiresAlways” and two “requiresOnce” for
this instantiation, being “P3R1: Source” and “CCR1: Running”. The first one is
already present on the system.

4. “CCR1: Running” always requires an installed state instance “CCR1: Installed”.
This leads us to another state instance that is already present on the system:
“CCR1: Installed”.

The instantiation tree (as shown in figure 6.6) shows that we can now decide an
“instantiation order”. For this tree the order is simplistic, because there exist no options
in build up time. In the next example we show how the alrogithm works for a larger set
of components.
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Figure 6.7: Instantiation Tree for Component State ECR2: Running With Pop3

6.3.2 Example 2: Instantiating the e-Mail Client

The following example is based on a system that contains two source state instances
(revisions 1 and 2) of the e-Mail client, a source instance of the Pop3 and IMAP
protocol implementation, an installed instance of the compilation component, and a
built state instance of the update component. The component knowledge in Figure
6.5 will now be used to create an instantiation tree for the state running of the second
revision of the e-Mail client component with the feature IMAP.

The example begins with the top node, being “ECR2: Running with IMAP”. In
the table for Requires Always dependencies is found that the running instance cannot
exist without the installed instance of the second revision of the e-Mail client. The
second node becomes the installed node. This node requires the packaged instance of
the e-mail client. At this point the tree building has been straightforward. However,
the IMAP feature inclusion now causes there to be two requirements at instantiation
time, being the built instance of the e-Mail client and the built state instance of the
IMAP protocol implementation. The built state of the second revision of the e-Mail
client can be reached in two ways, being through the source of the second revision
(ECR2: Source) or through the built state of the first revision in combination with the
patch. The first instantiation thus depends on the compilation component with the Java
feature and the source code of the second revision. The second instantiation depends
on the patch and built state of the first revision of the e-Mail client component. The
final instantiation tree can be found in figure 6.7.
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6.3.3 Algorithms

One application of using feature descriptions and component state models is the
creation of instantiation trees. An instantiation tree models a number of instantiation
sequences to reach a certain state or feature. A configuration change can be reached
by travelling the tree. This section describes algorithms 1 and 2, which creates
an instantiation tree from a number of component descriptions and component state
instances. We will now describe the two algorithms used to create instantiation trees,
while binding the features of each component.

Algorithm 1

Algorithm 1 can be described as follows:

Target: Bind a correct and complete feature set for one component, while
keeping in mind that different features are bound at different states.
Steps:

1. Use van der Storms technique to determine whether this is a legal and
complete set of features. If it is complete and legal {{}} is returned.
If it is complete and illegal {} is returned. If it is legal and incomplete
the unbound features are returned.

2. If the list is empty, return a dead node.

3. If the list returns an empty list, do not do anything.

4. When the list is not empty, ask the user to complete the feature
selection.

5. Return the node N.

Remark: The function attempts to satisfy as many features as possible.
However, if the binding time of a conflicting feature is later than the state
we are currently interested in, it is of no concern to the feature selection.
After all, the newer state might never be instantiated.
Functions used:

• featureSetConsistent(N.requestedFeatures, C.state) - van der
Storms [123] function to check if the feature selection is legal and
complete. Returns nothing if not legal, an empty list if complete and
legal, and a list of unbound features when incomplete and legal.

Algorithm 2

The second algorithm uses the first algorithm to create an instantiation tree.
Instantiation trees consist of nodes that have a number of instantiation children. These
instantiation children, describing different ways to instantiate the component state,
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Algorithm 1 function bindFeats(N, state)
new featureList unboundFeatures = featureSetConsistent(N.requiredFeatures, N, state)
while unboundFeatures != {{}} AND unboundFeatures != {} do

newReqFeatures = Ask user
N.requestedFeatures = N.requestedFeatures ∪ N.newReqFeatures
featureList unboundFeatures = featureSetConsistent(N.requestedFeatures, N, state)

end while
if unboundFeatures == {} then

N.dead = true
end if
return N

have dependencies on other nodes. A node without instantiation children is either a
dead node or a state that is already present on the system. Algorithm 2 is described as
follows:

Target: Create an instantiation tree that enables a user to evaluate changes
to his or her configuration.

Steps:

1. Get all features that must be bound at this stage

2. Use algorithm 1 to find out if the requested feature selection is legal
and complete. If not, interact with the user.

3. Check whether the component instance is already provided on the
system. If so, return the node with the alreadyExists flag set to true.

4. Add all required component instances by requested features to the
requiresAlways and requiresOnce lists.

5. Create child instantiation nodes and the instantiations on which they
depend as children of these nodes.

Remark: Once finished the generated tree displays different instantiation
“routes”. These routes need to be evaluated before being sure that these
routes are legal. This is caused by the fact that two choices in an
instantiation might exclude each other.
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Functions used:

• returnFeatureBindings(component, component.state) - Returns the
features that must be bound to reach the given state and this state
alone.

• bindFeatures(component, N, state) - Algorithm 2.

• alreadyInstantiated(component, state, requiredFeatures) - This
function returns true if there is already an instance of a component
state present on the system.

Algorithm 2 function createTree(component, state, requestedFeatures)
new featureList stateReqFeatures = returnFeatureBindings(component, state)
new featureList requiresOnce = {}, requiresAlways = {}
new Node N
N.requestedFeatures = requestedFeatures
N.c = component
N = bindFeats(N, state)

if alreadyInstantiated(component, state, stateReqFeatures ∩ requestedFeatures) then
N.alreadyExists = true
Return N

end if

for all currentFeature ∈ (stateReqFeatures ∩ N.requestedFeatures) do
requiresAlways = requiresAlways ∪ currentFeature.requiresAlways
requiresOnce = requiresOnce ∪ currentFeature.requiresOnce

end for

x = 0, y = 0
for all i ∈ state.instantiationList do

N.requiresAlways = N.requiresAlways ∪ i.requiresAlways
N.requiresOnce = N.requiresOnce ∪ i.requiresOnce
for all ra ∈ N.requiresAlways do

N.I[y].achild[x] = createTree(ra.state, ra.requestedFeatureList ∪ N.requestedFeatures)
x = x+1

end for
for all ro ∈ N.requiresOnce do

N.I[y].ochild[x] = createTree(ri.state, ro.requestedFeatureList ∪ N.requestedFeatures)
x = x+1

end for
y = y+1

end for
return N

The tree will expand until an instantiation tree is created that shows for each node
what component states must be instantiated first before that node can be created.
There are some prerequisites, however. Some branches will end because no legal
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feature selection has been bound. If there is no sequence available due to the fact
that insufficient feature bindings have been specified, the user will need to add more
features. Also, if the current system contains no first component instances a problem
is encountered, simply because there is no knowledge available and the tree building
cannot end. Another problem occurs when a component state diagram includes a
circular dependency since that leads to an endless tree. There can be no circular
dependencies.

A node N in the instantiation tree has a variable number of instantiation children, a
requiredFeatures list, a requiredOnce list, and a requiredAlways list. The instantiation
children have child nodes of the same type as N, but are typed either requiredOnce
children or requiredAlways children. Please note that the AlreadyInstalled function
returns data from the global state. Furthermore, the data that is currently provided in
tables 6.1 and 6.2 is also part of the global state. Also, keep into account that at every
node, a number of features are potentially bound. To clarify, in the instatiation tree
we mark these nodes with their features. An example is the instantiation tree in figure
6.7 where “CCR1: Running with Java” indicates that the compilation component is
running with the Java feature selection.

When deciding how a component state will be instantiated with the requested
features, two steps need to be taken. First, the tree is created, including the binding of
feature decisions. Secondly, a route is determined in the tree. This sequential order has
some effects on the final instantiation route, however. Two partial routes, for instance,
might exclude each other. The tree must be evaluated and travelled intelligently to
find the most appropriate route, based on requiredConcurrently sets. There is a large
advantage of dividing excludes amongst states instead of full components, since it
imposes a minor restriction compared to full component exclusion. The example
presented in section 6.3, displays that many components are only required once during
the deployment process of others. This allows for removal (of the patch, for instance)
after a certain state has been reached. To support this, the requiredConcurrently
sets have been introduced as a property of the instantiation tree. These are sets of
component state instances that must be present on a system concurrently during the
deployment of a component state instance. When two component state instances are
in a requiredConcurrently set they cannot exclude each other (or that partial route
becomes unvisitable).

An example of a requiredConcurrently set is {“IMR1: Built”, “ECR2: Built”}
because both components need to reside in their state simultaneously to instantiate
“ECR2: Packaged”. When two instances exclude each other and do not share a
requiredConcurrently set, smart removals can be used to decorate an instantiation
sequence and still obtain a valid and consistent deployment of component state
instances. The instantiation tree shown in figure 6.7 is used as an example. An exclude
relationship could be “ECR2: Built” excludes “PAR1: Built”. The models can be used
to derive two different instantiation sequences. One can exclude the branch containing
“PAR1: Built”. Another solution can be presented by adding a remove of “PAR1:
Built” in the sequence before the instantiation of “ECR2: Built”.
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6.4 Component Knowledge Management
The presented models manage meta-knowledge about components and their features.
This meta-knowledge will always describe some kind of software or hardware on
a system with a running configuration. The stored meta-knowledge can therefore
be seen as a software knowledge base [80] that is used to support the processes of
development, release, and deployment. Though the models currently only support
component descriptions, our future will include the incorporation of consequences
for the system configuration. The knowledge stored can then quickly be expanded
to include knowledge about the artefacts that are affected by the deployment of a
component or instantiation of a component state. Such knowledge will then enable
validation of the deployed component information, through hashes, or the knowledge
can be used to check whether a set of artefacts present in a configuration is the correct
set for a component instance.

The sharing of knowledge between components introduces many possibilities. Due
to the fact that users define their configuration settings, these can be reused for different
components. This will allow, for instance, a user to type his e-mail account settings
only once, and then reuse the account settings across different e-mail clients. All these
different types of information require some kind of categorization. The actual structure
in which the component knowledge must be stored still needs to be designed.

The implementation that is presented here only distinguishes one category
of knowledge, being component knowledge. However, further categorization of
knowledge items is possible into system layers, for instance, where the categories could
be divided into a user, component, hardware, and network layer. The layer structure
conveniently models the knowledge a component can be related to when instantiated.

The examples and descriptions of actions on knowledge provided above can be
categorized.

• Extraction - One of the main questions is where the information should come
from. Some of the dependency information can be automatically extracted [38],
however, most of the information, such as the component states descriptions,
simply need to be input by a developer or a party that is well accustomed to
the component. One solution that is appealing, is where users of the models
share information about components, which allows for reuse of the knowledge.
Incompatibilities can also be shared in this case, since they can be sent back to
the knowledge provider. Many scenarios are possible here, where information is
spread through the BitTorrent [112] protocol or through RSS feeds.

• Representation - There have been many attempts to categorize and further
define the data structure for a software knowledge base [70]. At present there
is no proof as to whether the knowledge representation presented in this chapter
is optimal. We consider proving this to be future work, in which different ways
of storing knowledge about software components are compared.

• Inference - The presented models show the advantages of using the feature
descriptions for component states. Many other advantages can be achieved once
the component states and instances are linked to artefact knowledge that can be
used to establish the validity of a configuration. Such information can also be
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used to remove the right artefacts once an instantiation is removed from a system.
• Application - The knowledge allows for a myriad of applications most of which

are part of our future work. The models can be used to update a software
configuration and with the right communication protocols and procedures can
even become a generic release, deployment, and update tool, that supports all
features (instead of a subset) described in chapter 5. The envisioned deployment
tool should also be able to perform automatic deployment within a multitude
of scenarios, such as a software product that consists of client and server
components that must be deployed automatically on different nodes in a network.

These operations are all applicable to the software knowledge base described
earlier. In the case of the presented models, the software knowledge base consists
of the component descriptions and the system description. In our future work we hope
to add network knowledge to this, so that the software knowledge base can be used to
distribute components to other users. In our view the software knowledge base is going
to play a big role in the future of component based development, release, delivery, and
deployment.

6.5 Discussion
The main advantage of the presented models, besides correct and consistent
deployment, is the possibility of “what-if” questions. The presented models enable
analysis on the deployment of a component before the deployment of a component
state instance, its dependent features, and state instances. The what-if questions
are answered using a number of properties of the instantiation trees. Excludes
relationships are specific to one state instance instead of components, allowing for
components that normally exclude each other to still reside on a system simultaneously.
The tree depth and instantiation descriptions can be used to evaluate deployment
effort. Finally, during the building of the tree, users can be queried about what options
they have left open, to reduce both the number of possible configurations and to give
the user insight into the instantiation order building process.

Another advantage of the instantiation trees is that the depth of the tree can be used
to estimate the effort a deployment costs. The example instantiation tree in figure 6.7
has two instantiations below the “ECR2: Built” state instance. The branch on the left
has less children thus indicating less steps to a final deployment. This tool must be used
with care, however. When an instantiation sequence is shorter, that does not necessarily
mean it takes less deployment effort. Another indirect advantage of composing these
instantiation trees is that during the composition of such a tree, when unbound features
are encountered these can be communicated back to the user. Then the user can bind
the feature to see what the results are of that action. The user can now remove the
feature if it is not to his liking, before actually executing the instantiation sequence.

There are clear links between the methods applied here and the practices of
product lifecycle engineering. This research can be seen as a first step in creating
a software product lifecycle management system that can facilitate and support the
processes of development, release, delivery, and deployment. The following steps in
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this process are a distribution architecture and a knowledge management framework.
The closeness between software product management and product data management is
further confirmed by Crnkovic et al. [60].

The main downside of the presented models and methods is that the data entered
by the component developers is crucial for the correct functioning of the deployment
algorithms, since “garbage in” results into “garbage out”. As discussed in the previous
section, however, there are many possibilities for adding information to the software
knowledge base. To begin with, automatic feedback can be used to report back to a
supplier of a component after the deployment of that component [148]. This feedback
can then be used to test for excludes on external products that a software vendor can
never discover independently.

Feature descriptions are rather misused here, since they are generally used to
describe high-level application requirements and features [67]. The framework,
however, uses feature descriptions to model the binding times of features, the
requirements of components, and the relationships between the features. We firmly
believe that feature descriptions form the solution to many of the complexities related
to component configuration and deployment. Feature descriptions can be used to model
binding times and show the relationships between features and other required instances.
Feature logic and restrictions allow for complex relations to be modeled and simplified,
thus enabling algorithms such as shown in algorithm 2. The final question that needs
to be answered is whether a software knowledge base really improves the processes of
release, delivery, and deployment. There are four facts that point in that direction.

• Product data management improves the release and delivery of other
products [54]. Since software production processes share many similarities with
other production processes [60], software release, delivery, and deployment can
also be improved.

• Since the current trend in the software market is mass customization, much of
the information gathered in the development stages of the product can be reused
at later stages during implementation at the customer and customization phases.

• Case studies [148] [62] show that centrally storing knowledge leads to reduced
delivery effort.

• The ability to present “what-if” questions to a local software knowledge base
that is connected to multiple component sources can increase the reliability of
the component deployment process. These questions enable a system manager to
more explicitly predict what changes can be made to a system and what features
can be provided within a certain configuration of components.

Some practical uses of the instantiation trees are explained here, using example 2.
To begin with, different instantiation sequences can be derived using the instantiation
tree. It is possible, for instance, to first satisfy the right subtree of the instantiation of
“ECR2: Packaged” and then decide which of the two instantiations must be used for
the left side. An example instantiation sequence for “ECR2: Running” thus consists
of “CCR1: Running with Java (to build ECR2: built)”, “ECR2: Built”, “CCR1:
Running with C++ (to build IMR1: built)”, “ECR2: Packaged”, “ECR2: Installed”,
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and finally “ECR2: Running w IM”. In the following section is demonstrated that it is
possible to perform some calculations using the properties and prerequisites for state
instantiations.

The algorithms presented have been applied to two theoretical experiments of 10
and 32 components respectively, with approximately 7 features per component. When
applied to larger configurations of components, we expect the instantiation trees to
become quite large. This presents problems for the instantiation tree evaluation, since
currently we do this by hand, using requiredConcurrently sets. In the future we hope to
create an algorithm that presents the user with a number of routes, such that the user can
choose the one he or she prefers. Furthermore, instantiation routes can be determined
automatically by storing preferences (“shortest” or “smallest memory signature”).

6.6 Conclusions and Future Work
Currently the models have been implemented in Prolog, however, to fully apply the
models in an industrial setting, a new implementation technology must be chosen
with the support of cross platform compilers. We are hoping to apply the tools in a
practical situation in the context of a case study. To avoid reinventing the wheel and to
standardize the models, the applicability and feasibility of the OMG specifications for
reusable assets [91] and IT portfolio management [90] must be evaluated for the current
models. The current algorithm blindly builds trees that can explode in complexity quite
quickly. There are many opportunities for reuse and further research is required in that
area to reduce the complexity of these instantiation trees. Also, the representation of
the software component knowledge must be compared to other methods [50] to store
and share software component knowledge.

This chapter establishes a relationship between component state models and feature
descriptions enabling reasoning about the deployment of a component or component
set without actually deploying the software. An algorithm is provided that can build
instantiation instantiation trees to determine the deployment order of components.
These trees can be used to answer “what-if” questions about the deployment of a
component or set of components. The research has shown that both feature descriptions
and a component state model are required to create a software knowledge base that
stores information about components and their context. The knowledge used to achieve
this, relies on information provided by developers and users of the components.

To maximize the usefulness of the models a tool is required that can facilitate the
distribution of components and their state model. Such a tool should operate in a
distributed environment so that components and their state models can be downloaded
when a dependency needs resolving. A tool is also required to publish the component
and its state model in different versions. For such a tool different publishing strategies
can be implemented, such as ”publish all states for that component except for source”.
In the next chapter we describe such a software knowledge delivery tool.
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Living on the Cutting Edge:
Automating Continuous
Customer Configuration

Updating

Product software vendors cannot continuously update their end-users’
configurations. By not automating continuous updating, the costs to test,
release, and update a software product remain exorbitantly high and
time to market exorbitantly long. This chapter shows the feasibility and
profitability of continuous customer configuration updating, with the help
of two practical case studies and a technique to model and estimate time to
market for a software product. Automating continuous updating enables
vendors and customers to define flexible policies for release, delivery and
deployment, and subsequently reduce time to market with minimum effort.
Such flexibility enables customers to be in full control of how and when
product knowledge and updates are delivered, tested, and deployed. 1

7.1 Introduction
Manufacturing product software is an expensive and non-trivial task for software
vendors. Software vendors face challenges to divide their resources to develop, release,
and deliver high quality software. Unfortunately, there always are more requirements
and opportunities than a tenfold of developers could implement. Extreme competition
forces software vendors to reduce time to market and to release new features as often
as possible. As products and updates are changed and released more often, effort is
saved by automating Customer Configuration Updating (CCU).

1A short version of this work has recently been accepted for publication in the Proceedings of the ERCIM
Workshop on Software Evolution 2007 [149]. Also, a paper describing Pheme has been published at the
conference on software maintenance in 2007 [140] for a tool demonstration. The work is co-authored with
Sjaak Brinkkemper.
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In earlier work CCU has been positioned as the release, delivery, deployment, and
usage and activation processes of product software [143]. In this chapter we focus on
the automation of these processes to reduce overhead per release. The release process
is how and how frequent products and updates are made available to testers, pilot
customers, and customers. The delivery process consists of the method and frequency
of update and knowledge delivery from vendor to customer and from customer to
vendor. The deployment process is how a system or customer configuration evolves
between component configurations due to the installation of products and updates.
Finally, the activation and usage process concerns license activation and knowledge
creation on the end-user side.

The importance of CCU is often underestimated as systems nowadays are
increasingly supplied to customers as an on-line service, thus requiring no more
software delivery and deployment on the customer side. There are multiple sides to
this service orientation trend, however. These days, services are deployed on home
user systems as well. Simultaneously, an increase is seen in the use of product
software on mobile devices, requiring different deployment mechanisms. Examples
can even be found of services and products that are deployed on mobile and embedded
devices, offered as services, and on customer PCs. One such example is TomTom,
offering its product on embedded devices in the TomTom Go, as an online service
with TomTom Maps, and deployed on your portable device with TomTom Navigator.
Another example is developed by Google, offering the Google Mini embedded device,
Google on-line websearch, and Google Desktop for the home PC. Interesting blends
of software are becoming more common than traditional retail software products,
increasing the need for smart CCU.

Automating steps in the CCU process contributes to product software vendors in
four ways. First, software vendors serve a larger number of customers when less
overhead is required per customer [143]. Secondly, due to more frequent integration
builds and automated test runs developers see results of their contributions quicker and
testers can test more recent versions of the software, improving the vendor’s internal
development process. Also, when deployment is automated developers and testers
lose less time (re)deploying the application locally after different developers have
contributed to the project. Finally, managing specific policies on both the customer
and vendor side enables advanced release, delivery, and (re-)deployment scenarios.
Vendors can flexibly define when a product must be released, whereas customers can
decide to periodically check for new updates and not install them until formal approval
has been given. If customers are involved in testing new features, they can work with
newer versions than with traditional weekly or daily builds. Finally, customers are
better protected against security holes because they can be patched quicker. Overall, by
automating steps in the CCU process a software vendor can reduce its Time to Market
and battle the demand for flexibility of its software development, delivery, deployment,
and integration processes [14].

In section 7.2 we introduce the concept of continuous CCU and define the research
approach and identify tools that potentially automate continuous CCU. One such tool,
Pheme, is described in section 7.3 and specifically built to serve this purpose. In section
7.4 we show, by means of two case studies, that continuous CCU can be automated with
relatively little effort. Finally, in section 7.7 we conclude that continuous CCU tools
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provide more flexible processes at lower costs.

7.2 Continuous CCU
By automating steps in the CCU process as much as possible, CCU cost and effort
can be reduced effectively and larger numbers of customers can be served [143].
Automating steps in the CCU process ultimately contributes to Continuous Customer
Configuration Updating (C-CCU). C-CCU is defined as being able to continuously
provide any stakeholder of a software product with any release of the software, at
different levels of quality. This way developers, testers, and even end-users can always
be fully up to date. Before an organization can properly set up C-CCU, however,
policies must be defined for all processes in the software product life cycle. These
policies are displayed in Figure 7.1, which models the C-CCU process for any type
of product release, such as a new product, a major update, or a minor bug fix. In
the software product lifecycle different policies define the method and freqency of the
release, delivery, deployment, logging, feedback, and debug processes.

C-CCU must not restrict customers or vendors in any way, instead, it should be a
mere facilitator for more responsive software product management. C-CCU enables
a software vendor to become more responsive to changes in customer and market
demands. It provides developers and testers with the most recent (working) version
available. C-CCU is an organizational driver for continuous integration, continuous
testing, and continuous quality control. As such, customers are provided with better
guarantees of quality when code is released. As long as the software vendor and
customer share knowledge and manage it explicitly, CCU becomes less error-prone and
less time consuming. The current trend towards agile development only strengthens the
belief that C-CCU is essential in the current market and that the return on investment
into C-CCU automation is high.

7.2.1 Research Approach
The aim of this research is to find out whether automating C-CCU is feasible and
profitable for software products. C-CCU automation feasibility is established by
showing two cases in which we have automated C-CCU. Profitability is established
by showing the low overhead for automating C-CCU. Two cases were selected
with different development technology, working on different platforms. Then a
tool selection was made to automate and implement the C-CCU process for these
applications following an inventorization of C-CCU automation tools. Finally, some
aspects of C-CCU have been automated for the two applications and implementation
time was written down per feature. The C-CCU automation was considered successful
when the following three criteria were met. First, updates to the software had to be
seamless, without any manual intervention. Second, the development and delivery
process had to be improved significantly. Finally, the investment had to be small.

Threats to validity of this study [133] are that the applications are not representative
and that process changes are underestimated. Two applications were selected, Joomla2

2http://www.joomla.org/
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Figure 7.1: C-CCU and its Policy Context

and the Meta-Environment3, both freely available as open source products. The
applications are very different with regard to development methodology (monolithic
vs component-based) and technology (PHP/MySql vs. Java, C and several domain
specific languages). Finally, due to the similarity between the presented model and
development planning models, such as presented in [71], we strongly believe that the
presented model is a reliable method to estimate Time to Market.

7.2.2 Related Work and Tools
The tools evaluated for this research range from scientific open source prototypes to
commercial products with a very high turnover. For a more extensive discussion on
product update tools (such as package managers, knowledge delivery tools, etc.) we
direct the reader to [147].

Nix - Nix [35] is a package management system that ensures safe and complete
installation of packages for Unix based systems. Nix approaches software deployment
as a memory management problem, concurrently storing different versions and
variants of components (values) identified by unique hashes (pointers). Nix ensures
atomic updates and rollbacks that guarantee that existing component dependencies
never break. Such updates can be downloaded from channels in which updates for
specific components are published, and are deployed as binary patches and as source

3http://www.meta-environment.org/
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patches. Because Nix manages all dependencies of every component, it derives
continuous releases from continuous integration. With regard to C-CCU Nix supports
deployment policy management. However, writing Nix expressions that describe
dependencies amongst components in their domain specific language, is not a trivial
task. Furthermore, Nix is currently a scientific research tool that is restricted to Unix-
like software environments.

Sisyphus - Sisyphus (http://sisyphus.sen.cwi.nl:8080/) is a component-based
continuous integration and release tool. Component versions are built in an incremental
fashion, i.e. only if there are affecting changes, sharing previous build results if
possible. Accurate bills of materials (BOMs) are maintained in a database that allows
derivation of release packages for every successful build [124, 125]. Passing the
integration build is but the first QA milestone. Because every build corresponds to
a (internal) release, testers can easily update their configuration on a regular basis.
Formal releasing a product simply consists of labelling a particular build that satisfies
the required quality properties. This allows the development organisation to setup
different channels that have different frequencies of release.

FLEXnet - Macrovision’s FLEXnet (http://www.macrovision.com) is a suite of
release, delivery, and deployment products, such as InstallShield, InstallAnywhere,
FLEXnet Connect, and AdminStudio. Macrovision’s product suite provides tooling to
create releases for any platform, install them on any platform, and let them be managed
by a system administrator. Their tools provide licensing, copy protection, and patch
delivery solutions. Macrovision’s strength can be found in the fact that they manually
support many of the process steps that are part of C-CCU.

Software Dock - The Software Dock [52] is a system of loosely coupled,
cooperating, distributed components that are connected by a wide area messaging
and event system. The components include field docks for maintaining site specific
configuration information by consumers, release docks for managing the configuration
and release of software systems by producers, and a variety of agents for automating the
deployment process. The Software Dock is an early attempt to correctly, consistently,
and automatically deliver and deploy software. The Software Dock does not focus
on release management or continuous release practices and is lacking in the area of
knowledge delivery from customer to software vendor.

Each of the tools and research projects discussed in this section is focused on
one particular aspect of the customer configuration updating process (see Table 7.1.
These properties have been determined by reading documentation and testing the
tools with small cases, A means that the tool supports the process automatically,
i.e., no user intervention is required and policies can be flexibly defined. M means
that the tool requires manual steps from the user). Sisyphus supports continuous
release, but has no feedback loop from the customer to the vendor. Nix is primarily
geared towards deployment as is the Software Dock; both are lacking in the areas
of release and customer feedback. MacroVision’s FLEXnet supports many of the
processes manually, but not automatically. The next section introduces the knowledge
distribution framework Pheme, which has been developed to remedy this situation. In
Greek mythology, Pheme was the personification of fame and renown, described as
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“she who initiates and furthers communication”4.

Nix Sisyphus FlexNet SWDock Pheme
Release A M M A
Delivery A A A
Deployment M M M A
Logging M A
Feedback A M A
Debug M

Table 7.1: Manual (M) or Automated (A) Tool Support for Policies

7.3 The Pheme Delivery Hub

Pheme is an infrastructure that enables a software vendor to communicate about
software products with end-users and enables system administrators to perform remote
deployment, policy propagation, and policy adjustment. The infrastructure consists
of a server tool (Pheme), a protocol between software product and Pheme, a protocol
between Phemes, and a GUI. The Pheme server resides on each system that acquires
and distributes software knowledge through subscribe/unsubscribe channels. The
server can accept and distribute all types of knowledge, including policies concerning
software knowledge delivery and deployment that describe behaviour of the Pheme
tool. These policies can be manipulated securely and remotely.

Pheme enables software vendors to publish software knowledge in the form of
licenses (for one end-user), software updates (for a group of end-users), software
content, and software news (for another group of end-users). Pheme enables customers
to send knowledge in the form of usage and error feedback. A system administrator can
use Pheme to instruct other Phemes, change and distribute delivery and deployment
policies, control all communication between end-users and vendor, and redistribute
software (knowledge). Finally, an end-user can edit policies, execute deployment
policies (such as remove/install/update a software product), determine when and how
feedback will be sent to the vendor, and refresh all types of knowledge such as licenses.

The processes in Figure 7.1 are all covered by advanced tools and methods, such
as release by Sisyphus and deployment by Nix. However, none of the tools fully
cover deployment policy and delivery policy management for multiple participants
in a software supply network (SSN) [151]. Pheme was created to enable these
participants to explicitly manage and share knowledge about software components, and
thus provide coverage for the release publication, feedback, and knowledge delivery
process steps.

4http://en.wikipedia.org/wiki/Pheme/
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Figure 7.2: Pheme Architecture

7.3.1 Pheme Architecture

Pheme’s architecture is modelled in Figure 7.2. The core components are policy
management, package management, user management, and channel management.
The policy management component enables the user of Pheme to define delivery
policies (check for and download software updates on a weekly basis, for instance) and
deployment policies (check every time when the product is shut down whether any new
updates have been downloaded and deploy the newest one). The package management
component supplies Pheme with knowledge package support, in the form of files,
reports, facts about the product (version numbers, dependencies, etc.) and human
readable product news. The user management component enables different types of
users to be known to the Pheme instance. Such users can be local administrators,
knowledge suppliers, and knowledge consumers. The user management component
also enables the Pheme administrator to contact other Phemes and indirectly change
policies of other Pheme instances. Finally, the channel management component
manages different channels that can automatically and manually push or pull
knowledge packages to and from other Phemes and URLs.

Pheme is interacted with through its user interface, through another Pheme, and
through the software product itself using SOAP procedure calls. Software products
use Pheme as a gateway to vendor release and feedback repositories. Typically such
interactions include receiving updates, product news, and sending feedback and usage
statistics.

Pheme handles knowledge packages as opaque artifacts, however, in some cases
where software product knowledge is required, the package handling component can
be used as a fact base. These facts are then used to store, for instance, a product
configuration. Pheme then serves as a knowledge base from which both the vendor
and the customer can get information. Furthermore, this enables a vendor to develop a
specific fix for a specific group of customers. The suitability of the update can then be
decided by Pheme.
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Figure 7.3: Example Environment for Pheme
An example setting is presented in Figure 7.3, where four different instances of

Pheme on four different hosts are shown. A Components off the Shelf (COTS) vendor
sells components to a vendor, who can distribute knowledge through its channels to
the system administrator, such as the announcement of a new release. The system
administrator can communicate with the end-user(s) of the product. Finally, end-users
send information regarding the day-to-day use of the product back to the vendor. The
Joomla case study, presented in the next section, takes place in a similar setting.

7.4 Case Study Results

7.4.1 Joomla
Joomla is a leading open source content management system that is widely adopted
for its intuitive user interface and low barrier for acceptance. It has a large user base
and a large team of developers. Furthermore, a large collection of components and user
generated content are available. Joomla can be installed on any web server that supports
PHP and MySQL. Traditionally, Joomla applications are updated by hand. Minor
releases exclude datamodel changes, so these can overwrite current deployments. For
major releases tutorials are released that explain the proper method for updating the
datamodel and the source code. The manual process of updating is error-prone, since it
is possible to overwrite source files from a Joomla configuration with newer versions.
This leads to many Joomla deployments that are never updated, which increases the
risk of hacks.

The main advantages for the Joomla product in automating C-CCU are found
in effort savings. Each developer, tester, and customer will at some point have to
deal with an evolving instance of the product because they want new features or
wish to plug a security leak. Their time can be saved by not having to manually
evolve the configuration of their Joomla instance. Furthermore, we speculate that the
Joomla development team can automatically generate and test releases and publish
them on-line, which will no longer require the manual effort of checking the release
for completeness and such. Finally, Joomla customers can be sure that their CMS
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contains the most recent security updates.
To automate C-CCU for Joomla the processes of release, delivery, and deployment

are automated. In order to prepare a release, the source code is checked out from the
Joomla SourceForge repository periodically. To deliver the source code to the customer
the source bundle is sent to the customer system. A policy control system is set up on
the customer system to automatically deploy any new versions that come in for Joomla.
To automate deployment the system automatically calculates the differences between
a new version and the currently deployed version. The changes are then made to the
deployed data model and source code.

Automating C-CCU for Joomla - To automate C-CCU for Joomla the tools
Pheme5, SubVersion6, DataDiff7, and MySqlDiff8 are used. In this case study a
release, an administrator, and a customer system are used. The release system locally
prepares the releases by simply bundling the source code, data model, and data into one
compressed file. The administrator system is used to instruct the customer system with
delivery and deployment policies, such as “check for Joomla bundles from the release
system every hour” and “deploy a new Joomla version as soon as it arrives”. The
release system obtains the sources on a daily basis, by using an automated check-out
script. Furthermore, the release system zips the contents of the new release, and places
it in a Pheme release channel. The system administrator system also runs Pheme, to
instruct the customer system with new policies. The customer system runs Joomla,
Apache, and MySql for its daily operations. Pheme is used to check hourly for new
updates from the release system and to run the appropriate commands when a new
release bundle comes in. When a new release bundle comes in, the release is deployed
as if it were a “fresh” deployment. The configuration script, configuration.php, is
overwritten with the configuration script from the deployed version, with a change
in the database name. The data model is then created, using joomla.sql. The difference
between the data models is calculated using MySqlDiff and a data model update script
is generated. The update process is a three part process where the database structure is
first updated, the new data is added, and then the changed files are overwritten.

Software delivery and deployment, software knowledge delivery, and feedback
delivery were automated for Joomla. Software delivery and deployment cost two
full days. The delivery of knowledge cost 4 hours of development time, including
the adjustments to Joomla. Finally, to implement logging also cost 4 hours including
development time.

Technical Challenges - Our approach is not safe. The automatic data model update
does not apply any knowledge from the development process, which can lead to data
loss, empty columns, and other data update problems [106]. Furthermore, there is no
assurance whether the downloaded bundle is of reliable quality. Also, since updates
occur at runtime the system can become unstable. For such runtime updating state-safe
techniques can provide solutions [127]. To complete the C-CCU process an extension
was built to Joomla’s error handling mechanism, such that errors and warnings were
reported back to Pheme and stored for further analysis.

5http://www.cs.uu.nl/Pheme/
6http://subversion.tigris.org/
7http://freshmeat.net/projects/datadiff/
8http://www.mysqldiff.org/
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Process Challenges - With C-CCU in place, a number of process changes are
required from the Joomla team and its customers. To begin with, the release process
needs to be redesigned. To guarantee that high quality code is released to customers,
a number of criteria can be devised to delay releases, such as test failures. Joomla
can also, instead of opting for continuous CCU, define intervals at which new versions
will be released (such as a once weekly update). After all C-CCU is a concept that
provides maximum flexibility to customers and developers, and should not introduce
extra risks or effort. For a future deployment system, knowledge about “preferred
update routes” must be specified and shared between the Joomla release team and the
Joomla customer, such that quality guarantees can be provided for defined sequences
of updates.

Joomla’s Software Supply Network - To display news from Pheme in the Joomla
backend a module has been created called ModPhemeNews. This module will only
work with approved versions of Joomla resulting in the fact that the ModPhemeNews
team must approve of any new version of Joomla before an update of the full Joomla
package can take place on the customer side, which is a common way of working with
add-ons. If C-CCU were to be automated in such a process, customers could possess
new code quicker because this dependency can be specified and shared. The Joomla
creators could, for instance, provide an early release for module and add-on builders.
Furthermore, the ModPhemeNews creators could automatically download any new
releases for Joomla immediately, automatically test the new combination of Joomla
and ModPhemeNews, and notify customers of its approval of the Joomla update.

7.4.2 The Meta-Environment
The second case study concerns the Meta-Environment, a integrated development
environment (IDE) for language development, source code analysis and
transformation. It is a component-based application consisting of tools for parsing,
transforming, pretty printing and analyzing programming language sources connected
together using dedicated middleware. The Meta-Environment is an open framework
that can easily be extended or customized with third-party components. For the Meta-
Environment the introduction of C-CCU decreases development, release creation, and
deployment effort which is valuable in a setting where the developers are all full-time
researchers. Before introducing C-CCU, the Meta-Environment was built using a daily
build system, whereas today the Sisyphus continuous integration system is used which
builds complete systems on every change to the source control (Subversion). Every
component contains a manifest listing its dependencies. The manifest is used by the
build system to determine how a component should be built and which earlier build
result can be reused to satisfy these dependencies. Before the introduction of Sisyphus,
release amounted to manually changing the version numbers of all components and
the dependency specification accordingly and creating a release package using the
tool AutoBundle [32]. However, since such compositions did not directly follow from
the build system and were not formally tracked (i.e., in a database of builds) many
mistakes were made in this process. This turned out to be a serious impediment when
one wants to do more frequent releases and continuous releases.

Automating C-CCU for the Meta-Environment - For the Meta-Environment the
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release, delivery, and deployment processes were automated. The release process
provides a new release as soon as one of the Meta-Environment components is changed.
With regard to release, Sisyphus is used to automatically release the most recent version
that fully passed an integration build. To automate delivery, Pheme has been installed
on the end-user system to automatically download the latest binary distribution on
an hourly basis and deploy it on a nightly basis. Pheme checks whether the Meta-
Environment is running and, if it is not, the new release is installed. Since installations
of the Meta-Environment are stateless old files are overwritten. The implementation
of Sisyphus for the release process took a developer five full days. Furthermore, to
automate delivery and deployment with Pheme cost a developer two days.

Technical Challenges - The Meta-Environment does not support any error
recovery or reporting at runtime. To build such error recovery, the architecture needs
to be redesigned in such a way that the component configuration remains robust and
can send an error report at runtime before a crash occurs. A complication is that the
Meta-Environment is a heterogeneous system; i.e. the components are implemented in
different languages (C, Java, proprietary).

Process Challenges - The C-CCU process for the Meta-Environment is not perfect.
To begin with the quality criteria (it must pass the integration build and a large
number of unit tests) are weak. Sisyphus has the infrastructure to provide for stronger
criteria. Some manual intervention is required in order to label successful builds
with the accompanying quality attributes. By publishing such releases at specific
URLs, customers can choose among different release channels, such as “cutting edge”,
“daily”, “weekly”, “minor”, “major” etc. Furthermore, there is no facility for users
to report problems back to the developers except through the regular media such as
e-mail and bugzilla. However, this way users have to manually link their error report
to the version they have installed. Subsequently developers have to read the email and
manually reproduce the problem. One would wish for the automatic identification of
the installed version whenever a problem occurs at the customer site.

Meta-Environment’s Software Supply Network - The Meta-Environment is a
component composition, with several open source components coming from different
development locations. When a Meta-Environment release is created, stable versions
of components are explicitly labelled to be part of the next release. This method of
releasing reduces risk, although it does force a customer to install components that
are potentially outdated. In future releases of the Meta-Environment, automation
of Sisyphus and strict quality checking enables releases with the most up-to-date
third-party components and a decrease in integration effort. The components of the
Meta-Environment themselves are not strongly coupled, meaning that in the future
components could be updated independently.

To demonstrate that C-CCU automation actually reduces Time to Market the
PDCT models are introduced. These models, based on traditional supply chain and
development planning models, enable a software developers to find bottlenecks in
their development and delivery processes. A weakness of the PDCT models is that
all durations are averages based on earlier events. The actual values are dependent on a
large number of variables, such as number of features implemented in a release, number
of developers working on this task, number of bug reports that need to be solved, etc.
We do, however, see the PDCT models as a powerful tool, to demonstrate how C-CCU
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Figure 7.4: Product Development Cycle-Time Model

can reduce Time to Market and as a planning tool. Part of our future work is to evaluate
the PDCT in additional real life situations.

7.5 Product Development Cycle

To prove that automating C-CCU in a development organization reduces Time to
Market, a model is required that assists in estimating Time to Market of a software
product. To estimate Time to Market for a software product the Product Development
Cycle-Time (PDCT) model is introduced (see figure 7.4), in part inspired by Ford’s
dynamic model of product development processes [46]. A PDCT model displays the
development cycle of a product release, that is the organizations involved, participants
of the development process, repositories in which versions are stored, automatic testing
and build systems, and the flows among participants, repositories, and systems. Such
flows can be source code, executables, feedback, and product content. These flows are
annotated with average durations in between transactions of source code, executables,
feedback, and product content.

In Figure 7.4 a PDCT instance is shown of a software vendor that has a traditional
product development cycle. A software developer changes code and commits changes
to the source repository. The time between commits is named α. Furthermore, a
build system attempts to build the source code (every β) into an executable system.
The build time (δ) determines when the executables are done and uploaded into the
internal release repository. Should the build fail, feedback is generated and sent to the
developer. Testers decide when to download a newly built release (ε), when to approve
it (η), and when not to approve it (ζ). When approved the product release can be
downloaded and installed by a customer (θ). Finally, the customer will occasionally
provide feedback and send this to the software vendor (κ).

The PDCT model in Figure 7.4 has three cycles, being the build feedback cycle
(BFC), the test feedback cycle (TFC), and the customer feedback cycle (CFC) (see
figure 7.5 (V = Vendor)). The PDCT model provides a method to estimate the length
of these cycles. The BFC is the addition of the development and commit time (α), the
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BFC(V ) = α+β+ γ (7.1)
TFC(V ) = (A+1) ·BFC(V )− γ+δ+ ε+ζ (7.2)
CFC(V ) = (B+1) ·TFC(V )−ζ+η+θ+κ (7.3)
TtM(V ) = (B+1) ·TFC(V )−ζ+η+θ = CFC(V )−κ (7.4)

Figure 7.5: PDC Times for a Software Product

build frequency (β), and the time it takes to provide feedback (γ)(generally the build
time, δ). See equation 7.5.7.1.

The TFC is calculated using the BFC. However, before a release reaches the quality
assurance department, the product will go multiple times through the BFC (when code
is committed that does not pass the build), of which we call the average A. To calculate
the length of the TFC, the BFC is multiplied with A + 1, and the feedback time is
subtracted. The feedback time must be subtracted once, because in the final cycle
when the source code does pass the build, the feedback time is not relevant anymore.
We furthermore add the build time (δ), the test time (ε), and test feedback time (ζ).
This leads to Equation 7.5.7.1.

To calculate the CFC the TFC duration is required. Similar to the BFC, the TFC
is multiplied with the average times the release does not pass the quality assurance
team plus once, minus the test feedback duration. Furthermore the time to publish the
release in the release repository (η), the time to deliver the release to the customer (θ),
and the time to publish feedback to the software vendor (κ) are added. This leads to
Equation 7.5.7.3. Note that the Time to Market (TtM) for new features is included in
the CFC, such that TtM(V ) = CFC(V )−κ for a vendor V (Equation 7.4).

7.5.1 Joomla Case
The PDCT model is used to demonstrate that the market delivery time of Joomla can
be reduced. The model in Figure 7.6 shows both the old (top) and the new situation
(bottom) for Joomla. In the old situation major releases are published every three years,
minor releases every three months, and bug fix releases are released approximately
every 2 months. Upgrading without the DiffTools is a complex task. There are no
evolution scripts for the database, and no guarantees can be given whether the update
will damage a working website. A common way to update Joomla thus is to migrate
all the data from one release to another. This method is tedious and results into Joomla
configurations that are rarely, if ever, updated.

Due to the fact that Joomla is built using HTML and PHP code, there is no build
cycle. The old TFC consists of the development and commit time (α), the test time(β),
and the test feedback time (γ). Furthermore, the Time to Market consists of the sum
of A TFCs plus one, the release publish time (δ), the delivery time (ε), minus the test
feedback time (γ). The equations describing the old TFC time and the old TtM can be
found in Figure 7.7 (Joomla = J).
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Figure 7.6: Joomla PDCT Model

TFC(J) = α+β+ γ (7.5)
TtM(J) = (A+1) ·TFC(J)− γ+δ+ ε (7.6)

TtM′(J) = α+β
′+δ

′+ ε
′ (7.7)

Figure 7.7: PDC Times for Joomla
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In the new model tests run on the customer side to decide whether the new release
will be installed or not. Furthermore, delivery of new releases δ′ and deployment of
these releases ε′ happens much more frequently. We claim that Time to Market (and
thus the CFT time) in the new situation is shorter:

TtM(J) > TtM′(J)

A lot of quality guarantees are lost in this case because unapproved files are
downloaded from the source repository. However, by automating C-CCU, customer
feedback will be generated earlier, which increases product quality.

7.5.2 Meta-Environment Case
The Meta-Environment PDCT model exhibits some interesting properties. Since the
Meta-Environment is a composition of components that are developed simultaneously
by different developers, the BFC time has some optional components. The BFC for the
component 1 in the source repository is the development and commit time αi, the build
frequency βi, and the build feedback time θi. The BFC time becomes the longest of any
of the separate component BFC times (see Equation 7.9.7.8 (Meta-Environment = M)).
The TFC time is the BFC time multiplied by the number of times the product does not
build plus one, minus the build feedback time (of the longest BFC time). Furthermore
the time to build γ, the tester latency δ, and the longest feedback time are added.

The Meta-Environment used to be built daily. Major releases of the Meta-
Environment occur once every two years, minor upgrades every couple of months,
and bug fixes were simply added to the source repository or included in daily releases
prepared by the daily build system. For these reasons it is not uncommon for end-
users to use the daily release over the latest production release. In the new situation
the daily build system has been replaced by Sisyphus, which already reduces the BFC
greatly. BFC duration is reduced because components that are developing slowly are
not holding back those components that are developing quickly. Furthermore, end-
users are always guaranteed to have the latest version of all components that have
successfully been built together (see Section 7.2.2). Finally, due to the fact that
Sisyphus continuously builds components instead of daily, feedback time is reduced.

By implementing an automatic update function, users of the Meta-Environment
can be sure to use the latest version. Due to the fact that the Meta-Environment is
constantly updated and does not use a version older than 48 hours in our implemented
scenario, CFC times are reduced and TtM becomes smaller. By automating C-CCU
for the Meta-Environment quantifiable results are yielded, in that Time to Market is
significantly reduced. The quality assurance process of course has drastically changed.
Whereas before users would have to wait months on end for a new well tested-release,
the releases provided to customers now are only approved by Sisyphus against the
criteria that it passes the integration build. The aim of this chapter, however, is to show
that C-CCU automation can reduce Time to Market, not to compare quality assurance
processes.

TtM(M) > TtM′(M)
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Figure 7.8: Meta-Environment Product Development Cycle-Time Model (simplified to
three components)
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BFC(M) = maxi∈1..n((αi +βi +θi)) (7.8)

TFC(M) = (A+1) ·BFC(M)−maxi∈1..n(θi)+ γ+δ+
max j∈1..n(κ j) (7.9)

TtM(M) = (B+1) ·TFC(M)−maxi∈1..n(κi)+ ε+ζ (7.10)
TtM′(M) = (B′+1) ·TFC(M)−maxi∈1..n + ε

′+ζ
′ (7.11)

Figure 7.9: PDC Times for the Meta-Environment

7.6 Case Study Conclusions
The two cases put forward in this chapter demonstrate that Time to Market can be
reduced.

An interesting aspect of the PDCT model is that it enables the modelling of delivery
speed. While software vendors are trying to decrease Time to Market of new features
they are held back by technical restrictions, but also by resource restrictions. One such
example is that of a large ERP-Vendor with a customer feedback loop of three and a
half months. To decrease delivery time, their development team starts two weeks early
on developing a new release. By (re)starting the development cycle of a new release
two weeks earlier and disregarding the fact that no customer feedback has come in
yet, the development cycle is up and running during the time customers operate the
previous release. In these two weeks the developers work on new features and remove
bugs found earlier in quality assurance processes. In the following six weeks, when
customer feedback starts coming in on the latest release, developers incorporate that
feedback as well. This has shortened the release delivery time by two weeks, because
now the processes of development and customer feedback partly overlap.

Another interesting case exemplified by the Meta-Environment, is the phenomenon
of independently evolving components. As can be seen in Equation 7.8 the BFC time
depends on the weakest link, the component that takes most time to develop. Clearly,
this enables the prioritization of development activities and critical path analysis. This
holds for the Meta-Environment as much as for any developer in a software supply
network.

7.7 Conclusions and Future work
This chapter presents the concept of continuous customer configuration updating.
Secondly, a new tool that facilitates delivery of software knowledge between vendors
and customers is presented. To demonstrate the reduction in Time to Market two
case studies are presented which show that the effort invested into automating C-
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CCU is negligible compared to the reduction in Time to Market. Automating C-CCU
reduces overhead from the release, delivery, deployment, and usage processes, enabling
software developers to focus on their product instead of the supporting processes and
tools. Furthermore, automating and implementing C-CCU in a software vendor’s
organization enables it to become more responsive to change [13].

The time to automate some of the C-CCU processes (three days for Joomla
and seven days for the MetaEnvironment) is negligible compared to the time saved.
The quick automation, however, could only be done with the availability of strong
development support tools such as Sisyphus and Pheme. With the availability of such
tools, software vendors can more easily adopt automatic CCU, since it enables software
vendors to pace the heartbeat of software development and delivery [125]. Because C-
CCU encourages releasing often, the quality assurance process must be designed to
continuously test new releases. Furthermore, by delivering straight from the source
repositories the cases only provide crude examples of what can be done by automating
C-CCU. These automations would be used to provide recent releases to development,
test, and integration personnel in practice.

Automation of C-CCU in such a manner that updates are safely and securely
deployed (possibly at runtime) requires knowledge about product structure and
architecture. The two presented case studies do not make use of product architecture
information and can thus not guarantee safe and secure updates at run-time. A generic
tool could be built that automates the update process for different types of software
architectures, such as SOAs, plug-in systems, and monolithic systems. Furthermore,
part of our future work is to build the Pheme prototype into a commercial product in
cooperation with a number of industrial partners.
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C H A P T E R 8

Ten Misconceptions about
Product Software Update

Planning

The decision for a young product software vendor to release a version
of their product is dependent on different factors, such as development
decisions (it feels right), sales decisions (the market needs it), and
quality decisions (the product is stable). Customers of these products,
however, are much more cost oriented when deciding whether to update
their product or not, and will look mainly at the cost and value of an
update. Product software vendors would gain tremendously if their release
package planning method was supported by a similar Cost/Value overview.
This chapter presents Cost/Value functions for product software vendors
to support their release package planning method. These Cost/Value
functions are supported by ten misconceptions that vendors had to adjust
during their lifetime, encountered in seven case studies of product software
vendors. Finally, a number of cost saving opportunities are presented to
enable quicker adoption of a release and thus shorten release times and
customer feedback cycles.1

8.1 Introduction
Product software release planning has been characterized as a “wicked” [20] and
“complex” [6] problem for which no perfect solution exists. One part of release
planning, release package planning, is often underestimated due to its seemingly
innocent and simple nature. Product software vendors that do not have much
experience in release planning, often publish their release packages because a team
of experts within the organization deems the release good-enough, which results into

1This work was originally published in the proceedings of the 1st International Workshop on Software
Product Management, entitled “Ten Misconceptions about Product Software Update Planning explained
using Update Cost/Value Functions” in 2006 [145]. The work is co-authored with Sjaak Brinkkemper.
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some releases that are hardly adopted by customers, whereas others are much more
popular.

Simultaneously, release packages are created often during the lifecycle of a product,
which suggests that processes such as release package creation, release package
publication, informing the customer of a new release, and updating are repetitious
processes that must be automated as much as possible, to ease both customer update
effort and vendor release package creation effort. Decreasing this effort results into
customers that are more willing to update, and vendors who are more willing to
release regularly, as suggested by the agile development methods, such as extreme
programming [11]. However, from a number of case studies performed, as described
in chapter 2, it is found that product software vendors generally do not sufficiently plan
their releases.

We define Software product release management as the storage, publication,
identification, and packaging of the elements of a product. Release package planning,
which is part of the release planning process, is the process of defining what features
and bug fixes are included in a release package and the process of identifying these
packages as bug fix, minor, or major updates, taking into account releases that have
been published in the past and the possible update process required to go from one
release of the product to another release. To illustrate, figure 8.1 displays a release
snapshot from a recent case study [62], in which major, minor, feature, and bug fix
releases are shown.

An update package is a package that promotes a customers’ configuration to a
newer configuration. A bug fix update package contains only bug fixes, a feature update
package contains only new features, and minor and major update packages contain
both bug fixes and new features. The distinction between minor and major update
packages is usually that major update packages change structural parts of a product,
such as the architecture or the data model. Our view of software evolution described
here is similar to Rajlich and Bennet’s staged model [100]. This model addresses minor
and major releases. These releases are patched (with bug fix packages) until a release
is phased out and closed down.

The objective of this chapter is to create release package planning awareness
within software product management research. This is achieved by the presentation of
Cost/Value functions that support misconceptions found in seven real-life cases about
software product release management. Two complementary Cost/Value functions are
presented that enable a product software vendor to estimate whether a release package
will actually be downloaded and installed by its customers. Also, two complementary
Cost/Value functions are presented to help a software vendor decide whether the next
release package will be marked a bug fix, minor, or major release.

The presented Cost/Value functions provide an extra check before publishing a
release package for product software vendors. In that, the presented decision method
is a useful extension to product road mapping methods, such as the one presented for
small product software businesses [101], the method that supports the product software
knowledge infrastructure [120], and other methods that support release planning [92].
Section 8.2 presents and describes the Cost/Value functions. Section 8.3 describes ten
misconceptions encountered in seven case studies that support the Cost/Value functions
as a valid release package planning method. In section 8.4 methods are described to
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Release 4.31.0 Release 4.32.0 Release 5.00.0
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Major Release

Minor Release

Bug/feature Release

Figure 8.1: Typical Versioning Example

save either customer update costs or vendor side release costs. Finally, in section 8.5
we discuss the presented method and describe the conclusions.

8.2 Defining the Cost/Value functions

This section describes the Cost/Value functions for both the customer (see figure 8.2)
when updating its software and the vendor (see figure 8.3) when releasing a new
version. These functions separately describe the cost of an update for a customer,
the value of an update for a customer, the value of a new release for a vendor, and the
cost to create the release package for the vendor. The functions are based on the case
studies performed at seven organisations described in chapter 2. Also, the customer
functions are based on different research from Enterprise Resource Planning (ERP)
application updates and migrations [85], and a recent case study we performed at a
content management systems (CMS) vendor that also does updates and migrations for
customers [63]. The Cost/Value functions are similar to the profit functions developed
by the Research Triangle Institute [103]. However, these profit functions are used to
calculate the impact of software testing inadequacies to the software business and not
specifically for update release timing.
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Cval(update) = value(newFeatures)+ value(removalO fWorkarounds) (8.1)

Ccost(update) =

 cost(downtime) + cost(training) +
cost(updateE f f ort) +
cost(lostFunc.) + cost(paymentToVendor)

(8.2)

Cval(update) > Ccost(update) (8.3)

Figure 8.2: Customer Cost/Value Functions

V val(newU pdatePackage) =


newCusts ∗ priceNewRelease +
oldCusts ∗ priceO fU pdate +
costReduction(support)

(8.4)

V cost(newU pdatePackage) =



cost(development) +
cost(updateCurrentCustomers) +
cost(increasedSupport) +
cost(marketing) +
cost(deliveryToCustomers) +
cost(packageCreation)

(8.5)

V val(update) > V cost(update) (8.6)

Figure 8.3: Vendor Cost/Value Functions

8.2.1 Customer Functions

A customer will base its decision to update a software product on a number of factors.
First and foremost, the customer is interested in the value the update represents for
her. This value can be of many different forms, such as the addition of a new
level to a game providing the customer with more entertainment or a complete new
production planning module to an ERP package saving the customer many millions.
Simultaneously the customer will take the cost of updating into account. Such cost can
be the downright effort of downloading and installing the new level for the game or
downtime of the ERP system during the update costing the company many millions.

A customer’s value of an update is defined as Cval (8.1). The function defines the
value of an update to a customer as the value of new features the customer will use
plus the value of the removal of previous workarounds. The new features include those
features that have been added to the new release, but also those that simply did not
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work in the previous release and for which a workaround was not available.
Before a customer decides to update, however, the customer will calculate the cost

of an update to see if it is really worth it. The cost function Ccost (8.2) defines the cost
of an update as the cost of downtime of a product, the cost of training for the people
using the new/changed functionality, the cost of effort put into the update process, the
cost of functionality that was removed from the release or the cost of customisations
that can no longer be used after the update, and finally the cost of the payments to the
vendor for the update.

For a customer to make the update decision, Cval must exceed Ccost (8.3),
especially when taking into account that the resources that are required to perform
the update normally perform other value adding tasks. It is quite surprising to see
that many vendors do not invest structurally into reducing these costs for the customer,
especially since in most of our case studies up to 70 percent of revenue was coming
from existing service contracts and only 30 percent from new customers. Also, when
a vendor sees that Ccost exceeds Cval for a large number of customers, releasing an
update becomes essentially useless, unless the vendor hopes to attract a large number
of new customers. This seems improbable though, since if current customers are not
interested in the product, why would new ones be?

To clarify the functions we provide an example of a customer using a web based
CMS. The customer discovers a security flaw in its website and consequently in
its CMS. The customer must now decide whether or not to get an update (which
is freely available from the CMS vendor website) and apply it to the customer’s
configuration. The update contains extra functionality for which the customer has no
use. The customer regards security highly, and therefore values the update at 10,000
euro. There are currently no workarounds in place. The value thus becomes Cval =
10,000. To install the update the website needs to be down for 10 minutes (at least)
and the vendor estimates the cost of that to be 100 euro per minute. None of the
new features require training and no features were removed. The deployment of the
update needs to take place on Saturdays so that the business does not get disrupted,
costing the customer another 2,000 euro. The cost of an update now becomes Ccost
= 10 ∗ 100 + 0 + 2,000 + 0 + 0 = 3,000. Because Cval exceeds Ccost the customer
will proceed with the update.

8.2.2 Vendor Functions
For a vendor the value of an update is much harder to calculate, especially because it
involves estimating how many new customers are attracted with the new release and
how many current customers are actually prepared to update. A vendor’s value of a
new release are new customers attracted by the release that specifically targets a new
market, the reduction in support calls due to a bug fix to a commercial operating system,
or a customer that pays the vendor for an update of their ERP product.

The function for a vendor’s value Vval (8.4) describes the value of a new release as
the number of new customers times the price of a new release, the current customers
who are prepared to update against reduced cost, and finally the cost reduction in
support calls due to the fixes in the new release package. Calculating the Vval is
hardest, mostly because it involves estimating the number of new customers and
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estimating how many customers are willing to update from any previous version,
which might introduce different prices for the different updates. If the release package
contains a large number of bug fixes there might be a cost reduction in support costs.
However, if many new features have been introduced, this reduction might be cancelled
out by the cost increase in support.

The Vcost (8.5) function is defined as the cost of development of the functionality
and bug fixes for the new release package, the cost of updating the current customers,
the cost of increased support questions relating to the new release, the cost of
marketing, the cost of delivering the new release package to customers, and finally the
cost of packaging the release. The cost of updating current customers includes such
things as update tools [147], renewing their licenses, and possible support questions
that arise during the update process. The cost of marketing includes informing current
customers of the new release, the marketing campaign, creating release notes, and
maintaining the product’s website. The cost of delivering the update to customers
encompasses the creation of the delivery medium (CD, DVD, floppy, USB-stick,
website, etc.), the assembling of all artefacts, the possible translations of the products
language files, and completeness checking of the release.

The Vcost/Vval functions are used to evaluate whether it is time to create a release
package. This is generally the case when Vval exceeds Vcost (8.6), i.e., when the
potential value of releasing an update is higher than the cost that was required to
create the update. Automation of the processes that make up release package creation
and publication can potentially reduce Vcost, enabling a software vendor to release
more often. This is similar to condition (8.3), where automation of the delivery and
deployment processes can decrease Ccost, thus making it more attractive for customers
to update.

The functions shown in this section have largely different proportions when looking
at either a bug fix, a minor, or a major release package. In the case of a bug fix package
that is released on-line, contrary to a major release, no new storage media need to be
created by a vendor. The decision to release either a bug fix, minor, or major release
package can be made using these functions. If the reduction in support costs justifies
the effort put into fixing a number of bugs, a bug fix release is justified. If the reduction
in support costs does not justify the effort put into fixing a number of bugs and the
addition of functionality, you might want to earn it back by making the next release a
minor release. If the vendor feels that the next release should generate more revenue
from new customers and old customers as well, this might be a justifiable case for a
major release package. Of course this is not a hard science. Especially in the case a
bug cost a disproportionate amount of time to fix, it might not be justifiable to publish
a minor release package. In that case the vendor must ask itself the question whether it
was worth it to try and fix the bug in the first place.

To support the function description we provide an example of a CMS vendor. The
vendor establishes that there is a security hole in the CMS. Immediately they create
an update that fixes the hole and contains some extra functionalities. The vendor now
needs to decide whether the update will be released immediately or not. The CMS
vendor wishes to provide the update for free, and does not expect to gain any new
customers with it. Furthermore, the support department will save an estimated 2,000
euro, because less security problems occur. The creation of the update package costs
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the vendor 300 euro. Instructing and notifying all customers costs 500 euro. There will
be a slight increase in support of 900 euro. All other costs can be considered 0. The
value for the vendor thus becomes Vval = 0∗0+0∗0+2000 = 2000. The cost for the
vendor is Vcost = 0 + 0 + 900 + 500 + 0 + 300 = 1700. Because Vval exceeds Vcost
the vendor will choose to create and release the update.

8.3 Ten Misconceptions about Product Software
Releasing

All product software vendors undergo series of paradigm shifts during their lifetime
leading to radical changes in earlier established principles [137]. The misconceptions
are generally strategic misconceptions that beginning software vendors can have
about product software management and release management specifically. Here ten
misconceptions are presented that were encountered in seven case studies of product
software vendors. These product software vendors have been the subject of study
from 2004 until 2006, and include Dutch software organizations with between 60
and 1500 employees [62] [63]. The main focus of research was the vendors’ release,
delivery, and deployment processes. For a further description on how the case studies
were undertaken we refer to the case study reports and a chapter describing all seven
cases [143]. The Cost/Value functions presented in this chapter support the lessons
learnt.

1. Customers want to stay up-to-date - It is important to realize that a customer of
a software product uses it only to make life better. If a newer release package does not
provide the customer with new functions, why would she update? When, for instance,
was the last time you updated a computer game? Or your ftp client? To quote one of
the case study participant’s customers “Their software supports our business process
perfectly. Some of the workarounds are strange, but as long as we don’t have to invest
in the ghastly process of updating, we’re happy.” This is a clear example of where
Ccost exceeds Cval.

2. Customers must stay up-to-date - To guarantee success of a product software
vendor it is often assumed that customers must stay up to date. The misconception is
demonstrated by the example of a CMS product software vendor, where customers use
versions from years back and never updated, due to the large number of customisations
and complex update process involved. These customers, however, don’t feel limited
in their use of the product and will update when they require new functionality. Once
again Ccost exceeds Cval. The difference between the first and second misconception
is that they are discovered at different times in the product lifecycle. The first
misconception is discovered once a new version of a product is released and is not
adopted at all by customers. The second misconception is discovered once a vendor
has many different versions out in the field, without encountering life-threatening
problems.

3. Release n + 1 is better for a customer than release n - Many of the customers
of a bookkeeping software vendor were still using the MS-DOS based version of their
product until 2005, when the vendor declared it would no longer support the DOS
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version. When attempting to update all these small entrepreneurs to a GUI based
version the main complaint was that the graphic interface was less intuitive than their
previous DOS versions. The bookkeeping software vendor ended up implementing
all the same keystroke combinations that were typical of the DOS era, into their GUI
based client. Even though from the vendor’s point of view their update to the GUI
based version was necessary, customers could have worked with the DOS version for
at least the next ten years and considered Ccost to be larger than Cval.

4. Fixes can be postponed to the next major release - A typical mistake to
make is to postpone bug fixes for later releases, hoping to save the effort of having
to implement the fix into multiple releases. This works fine if customers are eager to
update, and the next major release is around the corner. However, in one of the case
studies performed in 2004 we encountered a vendor who postponed many bug fixes to
its next major release package. The major release package, planned for early 2005, still
had not been released mid 2006. Many of the bug fixes had to be back ported to keep
customers satisfied. This is a clear example where Vcost seemed to be lower than Vval,
but actually was not.

5. Workarounds must be avoided at all costs - Once again, as long as Ccost
exceeds Cval, workarounds are a nice solution to a problem that would otherwise
require a large investment from an organisation or person. An example of this is
the Internet Explorer workarounds for style sheets. Quite often style sheets will look
different on Internet Explorer 6 than other browsers, due to a bug. It is common
knowledge, however, that Internet Explorer’s interpreter can be fooled by adding
specific characters to the code of a style sheet. Microsoft has chosen not to fix this
bug until Internet Explorer 7, mainly due to the fact that everyone is aware of the
workaround and too many customers would need to be updated.

6. Customers always want new features - This common misconception is that
any release package can contain new features, since the customer should be happy with
(possibly) free new features. One example is a point of sale product software vendor,
whose users typed more or less blindly into the system and checked only every ten
seconds to see if the screen was showing the desired result. The simple displacing of a
button in the user interface raised so many complaints (Ccost exceeds Cval) that they
decided to freeze the user interface to their application in between minor releases as
much as possible.

7. Releasing too often is bad - The aforementioned bookkeeping product software
vendor started releasing on a weekly basis at some point, to shorten the feedback
cycle to developers. The vendor did receive more bug reports, but product experience
in general, declined. The vendor decided that this was not caused by the fact that
they released too often, but that they released to their final customers too often. The
frequent releases were maintained, but only for internal use, quality assurance, and
pilot customers. Also, customers are required to stay up to date to reduce the number
of support calls.

8. A quiet customer is a happy customer - An informal survey amongst a number
of customers of a plug-in software vendor showed that customers who contacted the
helpdesk in the early phases of its use were much more content with the product than
those customers who had not called the helpdesk in the early adoption phases. Another
example is a software vendor who called up a customer for a yearly check-up, and heard
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that they had recently decided to buy a competitor’s product, even while the customer
still had a contract with the current vendor. This demonstrates the importance of regular
customer contact. The customer would still have been a customer if the vendor had
made the customer aware of the fact that Ccost is smaller than Cval.

9. Customers read release notes - Especially system managers of large software
products are well accustomed to browsing through release notes, trying to find that one
fix to a bug or that one new feature that justifies a customer’s investment into updating
the product. Clearly, this is a pro-active customer that is looking to optimize the value
of the software product’s latest release package. These system managers, however,
would be much more interested in information about new releases that specifically
targets them. One software vendor [152] is currently experimenting with a system that
filters release notes for specific customers, such that they do not receive information
that is irrelevant to them. An example of this is a bug fix to a component a customer
has not purchased.

10. Having many different releases out in the field is bad - The earlier example
of the CMSs product software vendor shows us that having many different releases
out in the field is not necessarily a bad thing, as long as it is part of the business
model. This vendor, for instance, charges its customer for all services in the form of a
service contract, especially to those customers with very old versions. To the software
vendor these customers present more of a knowledge management problem, since
many of the solutions built in the past have to be reused for customers experiencing
similar problems now. The vendor does agree that this is only possible due to its
small “manageable” number of customers. The difference between the second and
this misconception is that the second misconception addresses the “happy” customer,
whereas this misconception concerns the successful product software vendor.

Some other misconceptions encountered were “our next release must contain
less bugs than our previous release to satisfy customers” and “we shouldn’t build
an automatic updater because the customer will feel they’re not in control”. These
misconceptions are proven wrong by our Cost/Value functions as well, but we simply
encountered them less often than the ten mentioned here. It is our firm belief that
taking the profitability approach regarding release package planning in a commercial
environment is the way to go. An interesting question of validity is whether this type
of anecdotal evidence is enough to prove that our Cost/Value functions are correct.
It will be part of our future work to further evaluate the validity of the Cost/Value
functions based on historical (cash flow) results from both software implementations
at customers and software release history.

8.4 Reducing Costs of Release Management
Besides using the Cost/Value functions for daily decisions, they allow us some thought
experiments. Product software vendors generally adhere to bug fix/minor/major release
scoping. When looking solely at version numbers, an open source project such as
Mambo/Joomla, has had three major releases since 2001, approximately 10 minor
releases, and approximately 120 bug fix releases. These numbers show that bug fix
updates are released much more often than major updates. Also, when looking at
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customer behaviour, they are more inclined to regularly update to a new bug fix release
package than they will perform a costly major update.

When looking at bug fix updates and the functions presented earlier, the Cost/Value
calculation impact factors change compared to major updates. In the case of a major
update, the cost of development will largely exceed all other costs, making those
less important from a financial point of view. For a major release, for instance, the
completeness checking of artefacts will be a relatively small step in the release package
creation project. When looking at a bug fix project, however, the development might
have taken only a couple of days developing effort, whereas the creation of the release
package might take an equal amount of time and effort. If we then take into account
that these bug fix releases generally do not generate profit and only improve product
quality and reduce the number of support calls, other costs are suddenly much more
drastic.

Besides the scope of a release, the number of customers who update to a new release
determines how much effort must be put into reducing the cost of release management.
For instance for Exact Software and for its 160,000 customers (described in chapter 3),
the reduction in cost by introducing a combined software configuration management
system and customer relationship system was huge. By combining these two systems
Exact Software enables customers to automatically download and deploy bug fix and
minor updates. However, if a vendor only serves twenty customers and is not planning
to extend their customer base beyond one hundred customers, it must consider whether
it is worth investing a lot into automatically releasing, delivering, and updating releases
at its customers.

A product software vendor can reduce its costs in a number of areas. This cost
reduction in turn enables a vendor to release more often. Releasing more often
generates feedback about new releases quicker, which enables a vendor to improve its
product and make better informed decisions on development and fixing plans. Cleary,
this theory supports the agile camp, in its “Release early and often” viewpoint [11].

8.4.1 Vendor Side Cost Reduction

To begin with a vendor must strive to release often, if not continuously [124]. The
more a product under development is in the shape it will be in when finally released, the
less chance there is for errors to be introduced during release package creation. After
all, any party within the vendor organization, be it pilot customers, other developers, or
the quality assurance department, will use this latest release for internal evaluation. The
parties responsible for the final release will also have less work in the final stages of
release package creation. This process is hampered by a product that supports different
languages, since quite often these language files are translated shortly before the final
release date.

The process of release package creation must be automated as much as possible
to eliminate simple (error sensitive) manual tasks. If a release package is checked for
completeness automatically each time a release package is created, it does not need
to be checked extensively by quality assurance, eliminating a large part of the manual
checks required before releasing.
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The cost of software delivery is greatly minimized if all delivery is done through
a network instead of expensive media, such as CDs or DVDs. The releases stored on
these media are never as up-to-date as the ones stored in the vendor’s release package
repository, which could be accessible through a network or secure Internet connection.

When a software vendor reviews its software releasing and updating, a number
of things become clear, depending on the update method of choice. There are three
different updating methods; destructive, migrating, and incremental. Destructive
updates are generally changes that change the data model and files of an application in
such a way that rollbacks are impossible. Migrations migrate data from one deployed
release of the application to another release. Migrations are often time consuming
and expensive, but guarantee low switching cost and downtime. Incremental updates
are updates that simply increase functionality by stacking new features on top of old
ones. This is commonly seen when software vendors have their own development
platforms [152]. An interesting type of migrations is found in plug-in architectures,
where a plug-in can be replaced in a short time frame. Furthermore, these three
methods can be applied individually for the three types of updates described in this
chapter: bug/feature updates, minor updates, and major updates. The decision to use
one of these update methods, though often constrained by requirements such as uptime,
should be business driven. Most software vendor make the decision early in their
development process and do not show much willingness to change at a later stage,
unless there are large amounts of customer problems and there is an opportunity for the
business. This is striking, especially since a change in deployment strategy (e.g., from
migration to incremental updates) can create new business opportunities. In table 8.1
different update methods are shown, together with their risk, investment, and volume
of deployments the methods can handle.

XXXXXXXXXXMethod
Costs

Risks Investment Volume

Migrate low high low
Destructive high low high
Incremental low high high

Table 8.1: Update methods and costs

In figure 8.1 three different customer scenarios are displayed. The first one is a
possible bug/feature update for the customer, labelled A. The second one is a possible
minor update labelled B. The third one is a possible major update, labelled C. The
update method for each of these updates determines both the risk and route that must
be taken to update a certain customer. In the example of a vendor using incremental
updates, example A is fairly basic, since these updates are incremental and can be
applied freely on the configuration of the customer. When looking at scenario B,
however, a choice needs to be made. If there are incremental updates available from
release 4.31.1 to 4.32.1 there is no problem. It is possible, however, that a different
approach needs to be taken because the incremental update has not been created yet.
A vendor can then choose to build incremental updates only from any 4.31.X release
to 4.32.0, and then apply the basic incremental updates created in the 4.32 branch.
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The C scenario is not much different from scenario B in this case. Determining the
update method and routes through the release branches are all part of release package
planning.

Exact Software solved its updating quite elegantly. Their stable products, allowing
downtime, can be updated with (destructive) file overwrites and data model alteration
scripts. The data model alteration scripts are incremental, whereas for the files only
the most recent version is published to customer. Whenever a customer connects to
their service website for an update, the customer’s files are compared against those
of the vendor, and the new files and data model alteration scripts are downloaded.
Once the download is finished, the data model of the customer is altered using the
downloaded scripts. Immediately after this process the downloaded files are copied
over the old deployed release. These destructive updates are possible due to the fact that
this vendor simplified its release model, has produced a software product that can be
down for a couple of minutes, and because it provided its customers with interfaces for
customization in such manner that overwriting files does not cause the customizations
to be overwritten.

Independent of the method of updating, vendors can save costs by scoping the
update range. This scoping forces customers to stay up to date by increasing the costs
of an update as a customer is further behind. Not only does this encourage customers
to stay up to date but it also makes them more aware of the downsides of not updating
frequently. Once a customer runs outside of the scope and wants to update, both the
vendor and customer must realize that it might be cheaper for both parties to initiate a
migration, instead of an update track.

8.4.2 Customer Side Cost Reduction
Whereas the vendor might be reducing costs internally, it must invest in making the
deal to update to a new version as attractive as possible. Though this seems like a large
investment at first, the payoff comes quickly when customers become more eager and
better informed regarding to releases a vendor offers.

Software deployment costs can be reduced for the customer by automating the
update process. This requires the software vendor to seriously invest into an update
tool and to develop its architecture in such a way that customisations remain functional
after an update. Even though this seems like a large investment up front, it makes the
decision for a customer to update easier, and as such makes them more eager to update
often. The same holds for the reduction of downtime, since customers will be much
more eager to update if downtime is reduced to a minimum.

Before customers can update to a new release, however, they need to be informed
about the new release package. Currently, most product software vendors inform their
customers through information newsletters, customer days, e-mails, and many other
ways. A higher rate of release penetration can be reached, however, if the vendor uses
the software itself to inform the customer. This can range from a small pop-up when
the application starts up, to an automatic pull of an update, such as Mozilla’s Firefox
currently does.

Regarding informing customers, release notes are an essential part of release
management. When customers are looking for a bug fix, for instance, they will browse

166



SECTION 8.5 Discussion and Conclusions

through the release notes looking for that specific piece of information. Clearly these
release notes need to be indexable, such that customers who previously requested
information concerning a problem are informed as soon as a fix for that problem has
become available.

8.5 Discussion and Conclusions
This chapter presents cost and value functions that product software vendors can use to
evaluate whether it is profitable to release a version of their software. Simultaneously,
functions are provided that assist a customer in making the decision to update a
vendor’s software product. These functions support ten changed viewpoints that were
encountered in seven case studies. Finally, these functions show that costs can be saved
for both product software vendors and customers on commonly occurring patch and
minor updates, which can shorten feedback cycles from end-user to product software
developer.

The process of release package planning is greatly simplified with the use of the
provided Cost/Value functions. These functions also defend that product software
vendors invest into automating processes such as release package creation, release
package publication, informing the customer of a new release, and updating. The fact
that this does not happen in practice raises a number of questions, such as why the
vendors do not invest more into these processes. An answer often given by product
software vendors was that they are using all their resources developing their specific
software solution, but that they would be happy to buy a tool that helps automating
these tasks.

A weakness of the Cost/Value functions is that being obsessed with short-term
profits will lead any product software vendor without a long-term vision to the abyss.
Vendors must take into account customers will always be prepared to offer large
amounts of money to small vendors if they just build one little feature that is extremely
valuable to them. The vendor must always keep in mind that it is creating software for
a market and not one particular customer. The functions must only be used once the
prioritization of requirements for the next couple of releases has been finalized.

These calculations provide a decision method for updating and releasing, but only
in case all costs and prognoses are exact. Knowing that this is impossible, we leave
it to the practitioner to perform data gathering [40] and implement a risk factor for
unforeseen costs (and unforeseen value). Currently the Cost/Value functions are still
in an experimental state even though we feel they are of great value to the field of
release package planning. Part of our future work is to evaluate the functions in real
world scenarios with historical release and cash flow data. We do recommend using a
currency as the unit of measurement, since both sales and full time employment units
can be expressed in money.

Part of the work will be to find methods and tools that assist product software
vendors in automating the tasks of release creation, release publication, informing the
customer of a new release, and updating a customer’s configuration. In chapter 5 the
lack of tools for software deployment is identified and possible solutions are presented.
With respect to continuous software releasing the tool Sisyphus was built to support
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product software vendors to automatically create software releases [124]. Work has
recently started on the Pheme prototype, a communication infrastructure that assists
product software vendors in sharing software, data, feedback, licenses, and commercial
information with its customers.
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C H A P T E R 9

A Modelling Technique for
Software Supply Networks

One of the most significant paradigm shifts of software business is that
individual organizations no longer compete as single entities but as
complex dynamic supply networks of interrelated participants that provide
blends of software design, development, implementation, publication and
services. Understanding these intricate software supply networks is a
difficult task for decision makers. This chapter outlines a modelling
technique for representing and reasoning about software supply networks.
We show, by way of worked case studies, how modelling software supply
networks might allow managers to identify new business opportunities,
visualize liability and responsibilities in a supply network, and how it can
be used as a planning tool for product software distribution. 1

9.1 Software Businesses are Blends
Individual businesses no longer compete as single entities but as supply chains [72].
This holds for the software industry as well, where software products and services are
no longer monolithical systems developed in-house, but consist of complex hardware
and software system federations [48] produced and sold by different organizations.
This development has led organizations to combine their business and components
into complex Software Supply Network (SSN), from which they supply end-users
with integrated products. As these SSNs grow more complex, it becomes harder
for the participants of SSNs to make informed decisions on development strategy,
responsibility, liability, and market placement [24, 49]. It also becomes harder to
manage the risk associated with these decisions [152].

A SSN is a series of linked software, hardware, and service organizations
cooperating to satisfy market demands. SSN management is different from physical

1This work was originally published in the proceedings of the 8th IFIP Working Conference on Virtual
Enterprises, entitled “Providing Transparency in the Business of Software: A Modelling Technique for
Software Supply Networks” in 2007 [151]. The work is co-authored with Anthony Finkelstein and Sjaak
Brinkkemper.
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goods supply chain management in two ways. First, software is malleable after release
and delivery, giving rise to the need for extensive maintenance. Secondly, products
with much lower quality levels are tolerated in SSNs compared to other types of
products [8].

There is a clear difference between physical products and software products in that
software products can be reproduced at relatively low cost. A result of the difference
between conventional supply networks and SSNs is that literature on collaboration in
supply networks [97] does not discuss maintenance and how it requires information
about the supply chain. The same holds for other work on supply chain management,
such as [74], which groups horizontal ties between firms (such as manufacturers
and suppliers), but fails to recognize the importance of leveraging feedback in such
networks, or Lambert and Cooper [72], who provide a conceptual framework for supply
chain management without maintenance.

This chapter explores the new field of SSN research by presenting a method for
modelling the complex relationships between participants in the supply networks of
composite products and services. By conducting a case study of an organization that
leverages the SSN we demonstrate that SSN models enable participants in SSNs to
reason about business identification, product architecture design, risk identification,
product placement planning, and business process redesign. Furthermore we
demonstrate that modelling relations in SSNs is the first step in explicitly managing
relationships with other participants in the SSN.

Value chains differ from SSNs in that value chains describe one product only,
whereas SSNs specifically address networks of software systems that interact to
provide software services. Attempts have already been made to model value chains
surrounding large ERP configurations, by Messerschmitt and Szyperski [79]. Their
model cannot represent relationships between, for instance, a Components off the
Shelf (COTS) vendor and the application developer, making their models insufficient
to describe a complete SSN.

In the following section SSN models and their accompanying software product
context model are provided, by presenting the participants, the meta-model, a creation
method, and a large example. In section 9.3 the case study Tribeka is presented. In
sections 9.4 applications of SSN models are presented and discussed. In section 9.5 a
description is provided on how organizations best ready themselves to participate in a
SSN.

9.2 Software Supply Network Models
Models for SSNs consists of two parts, a software product context model and a supply
network model. A software product context model describes the context in which a
software service operates, and the software products, hardware products, and software
services that are required to provide the software service. A SSN model displays
all participants in a SSN, the connections between these participants, and the flows
describing the type of product that flows down these connections. SSN Participants
are any party that provides or requires flows from another participant in the network.
The two models are related in that the product context model shows all products that
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Figure 9.1: Software supply network model legend

are traded in their different forms in the SSN model.

9.2.1 Product Context Model

A software service is the provision of one or more functions by a system of interest
to an end-user or to another software service. A software system is a combination
of independent but interrelated software services, software components, and hardware
components that provides one or more services. There are three types of entities in the
software product context model, being (1) white-box services and their systems, (2)
black box services, and (3) software and hardware components making up systems.

The main concept for product context diagrams is that of a software system, that
consists of hardware and software components. When combined and activated these
components provide a service. A software system requires at least one hardware
component, at least one software component, and any number of services. A hardware
component can support any amount of services and software components.

When a software component requires other software components (such as libraries
and COTS) these are drawn under the software component. When a software
component requires software services (such as databases and webservers), these are
drawn under the software component as a service. The hardware on which the software
components are running are drawn on the left left of systems. It is assumed that
hardware components are complete, and thus do not have dependencies. Systems
that provide services are drawn as containers containing the software components and
services on which they depend. Please see the product context model in figure 9.3 for
an example.

9.2.2 Supply Network Model

The supply network model connects participants in the SSN. Furthermore, these
connections are annotated with flows, such as product requirements, product
designs, software components, component assemblies, assembled products, assembled
deployed systems (hardware and software), and services (provided by these systems).
These artifacts all come from decoupling points for software products (see figure 9.2),
which is the point at which demand and supply meet in SSNs.

When looking at the product software production pipeline seven decoupling points
can be identified. First, a development organization can outsource the requirements
engineering process and/or design process (a,b). Also, the developer can choose to
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Figure 9.2: Software production decoupling points

release their source code, binaries, or assemblies of components (c,d,e) to another
developing organization who uses these artifacts as a component to their product, or
to a publisher who releases the product (common for games, where the vendor is rarely
the developer). A software vendor can also choose to release the product itself, either
as a package, or as a deployed system (f ). Finally, a vendor can decide to offer their
product to its customer in an application service provider model, where the vendor sells
usage of its product instead of the product itself (g).

Flows are modelled as labels on the arcs between the participants and are
distinguished by different colors and codings. The color indicates whether the
artifacts are source artifact collections, compiled binary artifact collections, or
complete systems and services. The codings are (in order of creation to usage) Req
(requirements), Des (design), Comp (software component), As (software component
assembly), P (software product), Sys (system, including hardware), HW (hardware),
and finally Ser (services). It is not uncommon for software products going through
iterations of the decoupling points before the product is delivered to a customer. It
can be well imagined that a system designer creates a design, sells the design, and the
software developer starts at the requirements phase again to see what can be added to
the design. To indicate this, numbers are used in the codings after the abbreviation,
such as Des2.1, which means that this is the second design for product 1. In the supply
networks we only make this distinction when two generations of artifacts are produced
by different participants.

9.2.3 SSN Model Creation Method

To help define the scope of a SSN model, the software product context model is
created. The software product context model, which describes the systems that supply
software services, must display all products and services that are specifically required
for the service(s) of interest. Secondly, the participants must be determined. These
participants are all parties that are involved with the products in the product context.
The products in the product context will be presented as flows later. Finally, all
relationships must be established between the participants. Whenever a product or
service flows from one participant to another, they must be connected by an arc. Once
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Figure 9.3: WebERP example models

the arc is drawn, it can be annotated with the type of commercial products and services
that flow down this arc.

9.2.4 An Example: WebERP

In figure 9.3 the example models are presented for a customer requiring a Web
Enterprise Resource Planning (ERP) service. To supply this service internally, the
customer has decided to go with its personal service organization who implements a
product WebERP on a newly purchased local database server and a local web server.
The software product context model displays that to supply Ser.6, P.6 is required. To
run P.6 a server is required that supplies WebERP through a web server application, in
this case Microsoft IIS. A database server (Sys.5) is required as well that manages all
the data for WebERP. Both servers, supplied by Dell, run a different operating system.
Furthermore, to provide the WebERP service, a currency conversion web service is
required. As products transition from source code to product to system, they generally
retain the same number, such as for WebERP; Des.6, As.6, P.6, and Sys.6 are all
instances of the same (software) artifacts sold at their different decoupling points.

With all services and products laid out, the SSN model is created. The customer
shall be supplying the service itself, so it only requires Sys.6 from the implementer. The
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implementer purchases two servers from Dell, one with RedHat installed, the Oracle
database management system, WebERP, and Microsoft Windows and IIS for the web
server. The implementer combines all components into a new system Sys.6 that is
delivered to the customer.

WebERP, the application, is designed by an external ERP product designer. Their
design is the blueprint for WebERP, which is developed by WebERP developer and
sent as open source to the WebERP publisher. The WebERP publisher compiles the
components and turns the WebERP components into products, explaining the color
change of the flows and the transition from component assembly to product. Finally, the
service provider provides Ser.7, which is black box because the system that provides
this system is (currently) not relevant.

9.3 A Case Study: Tribeka
We use a case study to demonstrate the SSN modelling technique. The company
under study is Tribeka, an organization that attempts to break through the traditional
product software retail supply chain, by delivering assemblies of components to retail
outlets that can be burnt, packaged and turned into a finalized product on-site. Tribeka,
founded in 1996, currently employs twenty-five people and has deployed its systems
at large retail chains in the United Kingdom, such as WH Smith and HMV. Recently
Tribeka has opened four high street outlets where it solely sells software created with
Tribeka’s SoftWide system.

The Tribeka SoftWide system consists of a server with a large storage memory,
an internet connection, a number of CD and DVD burners, and a high quality cover
printing facility for boxes, CDs, and DVDs. It is capable of creating between 50 and
100 different shrink-wrapped products per hour. The SoftWide system is not solely
a hardware solution, since it is able to deliver the most up-to-date software onto the
High Street. On a daily basis, software updates are sent to the SoftWide systems
deployed in retail stores, including price information. The SoftWide system also stores
the component assemblies in a coded manner, such that products are only produced
when requested and authorized, using a proprietary auditable licensing system.

9.3.1 Tribeka Models
Two SSN models are presented in figure 9.4. At the top level of the figure the
software product context model displays two systems, that provide the “computer
use” and “entertainment” services. The entertainment system requires the software
service “computer use” and the game product P.3. The system Sys.2 requires a laptop
and Microsoft Windows, before it can actually provide the “entertainment” software
service.

Traditional software supply is depicted in the “before Tribeka” section of the figure.
Here Microsoft is modelled as a software developer, who delivers its product to Dell.
Dell, the hardware manufacturer, deploys the product P.1 onto the laptop system and
delivers Sys.2 to its retailer, PC Store. PC Store sells the system to the customer,
who also purchases a game P.3 with it. P.3 is designed by Game Designer and the
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Figure 9.4: The Tribeka “before and after” supply network model
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design is sold to the Game Developer, who actually implements the game. Once game
development is finished a collection of source components (As1.3) is sent to the game
publisher. These source components are then compiled, causing the As2.3 to be shaded,
and sent off to a printing facility. Finally, the game publisher sells the finished products
P.3 to a reseller. The reseller then sells the game to PC Store.

Tribeka takes over from the Game Publisher, the Reseller, and the printing facility,
by directly publishing any product from a software developer to the High Street stores.
The Game Developer now passes a compiled set of components directly to Tribeka.
Tribeka sends the component assembly to PC Store directly, instead of to a printing
facility and then reseller. The component assembly is then assembled into a product
at the retail store, enabling the latest possible binding for physically sold software
products.

9.3.2 Tribeka Relationships
The SSN model in figure 9.4 shows that Tribeka maintains intensive relationships with
the game developer and with retailers. The presented Tribeka SSN model is slightly
simplified because in many cases there will be a publisher in between the developer
and Tribeka. As such, Tribeka has three types of participants in the SSN it deals with:
retailers, game developers, and game publishers. Tribeka uses its SoftWide system to
maintain relationships and transport data between these participants. Publishers and
developers send their component assemblies to Tribeka, which are then uploaded into
the SoftWide system, including price information, license codes, software artifacts,
digital manuals, and images for box covers. These publishers are now able to see the
status of their products, such as how many sales have been made and what types of
licenses have been distributed. On the other side the retailers access the SoftWide
system through their points of sale, which are used to sell and create software products
from the component assemblies supplied by Tribeka. From Tribeka two lessons can be
learnt about SSNs. To be successful in a SSN an organization must explicitly manage
relations with the other participants. The second lesson is that an organization must
observe opportunities to take part in different parts of the supply network, such as
Tribeka’s opening of retail stores that only use the SoftWide system.

9.4 SSN Model Applications and Usage
SSN models have five applications being business identification, product architecture
design, risk identification, product placement planning, and business process redesign.
The aim of SSN models is to clarify the blend that is software business. SSN models
are thus used by policy makers, software architects, and entrepreneurs. Depending on
the application, they must make the SSN model on a regular basis and observe changes,
risks, and opportunities.

Business Identification - SSN models show the flows for each participant in the
network. These flows can be used to determine the business type for that participant.
When, for instance, a participant receives hardware and software components and has
one system as output this is an integrator (Implementer in the WebERP example).
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A participant that receives component assemblies and then publishes products is a
publisher (WebERP publisher in the WebERP example). Another common example
is a supplier that has no input but produces a software product (software product
developer, RedHat in the example). We see that Tribeka (figure 9.4) functions as a
packager and interestingly enough turns the PC Store into a software product publisher.
A participant that has the same input as output is a reseller. Finally, according to these
definitions and due to the absence of a hardware component input Dell is a hardware
producing integrator.

Product architecture design - In deciding the type of software architecture
a software developer must use, the SSN plays an important part. The software
architecture decides how a product will depend on other products and services, and
this will have far stretching consequences on the future of a software product. SSN
models can thus assist in making architectural design decisions.

Risk identification - The SSN model uncovers, for instance, that a product cannot
be used without the availability of some component or service. These dependencies
on other organizations, though logical, can be disastrous for participants lower down
the SSN. Such a dependency influences the total cost of ownership of the product,
the possibility to internationalize, and even the future when such a dependency can
no longer be fulfilled. This calls for diversification and architecting for product
dependency variability [66]. The SSN model helps uncover such relations and
dependencies. SSN models can be used by customer organizations to uncover whether
they are in possession of certain products that are unsupported, or whether they are
making use of a service that could easily be terminated. A common vulnerability, for
instance, is a custom link between two products, built by a software implementation
service provider, which stops working after an update for one of the products has been
deployed. The SSN models can assist in finding and eliminating such weaknesses for
all participants in the SSN.

Product placement planning - A vendor can use the SSN model to determine
how to market its product, how to inform customers of product news and releases,
and how customers will contact the vendor. The latter is especially important when
looking at pay-per-usage feedback and error feedback as is shown in chapter 2. For
example, when a bug report is sent from a customer to a participant in the SSN
the participant must decide whether to solve this issue or to forward it to another
party in the SSN. Software vendors can choose to sell their products as add-ons
to other products, in combination with hardware (i.e., navigation systems), and as a
service (on-line bookkeeping). Furthermore, software vendors can decide to sell the
product through channels they own (their own site), through resellers, through service
providers, etc.

Business Process Redesign - Participants of the supply chain must identify their
business partners and establish different types of relations. SSN models can thus be
used to design business information systems that take into account the participants of
the SSN with which the business will have regular and even ad-hoc relations. Tribeka
for example, manages explicitly its relationships with software developers, publishers,
and retail outlets and has created different information systems and portals for them.

The SSN model reveals business opportunities and risks by making two types of
changes. The first change is to alter the binding times and decoupling points for
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products and services. Tribeka is a clear example of this, where it takes the role
of the traditional reseller, but simply assembles the product at a later stage. This
optimization allows resellers to replenish their stock dynamically, saving cost in the
area of stock management, delivery, and deployment. The second type of change is
seen when a change is made to the participants in the SSN, in the form of mergers, split-
ups, developers buying new COTS, or customer organizations that become vendors of
products or services themselves. An example of this is when Tribeka opened their own
SoftWide stores.

9.4.1 Tribeka SSN Insights

When looking at risk determination the SSN model clarifies risk for the customer,
Tribeka, and the PC Store. The customer provides for the deployment and integration
of the hardware and software components itself, thus introducing a risk that deployment
and service provision go awry. For Tribeka there is a risk that software stores start
publishing and selling through on-line retail channels, which is why Tribeka has started
their own on-line software store [116]. The SSN models the PC Store as the first contact
point for customers, which implies that it must reduce risk by reselling products of a
high quality. After all, the quality of the PC Store’s product portfolio determines the
amount of overhead from customer problems.

The game publisher uses the SSN for product placement planning. Tribeka
provides another channel to reach customers at lower risk than conventional channels.
After all, no mass distributing of products is required and the only cost that is necessary
is the cost of packaging a product in the Tribeka format. The game developer, on the
other hand, reduces its risk by placing its liability with its publisher.

Regarding business process redesign the SSN model shows that customers will
want to buy the game with the laptop, indicating that it might be an idea to sell the
complete system (Sys.1), instead of the laptop and game separately. In the model a
similar situation can be found when Dell installs Microsoft’s Windows onto the laptop
and sells the complete system to the PC Store.

9.5 Ad-Hoc Software Supply Networks

The tendency to integrate components from different developers and manufacturers
into new products and components by both customers and integrators has led to a
phenomenon of quickly forming and dissolving of ad-hoc SSNs. Many organizations,
however, are not specifically adjusted to manage relations within such ad-hoc networks.
Simultaneously, software vendors and manufacturers are constantly approached by
(new) business partners, such as manufacturers, resellers, and service providers, with
bugs, feedback, requests for changes, and other communication about their software
products.

An interesting phenomenon is encountered in open source software where endusers
often solve problems themselves, by changing a product’s source code or developing
a workaround, before approaching the software vendors. This results in different
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branches and fixes floating around not only in the original repository, but also on the
web in several development forums and user groups.

A coalition between participants in a SSN is where participants rely on each
other, yet do not have any of the skills required for collaborative unity [134],
such as organizational measures, structured communication, and planned durability.
Software organizations can profit from the many opportunities in these ad-hoc SSNs
when properly prepared to engage (in order of intensity) in conversations, relations,
partnerships, and even alliances with other participants. After all, these other vendors
are willing to create a user and developer community around a (configuration of)
software product(s), which will encourage use of the products and create new solutions
and opportunities surrounding the product. The SSN modelling technique presented
in this chapter assists a participant in understanding how these coalitions are formed.
Secondly, a participant must build a community surrounding its product that unifies
external and internal users, developers, implementers, and integrators of the product.
Such a community can be built using ontologies, portals, customer meetings, and
partner meetings. Especially portals, which can be used for the distribution and sharing
of knowledge, development and bug finding tools, are an important factor to create a
close network of participants willing to add value to the community, and thus increase
the value of the SSN.

To transform a coalition to collaboration relations must be formalized by the
facilitating organization. A clear distinction needs to be made between intensively and
loosely coupled alliance partners. By classifying partners in such a way, participants
can create different circles of trust with partners and users, which will clarify the
different relationships within a SSN considerably for all participants in a network. A
participant in the SSN must at all times be aware of opportunities to form coalitions,
since each customer question could set in motion the cooperation between multiple
participants. The ability to form strategic coalitions and collaborations within a
SSN is further strengthened by Duyster et al. [39] who claim that to craft successful
strategic technology partnerships, steps need to be undertaken to strategically position
participants, to prepare alliance skills, to build a business community, and to do smart
partner selection.

9.6 Conclusions and Future Work
SSN models provide a novel manner to perform strategic and risk evaluation in
the business of software. The insights provided in section 9.4.1 have all been
obtained using the SSN models for Tribeka. These insights can be realized through
experience, but the ability to assess risks avant la lettre is a valuable contribution. This
chapter presents a modelling method for SSNs to provide insight into SSNs, enabling
participants to do risk assessment, strategic decision making, product placement
planning, and liability determination. The method of a case study is used for this
chapter because it is a proven method to introduce a novel research area, such as SSNs
and product contexts.

The decoupling points are a concept taken from conventional product development
and marketing planning. The combination of SSNs with these decoupling points
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creates a powerful modelling tool that is generalizable to non-software products as
well. To be able to do so one must define the decoupling points, the possible range of
product decompositions, before creating the supply networks.

SSNs do seem to provide an environment for multiparty contracts [131], to
simplify liability and problem resolution challenges. These multiparty contracts can
assist customer organizations in protecting their service levels and also groups the
participants in the SSN, stimulating collective problem resolution.

Currently we possess a collection of 30+ SSN models from start-ups and medium
to large software enterprises. With these models we are hoping to further classify
different business models for product software. Furthermore we are experimenting
with different flows, such as content, money, and licenses.
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Conclusion

10.1 Conclusion
This research has led to two main conclusions. The first conclusion from this
research is that there are now process descriptions for the Customer Configuration
Updating (CCU) processes, whereas before these were lacking. The second conclusion
is that explicit product software knowledge management improves product software
development. The main contributions of this work are the CCU model and two CCU
support tools. The CCU model enables evaluation of CCU processes and support tools.
The two CCU support tools enable product software vendors to reduce time to market
and increase the number of different configurations a product software vendor can
provide to customers without a large increase in overhead.

10.2 Research Questions

RQ1: What are the concepts and is the state of affairs of customer
configuration updating for product software?

The answer to this question is the CCU model that describes all four CCU processes
in detail. Furthermore, capabilities have been attached to each process, to enable more
detailed evaluations of product software update tools, product software vendors, and
CCU support tools. The model is based on models from literature and nine case
studies of product software vendors. The model has been used to create a survey for the
product software industry, an evaluation method for product software vendors, and an
evaluation method for product update and CCU support tools. The model can be used
by practitioners to evaluate a product software vendor’s processes, tools, and practices.

SQ1.1: What is the state-of-the-art of customer configuration updating and who
are the stakeholders? This thesis provides evaluations of state-of-the-art techniques
for CCU management and improvement. Furthermore, it notes and criticizes the lack
of such techniques and process descriptions in (academic) literature. CCU definitions,
if any, are immature and unclear. There are a number of reasons for this. A software
vendor is always trying to add value to its product. CCU processes are often seen as
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non-value add processes. Furthermore software engineering literature focuses more on
the building of software than on the correct release, delivery, deployment, and usage
and activation of a software product. To answer this question the boundaries of CCU
research, the types of knowledge that can potentially be shared between a vendor
and a customer, and the stakeholders of these processes needed to be established.
Extensive literature study led to the creation of new product update process models,
which evolved into the CCU model (see chapter 2). The CCU model and product
updater evaluation model were used to establish weaknesses of CCU processes and
support tools. This question was answered by conducting tool evaluations and by
evolving process models from literature into the CCU model. The CCU model
has been fundamental to this research, because it is used to evaluate both tools and
practices and processes of product software vendors in case studies. The answer to this
research question amplifies the need for more and better CCU process descriptions.
Furthermore, practitioners can use this thesis to establish what the state-of-the-art of
CCU currently is.

SQ1.2: What is the state-of-the-practice of customer configuration updating for
product software vendors? CCU is an underdeveloped process that deserves more
attention from product software vendors. The fact that CCU is underdeveloped is
surprising considering the high rate of failures of deployments, the large amount of
effort put into CCU, and the potential gains for product quality. When looking closer,
the causes of this underdevelopment are clear. First and foremost, product software
vendors do not have the process descriptions available to evaluate their CCU processes.
Furthermore, there are no tools that support these processes in full. This has led to a
diverse range of different tools being built by product software vendors, with varying
success. The underdevelopment of CCU processes of product software vendors has
many effects: vendors cannot serve the amount of customers they want, lose large
amounts of effort towards migration and update projects, and cannot provide their
products in wide ranges of configurations. The scientific answer has been, until now,
unsatisfactory.

The answer to this question is provided in the form of case study and statistical
survey evidence about the state-of-the-practice of product software companies. Nine
product software vendors have been evaluated using the CCU model in extensive case
studies. Furthermore, a survey has been conducted amongst Dutch product software
vendors into their CCU processes. The answer to this question contributes to the
research described in this thesis because it shows that many product software vendors
lack sufficient process descriptions and tool support to optimize their CCU processes.
Furthermore, the research to answer this question resulted in best practices which
could later be reused for the CCU evaluation model.

SQ1.3: What parts of the CCU processes are currently supported by product
update tools? Currently, there are different CCU support tools available, with varying
degrees of support for the CCU processes (for a full description we direct the reader
to chapters 5 and 7). One conclusion is that no one tool supports all parts of the CCU
processes. The answer to this question is provided by establishing characteristics
of different product update tools in case studies. The answer is fundamental to this
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research because it proves once again that there is a need for tools that support more
aspects of the CCU processes. The answer enables product software vendors to
evaluate their own tools, and to develop new tools that support CCU processes.

RQ2: Can customer configuration updating be improved by explicitly
managing and sharing knowledge about software products?

Yes. By sharing available product knowledge with customers, the processes of
release, delivery, deployment, and usage and activation are improved. Furthermore,
sharing of knowledge between customers and vendors increases the speed at which
feedback, such as error reports and feature requests, arrives at the vendor, enabling
a vendor to process feedback quicker, which improves software product development.
The question has been answered by doing nine case studies of product software vendors
and by building two CCU support tools that explicitly manage and share software
knowledge. The answer to this question provides product software vendors with
evidence that it is useful to invest in product software knowledge management.

SQ2.1: What aspects of customer configuration updating can be improved by
explicitly managing and sharing customer configuration updating knowledge and can
these improvements be measured? Improving the CCU processes is beneficial for the
time to market of a product, success of a product, number of customers a product
software vendor can handle, deployment success rate, and release frequency of a
product. All except product success can be quantitatively measured. This question
has been answered by conducting case studies, the survey, and tool implementations
and evaluations. The answer to this question is fundamental to the research question
whether product software development can be improved by explicitly managing
and sharing knowledge about the software product. Product software vendors can
use the answer to this question to establish which technique or technology must be
implemented to improve a specific aspect of product software development.

SQ2.2: Are product software vendors who explicitly manage customer
configuration updating knowledge more successful? Yes. When product software
vendors have implemented larger numbers of CCU capabilities they are more
successful. CCU enables them to publish releases more often, reduce bug discovery
and fix times, handle larger amounts of customers, and provide them with a larger
range of features and deployment platforms. To answer this question a modelling
technique was developed to establish and calculate Time to Market of a software
product. The modelling technique was then applied to example scenarios where new
CCU prototype support tools were applied. This led to the conclusion that under
certain conditions CCU improvements can shorten release cycles and thus reduce
Time to Market. Furthermore, a survey was held amongst product software vendors in
the Netherlands to see whether recent improvements to their CCU processes led to an
increase in success for a software product. The answer to this question is beneficial
to this research because it means that CCU research improves success of the product
software industry. This conclusion also provides software developers with evidence
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that CCU improvements are vital to a product software vendor.

SQ2.3: What functionality is required from tools that manage and reuse customer
configuration updating knowledge to support product software development and the
customer configuration updating processes? For this research two tools were built (see
chapters 5 and 6), evaluated, and proven beneficial for product software vendors. These
tools were created after finding that many CCU capabilities were not yet implemented
in CCU support tools. These missing features were, after a potential gain analysis,
implemented into prototype tools. These tools were evaluated by applying them in
examples and real-life cases. The answer to this question is fundamental for the
conclusion that product software knowledge sharing is a success factor for product
software vendors.

10.2.1 Research Methods
Over the last four years we have conducted mixed-method research to evaluate
the CCU model. The methods that have been applied are case studies, tool
evaluations, prototype building, design research and two surveys. I recommend using
the combination of many different research methods to improve product software
management processes. The case studies were fit to establish new problem areas
and map the CCU processes. The survey enabled further generalization of our
conclusions about product software vendors and enabled a combined quantitative and
qualitative analysis of CCU. The tool evaluations enabled a further understanding
of CCU tool support and showed feature gaps that required new tools and solutions.
Finally, the building of prototype tools and evaluation of these tools enabled a further
demonstration of the contribution of these tools.

10.3 Chapter Conclusions
In chapter 2 CCU is defined in detail and nine product software vendors are evaluated
using the presented CCU model. The main conclusions from this work are that product
software vendors do not focus enough on CCU. They neglect to apply knowledge
management techniques to improve CCU processes. Furthermore, product software
vendors rarely use automatically generated customer feedback and automatic license
generation. This is surprising when taking into account that 50-70% of revenue is
coming from existing customers, who profit most from CCU improvements. The main
contribution of the chapter is the CCU model that is used to evaluate the capabilities of
product software vendors.

In chapter 3 one of the cases is described in more detail. The subject of study,
Exact Software, provides an interesting example of how knowledge management
is used to integrate customer relationship management, product data management,
and software configuration management. The integration of these practices enables
the software vendor to maintain a customer base of over 160.000 customers. The
main contribution of the work is two-folded. The first contribution is that showing
that integration of customer relationship management, product data management,
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and software configuration management encourages knowledge sharing between
customers and vendors, strengthening their relationship. The second contribution is
the integration method and the demonstration of the use of a product data management
system for a software product.

Chapter 4 describes the result from a survey amongst 74 Dutch product software
vendors. The survey is based on the CCU model from chapter 2 and establishes,
amongst other things, a relationship between the success of a product software vendor
and any recent improvements that have been made to CCU. Furthermore, CCU
practices are described in more detail. The survey results confirm conclusions drawn
earlier in the case studies, such as the fact that product software vendors do not
implement CCU sufficiently and that this is caused by lack of process descriptions,
tools, and technologies.

Chapter 5 describes an evaluation model for CCU support tools. The presented
model is used to evaluate fourteen CCU support tools and assesses their capabilities
for each of the four CCU processes. A typology for product update tools is also given.
The main conclusion of this work is that there are no CCU support tools that provide
all capabilities required by product software vendors, even though many of these tools
are specifically designed for that group. Furthermore, the work contributes in that it
uncovers product update capabilities that are required by product software vendors,
which are not implemented in current update tools.

Chapter 6 demonstrates a prototype tool that is used to ask a software knowledge
base “what-if” questions. The tool proposes evolutionary steps for a customer
configuration to get to a target configuration. The prototype tool makes it possible
for product vendors, with the right knowledge available, to see whether deployment of
a new variant, version, or feature of a component will lead to problems. The tool can
calculate evolution steps in an acceptable amount of time. The main contribution of the
chapter is showing that evolving a customer configuration is a knowledge management
problem and not a complexity problem.

Chapter 7 concludes that the capabilities missing from the product updaters in
chapter 5, can be built into product update tools such as Pheme and Sisyphus.
These prototype tools are implemented in two example case study scenarios and
further evaluated using the Product Development Cycle Time model. This model
establishes that time to market can be reduced by spending relatively little effort on
implementing Pheme and Sisyphus into a product software vendor’s organization. The
main contribution of this work is the presentation of the Pheme Knowledge Distribution
Infrastructure for product software.

Chapter 8 claims that software vendors can plan their release packages more cost-
efficiently by using Cost/Value functions. These functions provide criteria for when
the value of a release package exceeds the cost of releasing one. Furthermore, CCU
improvements are proposed to bring these costs down even further, as these changes
will improve release frequency, product feedback, and finally product quality. The
main contribution is a set of release criteria that assists product software vendors in
their release package planning process.

Chapter 9 proposes a modelling method for software supply networks, in which
different suppliers of software artefacts cooperate to deliver a product to an end-user.
The presented software supply network models enable the user to analyze the business
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of product software and the products that are built by these networks. Furthermore, the
networks make a strong case for explicit software knowledge management, since the
many different suppliers require more knowledge than just one end-user.

10.4 Future Work
With this thesis CCU research does not end. There are still five CCU-related areas
and one general research area in which there are still open questions. To begin with,
the plan is to build Pheme into a software product that is sold to product software
vendors. The capabilities provided by Pheme, such as knowledge delivery across a
software supply network make it a fertile ground for further experimentation in real
life settings. One of the first steps in doing so is formalizing and testing the domain
specific Pheme communication language. Furthermore, Pheme is an essential part of
the Product Software Management Workbench [88].

Chapter 9 has only opened one of many doors. I expect software supply networks
to be a novel research area with more product software vendors joining these complex
business networks daily. Software supply networks seem to provide fertile ground,
especially when looking at their relationships to a software product’s architecture.
This research enables further exploration of risk discovery methods and architectural
decisions that might in the future prohibit a product software vendor’s growth.

The exploration of release speed in Chapters 7 and 8 and its effect on product
quality has led to many new research questions, such as “does an increase in release
speed relate to product quality and product development speed”? Such questions touch
different areas of interest, such as development methods, software quality, and product
quality and must be adressed in the future to provide software producing organizations
with more insight into their processes.

When looking at product development methods I would like to establish whether
tools that can be used to protect the correctness of development and CCU, such as
xLinkIt [83], actually deliver when applied in a practical setting. The use of such
a tool for the assurance of software knowledge quality potentially provides a huge
improvement in any product development process.

Finally, with respect to CCU many technologies provide their own standards,
architectures, and technology to enable run-time deployment and updating. The work
of Hicks [55] but also that of Ajmani [2] provide comprehensive models for runtime
updating. The architectural constraints of such updates must further be explored, for
instance to propose a set of basic architectural requirements for such tools.

The conducted research combined different research methods such as case studies
and surveys to validate hypotheses about CCU. This multiple method multi-theory
approach proved useful for a research area that is so diverse.
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Summary

Product software development is the activity of development, modification, reuse, re-
engineering, maintenance, or any other activities that result in packaged configurations
of software components or software-based services that are released for and traded in a
specific market [132]. An increasingly important part of product software development
is CCU. CCU is the combination of the vendor side release process, the product or
update delivery process, the customer side deployment process, and the activation
process. Product software vendors encounter particular problems when trying to
improve these processes, because vendors have to deal with multiple revisions, variable
features, different deployment environments and architectures, different customers,
different distribution media, and dependencies on external products. Also, there are
not many tools available that support the delivery and deployment of software product
releases that are generic enough to accomplish these tasks for any product.

In figure 10.1 the product software development process is modelled. It models
software development, release, deployment, and usage of a product. These processes
are controlled by policies. The policies define how product software development and
CCU processes are controlled. The debug policy describes what features are built
into a product and how and when bugs are fixed. The release policy defines when a
product or update is released by a product software vendor and to what customers. The
delivery policy determines how products are delivered to the end-user, such as through
the internet or on a DVD or USB stick. The deployment policy determines how and
how often these updates and products are installed. While the product is being used,
actions, errors, and exceptions may be logged and stored locally. The feedback policy
then defines what and how often information is sent back to the vendor.

In 9 industrial case studies it was discovered that as much as 15% of the
deployments and product updates of new products do not proceed as planned and
require unplanned extra support from the software vendor. These organizations are held
back in their growth, due to the fact that they cannot handle larger customer bases, since
it would result into more configurations that require maintenance and updates. When
software vendors attempt to improve CCU three things become apparent: (1) there are
no adequate process descriptions for CCU, (2) there is a lack of tools to support CCU,
(3) software vendors use a lot of time automating CCU tasks, even though these tasks
are similar for all software vendors.

This thesis does not stand alone in its attempt to improve CCU for product software
vendors. The work on evaluating product updaters is largely based on an earlier
evaluation model provided by Carzaniga et al [21]. Furthermore, the entrepreneurial
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Figure 10.1: CCU and its Policy Context

aspects of this work were inspired by Xu and Brinkkemper’s work on product software
[132]. The work on software supply networks and business redesign were inspired by
the works of Farbey and Finkelstein [42]. The work on deployment of components in
multidimensional configurations could not have been carried out without the revelation
of van der Storm that these configuration spaces can be reduced to binary decision
trees [123]. The tool Pheme was largely inspired by the Software Dock [52] and can
be considered a next generation of the Software Dock.

Even though some of these works have been successful in improving CCU, they
approach the problem from a single direction. This thesis proposes a multidirectional
approach, where best practices are combined with up to date reviews of CCU support
tools, new tools and tool proposals, and finally a CCU process model. The contribution
thus is threefold:

• Gives a detailed view of the state of the practice of CCU, i.e., release, delivery,
deployment, and activation and usage in chapter 2. The case studies and tool
evaluations tell the scientific community where the unsolved issues are, what
practices are currently prevalent, and what practices are more successful (chapter
3) than others in the industry. A survey is used to test the hypotheses in these
chapters and generalize the conclusions.

• Proposes a number of improvements for software release planning (chapter 8),
software development [138], and business development within a software supply
network (chapter 9), based on the results found in (1), to improve the art of CCU.
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• Provides a tool ([140] and chapter 6) to improve deployment and configuration of
components in large product lines. Furthermore, a tool is provided that improves
customer-vendor relations by proposing an infrastructure for communication
about software. These tools and fourteen others (chapter 5) are evaluated using
the product updater evaluation method.

To ensure correct results from the case studies rigorous case study procedures were
followed. The applicability of the CCU model was validated using a survey to find
out whether applying the CCU model would result in correct and useful improvement
areas and advice. The survey discovered the CCU capabilities of software vendors.
The component deployment and configuration tool has been evaluated using different
theoretical examples. The Pheme tool has proven useful in experimental setups for an
open source content management tool and a scientific open source tool. Finally, the
software supply network modeling method has been applied to a case study.

These three contributions allow software vendors to stop dabbling around small
customer numbers, and to make the jump to larger customer bases, with only a small
increase in manpower and effort. Simultaneously, when applied correctly, the presented
principles for CCU enable product software vendors to shorten release times, by
reduction of release and upgrade costs. This in turn facilitates quicker feedback cycles
from customers and more agility for the product software vendor, enabling them to
potentially reach higher quality levels for their products.

This thesis does not exhaustively solve problems in CCU. First and foremost, a
workbench for product software management is required that integrates different tools
and enables a software vendor to use an integrated toolset for software licensing,
customer relationship management, development management, release planning,
release creation, installer creation, product news publication, and user feedback
processing. Secondly, knowledge about the CCU model needs to be disseminated to
product software vendors through more surveys and publications.
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Nederlandse Samenvatting:
Actualiseren van

Klantconfiguraties via een
Softwareleverantienetwerk

Het uitleveren van een softwareproduct is een complexe taak voor
productsoftwarebedrijven. Het product kan bestaan uit verschillende onderdelen
van verschillende leveranciers, heeft verschillende eigenschappen voor verschillende
klanten, bestaat uit componenten die constant evolueren, en wordt geı̈nstalleerd
op een systeem waarvan de specificaties à priori onbekend zijn. Dit proefschrift
brengt de problemen in kaart die productsoftwarebedrijven tegenkomen bij het
uitleveren, verschaft procesbeschrijvingen, en geeft gereedschap en modellen die
productsoftwarebedrijven in staat stellen de uitleverprocessen te verbeteren.

Het ontwikkelen van productsoftware bestaat uit verschilende fasen: ontwerp,
aanpassing, hergebruik, onderhoud, en elke andere activiteit die leidt tot een
gebundelde configuratie van softwarecomponenten of software-gebaseerde diensten
die verhandeld en uitgeleverd worden in een specifieke markt [132]. KlantConfiguratie
Updaten (KCU), wat deel uitmaakt van het ontwikkelingsproces, is een steeds
belangrijker wordend onderwerp, doordat productsoftwarebedrijven meer klanten met
standaard producten willen bedienen. KCU is de combinatie van de uitleverprocessen
aan de verkoperkant, en de installatie-, gebruiks-, en activatieprocessen aan de kant
van de klant. KCU bevat dus de processen aan de kant van de softwareleverancier
en de processen die de configuratie van de klant wijzigen waardoor deze nieuwe
functionaliteit bemachtigt. Er zijn weinig generieke applicaties beschikbaar die
softwarebedrijven kunnen ondersteunen bij al deze processen.

In figuur 10.2 is het ontwikkelingsproces van productsoftware gemodelleerd vanuit
het KCU perspectief. De vier processen die hierbij een rol spelen zijn ontwikkeling
(development), uitlevering, installatie (deployment), en gebruik (usage). Deze
processen worden beı̈nvloed door sturing vanuit het productsoftwarebedrijf en vanuit
de klant. Het debugbeleid (debug policy) bepaalt hoe ontwikkeld wordt en wanneer
en hoe nieuwe functionaliteit geı̈mplementeerd en fouten verwijderd worden. Het
uitleverbeleid bepaalt wanneer nieuwe versies van het product worden uitgebracht, in
acht nemende dat er al versies geı̈nstalleerd kunnen zijn bij klanten. Het uitleverbeleid
bepaalt hoe vaak software wordt verstuurd naar of opgehaald wordt door klanten en
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Figuur 10.2: KCU en Beleid (policies)

met welk medium, zoals via internet of via een USB stick. Het installatiebeleid bepaalt
hoe en hoe vaak het product wordt geı̈nstalleerd en aangepast. Verder bepaalt het
loggingbeleid hoe kennis en foutrapporten worden verzameld over het gebruik van
de klant. Als laatste bepaalt het terugkoppelingbeleid (feedback) hoe en hoe vaak de
kennis wordt teruggestuurd naar het productsoftwarebedrijf.

Een voorbeeld: een Amerikaanse componiste en dirigente begint vanaf volgende
week een Europese tour met haar nieuwste werk voor orkest met koor (de instrumenten
zijn de hardware, de instrumentalisten de gebruikers). De partituren (de software) zijn
twee weken geleden naar de instrumentalisten en het koor verstuurd en iedereen kent
de muziek. De dirigente besluit wat onhandige overgangen weg te werken (bugfixes)
en nog wat speelse versieringen (functionaliteit) toe te voegen. Verder voegt zij ook
nog een uitgebreide solo toe (een nieuwe softwarecomponent) die recentelijk door een
collega van de dirigente is bedacht (een andere leverancier). De dirigente staat nu voor
een lastige keuze. Stuurt ze de nieuwe partituur aan alle orkest- en koorleden via de
e-mail of neemt ze deze vanavond mee in het vliegtuig (hoe levert ze de partituur uit)?
Dirigeert ze de eerste keer nog de oude versie of de nieuwe versie (hoe installeert ze
de software en wanneer)? Hoe berekent ze de opbrengst voor de collega dirigent? Per
concert? Per opname?

De orkest- en koorleden (klanten) hebben evenzoveel problemen. Wat nu als de
“onhandige” overgangen nodig waren om van instrument te wisselen (deels hardware,
deels klanten)? En kan de solist wel zo snel spelen op haar viool? En wat doen ze
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Figuur 10.3: Franz Liszt - Hungarian Rhapsody No. 2

met de partituur? Vervangen ze de oude door een hele nieuwe of brengen ze een paar
wijzigingen aan? Ook kunnen er fouten in de partituur staan die de dirigente niet
heeft opgemerkt. Vertellen de instrumentalisten dat tijdens de repetities, tijdens het
concert (!), of al op voorhand via de telefoon?

Dit voorbeeld geeft maar een deel van alle problemen die een
productsoftwarebedrijf tegenkomt. Een partituur zal bijvoorbeeld nooit zo vaak
en snel veranderen als een stuk software, waar continu stukken aan worden
gebouwd en herschreven. De hoofdgedachte van dit proefschrift is dan ook dat een
softwareproduct zo vaak verandert dat het productsoftwarebedrijf een infrastructuur
voor continue kennisuitwisseling moet inrichten (in het voorbeeld zou dat een vaste
e-mail- en telefoonlijst kunnen zijn).

In dit proefschrift wordt aan de hand van negen industriële case studies aangetoond
dat 15% van de installaties van aanpassingen en nieuwe producten niet werken als de
bedoeling was en dus extra inspanning nodig hebben van het productsoftwarebedrijf.
Deze organizaties worden dan ook beperkt in hun groei, aangezien de kosten
per nieuwe klant te hoog zijn. Als productsoftwarebedrijven deze extra kosten
willen verminderen door verbeteringen in de KCU processen door te voeren worden
drie dingen duidelijk: (1) er zijn geen volledige omschrijvingen van de KCU
processen. Daarnaast, (2) zijn er weinig software oplossingen beschikbaar die KCU
kunnen ondersteunen. Als laatste (3) verliezen software bedrijven veel tijd bij het
automatiseren van KCU processen, zelfs al zijn de processen voor het uitleveren gelijk
voor ieder productsoftwarebedrijf.

Dit proefschrift staat niet alleen in zijn poging KCU voor productsoftwarebedrijven
te verbeteren. Het hoofdstuk over productupdaters is gebaseerd op een evaluatie
model van Carzaniga et al. [21]. De specifieke focus op productsoftwarebedrijven
is geı̈nspireerd door Xu en Brinkkempers werk over productsoftware [132]. Het
werk over softwarelevarantienetwerken en proces herontwerp is geı̈nspireerd door het
onderzoek van Farbey en Finkelstein [42]. Het werk over installatie van componenten
in multidimensionale configuraties had niet geschreven kunnen worden zonder de
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methode van van der Storm waarmee deze configuratie ruimtes gereduceerd kunnen
worden tot binaire beslissingsbomen [123]. De kennisuitwisselingsinfrastructuur
Pheme is grotendeels gebaseerd op “the Software Dock” [52] en kan gezien worden
als een volgende generatie van deze applicatie.

Hoewel deze werken succesvol zijn op het gebied van KCU, benaderen ze het
probleem hoe KCU te verbeteren slechts vanuit één richting. Het onderzoek dat wordt
gepresenteerd in dit proefschrift gebruikt een multi-directionele aanpak, waar best-
practices vanuit product management worden gecombineerd met recente reviews van
KCU applicaties, nieuwe applicaties, en als laatste een evaluatie model voor KCU
processen. Dit proefschrift levert de volgende drie bijdragen:
• Het proefschrift geeft een gedetailleerd beeld hoe KCU op dit moment

is geı̈mplementeerd bij productsoftwarebedrijven [143]. Dit beeld vertelt
de wetenschappelijke wereld waar de onopgeloste problemen liggen, welke
praktijken op dit moment het meest worden toegepast, en welke praktijken en
processen succesvoller zijn dan andere [141]. Deze gegevens zijn verzameld
door middel van case studies en een enquête.

• Het proefschrift geeft geı̈ntegreerde procesmodellen voor elk proces binnen
KCU. Deze modellen worden vervolgens toegepast op een aantal verschillende
productsoftwarebedrijven door middel van case studies [143] en een benchmark
enquête [146].

• Het proefschrift presenteert twee applicaties om KCU mee te verbeteren. De
eerste is een applicatie [142] waarmee componenten uit grote productlijnen
kunnen worden samengesteld en geı̈nstalleerd. De tweede applicatie [140]
verbetert de relatie tussen een productsoftwarebedrijf en haar klanten door de
invoering van een infrastructuur voor (continue) communicatie over software
producten. Deze applicaties en veertien anderen worden geëvalueerd met de
productupdater evaluatiemethode [147].

Om correcte resultaten te krijgen zijn voor de case studies vaste procedures
gevolgd. De toepasbaarheid van het KCU model is gevalideerd met een enquête,
door het voorstellen van KCU verbeteringen aan de respondenten van de enquête. De
enquête geeft een momentopname hoe 74 Nederlandse productsoftware bedrijven hun
software uitleveren. Het component installatie- en aanpassingsapplicatie is geëvalueerd
met theoretische problemen en voorbeelden. De kennisuitwisselingsinfrastructuur
Pheme is gevalideerd door het toe te passen op twee open source producten. Als laatste
is de modelleermethode voor software leverantienetwerken toegepast op een case study.

De drie genoemde bijdragen stellen productsoftwarebedrijven in staat om,
met een kleine toename in mankracht en inspanning, de sprong te maken naar
grote klantenbestanden. Tegelijkertijd kunnen, mits correct toegepast, de KCU
verbeteringsprincipes gebruikt worden om uitlevertijden te verkorten, door het
verkleinen van uitlever- en aanpassingskosten. Dit stelt een bedrijf dan weer
in staat om sneller terugkoppeling te krijgen op nieuwe uitgeleverde versies en
maakt de productsoftware flexibeler, waarmee deze bedrijven potentieel hogere
kwaliteitsniveaus halen voor hun producten.
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Dit proefschrift lost niet alle KCU problemen op. Ten eerste is er
behoefte aan een product management workbench die applicaties integreert die een
productsoftwarebedrijf in staat stellen om een geı̈ntegreerde applicatieset te gebruiken
voor software licensing, customer relationship management, uitleverplanning,
uitlevering, publicatie van nieuws over een product, en verwerking van (automatische)
terugkoppeling van gebruikers. Als laatste moet de KCU kennis verder gedissemineerd
worden via enquêtes en publicaties.
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