Seventh International Conference on Composition-Based Software Systems

Benchmarking the Customer Configuration Updating Practices of Product
Software Vendors

Slinger Jansen

Sjaak Brinkkemper

Remko Helms

Information and Computing Sciences Institute
Utrecht University, Utrecht, The Netherlands
{s.jansen, s.brinkkemper, r.helms} @cs.uu.nl

Abstract

Product software vendors do not invest enough effort
on release, delivery, deployment, and usage and activa-
tion of their software products. Not spending effort on
these customer configuration updating processes leads
to high overhead per customer, which impedes growth
in customer numbers. This paper presents the results
of a survey that provides product software vendors with
an overview of their customer configuration updating
processes and practices, and benchmarks theirs against
competitors using similar technology, of the same size,
and active in the same market. These benchmarks con-
tain customized advice to the respondent company that
can be used to strategically improve customer configu-
ration updating processes to gain efficiency and effec-
tiveness. The survey was held in the Netherlands, and
74 software vendors responded. Amongst other conclu-
sions, a significant positive correlation was found be-
tween success of a software product and a vendor’s re-
cent investments into customer configuration updating.

1 Introduction

The product software industry in the Netherlands is
flourishing. Computer games, ERP products, and nav-
igation systems are just some examples of successful
products, nationally and internationally. Though these
businesses have a large body of knowledge available to
them about generic software development and engineer-
ing, none of it is specific to product software develop-
ment. One area that is specific to product software ven-
dors is the fact that they have to release, deliver, and
deploy their products on a wide range of systems, for
a wide range of customers, in many variations. Fur-
thermore, these applications constantly evolve, introduc-

0-7695-3091-5/08 $25.00 © 2008 IEEE
DOI 10.1109/ICCBSS.2008.14

82

ing versioning problems. This paper presents a bench-
mark survey into the customer configuration updating
processes of 74 product software vendors.

To date product software is a packaged configura-
tion of software components or a software-based ser-
vice, with auxiliary materials, which is released for and
traded in a specific market [22]. Customer configura-
tion updating is defined as the combination of the ven-
dor side release process, the product and update deliv-
ery process, the customer side deployment process, and
the usage and activation process [13]. The release pro-
cess is how products and updates are made available
to testers, pilot customers, and customers. The deliv-
ery process consists of the method and frequency of up-
date and knowledge delivery from vendor to customer
and from customer to vendor. The deployment process
is how a system or customer configuration evolves be-
tween component configurations due to the installation
of products and updates. Finally, the activation and us-
age process concerns license activation and knowledge
creation on the end-user side.

Vendors encounter many problems when attempting
to improve customer configuration updating. To be-
gin with, these processes are themselves highly com-
plex considering vendors have to deal with multiple
revisions, variable features, different deployment envi-
ronments and architectures, different distribution media,
and dependencies on external products [12]. Also, there
are not many tools available that support the delivery and
deployment of software product releases that are generic
enough to accomplish these tasks for any product [14].
Finally, CCU is traditionally not seen as the core busi-
ness of vendors, and seemingly does not add any value to
the product, making vendors reluctant to improve CCU.

This paper presents the results from a survey of 74
product software vendors. The respondents are prod-
uct managers for one product from one product soft-
ware vendor. The object under study is the release, de-
livery, deployment, and usage and activation processes

IEEE
@ computer
socle

ty



from each vendor for one of its products. These four
CCU processes consist of two to four practices. Each
practice consists of capabilities. A vendor’s capabilities
are measured using between three and five questions per
capability. The aims of these scores are to establish a
vendor’s position compared to competitors. The overall
goals of this research are to see what the CCU landscape
in the Netherlands looks like, to establish whether CCU
process scores are directly related to product success,
and whether a survey can be used as a knowledge dis-
semination method.

In the following section the processes and practices
of customer configuration updating are described in de-
tail. In section 3 the research design, consisting of the
hypothesis and research approach, is presented. In sec-
tion 4 the survey results and respondents are presented,
including the results for each process area and for the
hypotheses. Finally, in section 6 we present our con-
clusions and discuss our future work in regards to CCU
process improvement.

2 Customer Configuration Updating

The four process areas and their corresponding prac-
tices used in the benchmark survey are defined using the
SPICE model for process assessment [2]. The SPICE
model, which enables self analysis for vendors, defines
a process as “a statement of purpose and an essential set
of practices that address that purpose”. These practices
are software engineering or management activities that
contribute to the creation of work products of a process
or enhance the capability of a process. In this section
CCU and practices are defined together with their rela-
tionship to the CCU model and current literature.

We define CCU as the release, delivery, deployment,
and usage and activation processes of a software vendor.
These processes consist of two to four practices, each
with a number of elementary capabilities. For instance,
the release process is made up of four practices. One of
these practices is release frequency and quality. The ca-
pabilities falling under the release frequency practice are
that a vendor must frequently release major, minor, and
bug fix releases, that a vendor must synchronize these
releases with customer demand, and that releases are
tested by pilot customers before they are made publicly
available.

The Release process is based on four release prac-
tices. The first practice is how often versions and up-
dates of a product are released and how this is planned
within the organization. The second practice is how re-
leases are shared within the company and between cus-

83

tomers and the vendor. Thirdly, all dependencies be-
tween components, be they products that have been built
by the vendor or purchased from another, must be man-
aged by making explicit dependencies between these
products and components. Finally, versions of external
components, such as components-off-the-shelf, must be
managed explicitly to maintain high quality releases.

With regards to the delivery process there are two
practices. The first practice prescribes that vendors must
use every possible channel for the distribution of prod-
ucts and product updates [9]. The second practice states
that every possible method for delivery must be applied,
such as automatic push or pull.

There are four practices for the deployment process
of a vendor. To begin with, a product must be removable
without leaving any remnants of data on a system. This
is required because a new installation preferably must
not be contaminated with old data. Secondly, if issues
are encountered during the deployment of a software
product, automatic resolution must take place to resolve
these issues. Such resolution mechanisms are capabili-
ties such as automatic downloading of missing compo-
nents, freeing up resources when required, or even auto-
matic renewal of licenses. The third practice for the de-
ployment process is that updates and installations must
be able to cope with customizations made by customers
or third parties. A vendor supports this practice when
a special software architecture is in place that enables
customizations. The fourth practice is deployment reli-
ability, which is ensured by capabilities such as valid-
ity checks, feedback reports, and externalization of cus-
tomer specific changes and data [7].

Finally, a vendor’s activation and usage process is
based on three practices. First, a vendor must (semi) au-
tomatically handle all license requests and distribute li-
censes with a maximum amount of flexibility within the
organization. A vendor supports this practice once cus-
tomers can explicitly manage their licenses, licenses ex-
pire, temporary licenses can be generated for sales and
test purposes, and licenses are generated automatically
once a sales contract is signed. Secondly, vendors must
make use of feedback to gain as much knowledge about
the product in the field as possible. A vendor is consid-
ered adequate for this practice once it makes use of both
usage reports and error feedback. The third practice is
that a vendor must be aware of its customers’ configura-
tions. A vendor scores for this practice when it is aware
of the software and hardware components that are used
by its customers.



[ Process | Practice | Average score | Maximum score |
Release Releases are frequent and of high quality [13] 6.08 17
The vendor maintains an explicit release planning [12] 2.26 7
a formalized release scenario that describes what happens on release day [13] 8.73 18
manage external products, such as commercial-off-the-shelf components [10] 4.73 9
Total 21.8 51
Delivery Vendors must use every possible channel to stay into frequent contact with cus- 11.91 30
tomers [9]
every possible method for delivery must be applied [13] 11.28 38
Total 23.19 68
Deployment | Explicit dependency management for correct deployment [6, 21] 3.35 7
The product can be uninstalled and rolled back [14] [18] 2.7 4
The vendor uses update tooling and manages customizations [8] [14] 11.8 26
Update reliability and semi-automatic problem resolution [12] 14.49 32
Total 32.34 69
Usage and | Licenses are can be renewed and trialled and activate components of the software 6.97 7
activation [13]
Licenses are explicitly managed within the organization and generated from 2.65 9
contracts[13]
Vendors know how customers use products and take advantage of this knowledge 9.24 14
[23, 15]
Total 18.86 30
[ Al | Cumulative Total [ 96.19 | 218 |

Table 1. Scores for Practices and Processes

3 Research Design

This research has been conducted to find out more
about the CCU practices and processes of product soft-
ware vendors, to benchmark a product software vendor’s
practices, and to generalize some of the conclusions of
earlier work we applied in a multiple case study [13].
The work has been conducted for two reasons. The first
reason is to perform a benchmark for product software
vendors about their release, delivery, deployment, and
usage and activation practices. Secondly, we wished to
prove or disprove the following hypotheses:

H1: A product software vendor’s scores for the
CCU processes are positively correlated to the age of
the company, the age of the product, the number of
natural languages in which the product is available,
the number of developers working on the product,
and the number of customers of the product. Many
different tools are built around software products during
their lifecycle. Furthermore, customers come and go,
making the need for good CCU processes and tools even
larger. Also, as a vendor’s customer base grows, this
needs increases further. Also, with more developers on
board, more developers can work on CCU improvement.
We therefor expect H1 to be true.

H2: A younger technology platform will result
into lower scores for a product software vendor for
the CCU processes. When a product software vendor

84

starts using a new technology there are not many CCU
support tools available for that technology. This implies
that older technology platforms will have better CCU
support, improving a vendor’s CCU score.

H3: Recent changes in CCU processes are directly
correlated to product success. When a product soft-
ware vendor changes the CCU process it improves cus-
tomer experience and enables a product software vendor
to spend less resources per customer. This frees up re-
sources to further develop the product or do more main-
tenance. This hypothesis is two sided, however, due to
the fact that a more successful product software vendor
will have more resources available to spend.

3.1 Approach and Survey Design

The research hypotheses are proved or disproved us-
ing a web survey that establishes scores of CCU pro-
cesses and different maturity indicators for product soft-
ware vendors and their products. The benchmark sur-
vey consists of eleven parts. Each part contains between
three to twelve questions. There are both closed and
open ended questions in the benchmark survey. The
closed questions are used to establish scores for prac-
tices of vendors and consist of yes/no questions and mul-
tiple choice questions. The open questions establish the
generic or numeric information on the vendor, such as
the vendor’s name, the amount of customers of the prod-



Practice | Question or description Average Highest
Score of all | possible
vendors score

Al How often do you publish a major release of your product? 5

How often do you publish a minor release of your product? 5
How often do you publish a bugfix release of your product? 5
Are releases timed in sync with customer requirements? 2
Total Al: The vendor addresses release package planning to maintain high quality releases[13] 6.08 17
A2 Does your organisation use a formal release planning that states the times until the next major, minor, 5
and bugfix releases?
Is this planning published in such a way that all related personnel can access it? 1
Is there a formal publishing policy towards the outside world in regards to this document? 1
Total A2: The vendor maintains an explicit release planning [12] 2.26 7
A3 Is there a step-by-step description (release scenario) of what happens on the day of a release? 2
Releases are stored in a versioned repository? 6
All major, minor, and bugfix releases can be downloaded by all product stakeholders? 6
The latest release can be downloaded by all stakeholders? 4
Total A3: a formalized release scenario that describes what happens on release day [13] 8.73 18
A4 All tools that are built to support CCU are managed as if they are externally acquired products. 2
All other tools (such as development tools) are managed explicitly as well? 2
Are these components stored in a versioned repository? 5
Total A4: manage external products, such as commercial-off-the-shelf components [10] 4.73 9
[ Al | Release Process [ 218 [ 51

Table 2. Scores for Release Practices and Processes

uct, the amount of users of a product, etc. Three open
ended questions have been added to the end of the sur-
vey to find out in which parts of CCU the vendor will
invest in the future and what tools they feel are missing
in the range of CCU support tools.

Each of the practices stated in Section 2 has three to
five questions that assesses the vendor’s practice score.
Each of the eleven benchmark survey parts concerns a
maximum of three practices, as to create a coherent se-
ries of question subjects. The practices have been de-
rived from the CCU model, as described in Section 2.
When all practice scores for one process are added up
we obtain the process score. As is suggested by Say-
well [20], methods that force your public to evaluate
their own process actively by participation (in a bench-
mark survey, for instance) are a valid method for knowl-
edge dissemination. When sending out the benchmark
report we attached a small paper survey, with a stamped
return envelope, to evaluate Saywells claim. We re-
ceived 26 responses of which only one was negative.
All others responded positively to the usefulness of the
benchmark report as both a knowledge dissemination
tool and as being useful to use in future improvement
projects. We define the following validity threats:

Construct validity - In this study concepts come
directly from literature and from our earlier practical
case study work. The questionnaire was pre-tested by
a small working group of four software vendors and

85

by five researchers. Their comments lead to approxi-
mately 10% of the survey having been changed. These
four software vendors were excluded from participation.
Reliability - To stimulate correct answers the submit-
ters were all promised a full report, complete with cus-
tomized advice to specifically fit their product. Further-
more, we promised the submitters that the results would
only be published anonymously. External validity -
We strongly believe that the results of this survey are
generalizable to other countries. The OECD states that
the Netherlands is the fourth largest exporter of prod-
uct software in the world. It must be noted that three of
a handful of larger software vendors in the Netherlands
replied. Even though we estimate that our dataset cov-
ers 6 percent of the total number of software vendors, we
expect this number to be much higher when looking at
the number of employees active in the product software
industry.

3.2 Sample Selection

The respondents have been selected based on 2 cri-
teria: First the submitter must be a product manager or
a development manager who is close to the process and
knows answers to each question. Secondly, the software
product must specifically be a software product that is
delivered to customers and executed at the customer’s
site. These requirements are specified in the invitation




e-mail and at the beginning of the benchmark survey.

The vendors have been selected through the Plat-
form for Product Software [4], the yellow pages, and the
Netherlands business index for ICT [5]. The potential
respondents have been approached by e-mail twice. No
two respondents belonged to the same product software
company.

3.3 Survey Tool and Benchmarks

The open source PHP/MySql tool used for this
benchmark survey is called PHP Surveyor [3]. The tool
is still under development and the fact that it is open
source has enabled some final customizations, such as
the addition of question types and custom data analysis
methods. The survey tool has been selected specifically
because the submitter can save the survey results up to a
certain point, to allow him or her to find answers to ques-
tions he or she does not know at the time of asking. The
previous answers can then be reloaded at a later point.

The benchmark survey is an initiative of the Platform
for Product Software [4], a scientific initiative that at-
tempts to unite Dutch product software vendors to im-
prove the industry by disseminating knowledge from the
academic world. The benchmark was created to serve
both our academic interests and the interest of the plat-
form. To be of use to the platform the results from the
survey are used to automatically generate a customized
benchmark report for each of the respondents. Such a
report includes comparisons of a respondent’s practices
to other product software vendors using similar develop-
ment technology or are active in the same market. Be-
sides providing a dataset for research, the report spreads
knowledge and provides new insights to product soft-
ware vendors. We are currently unaware of any compa-
rable initiatives and benchmarks that focus specifically
on product software development.

One question asks the software vendor to priori-
tize six reasons for CCU improvement. These CCU
improvement priorities were to serve more customers,
serve customers more cost-efficiently, reduce deploy-
ment problems, reduce the time in which bugs are found,
shorten release cycles, and apply a more flexible pricing
model. Furthermore, the customized benchmark reports
include specific advice for each of the product software
vendors. The advice, such as “You must introduce a
formal release scenario” included a full description (1
paragraph) and a relevance indicator. This relevance in-
dicator (low, medium, and high) is based on the above
mentioned prioritization question. For example, if the
respondent put “Shorten release cycles” as a top prior-
ity, the release scenario advise example received a high

86

relevance rating. Each advice was assigned to between
one and three CCU improvement priorities, based on the
CCU evaluation model.

To evaluate whether the benchmark reports are a use-
ful tool for knowledge dissemination, a second survey
was sent with the benchmark report. This second survey
contains questions such as “Has the report provided you
with new insights into the release process?”

4 Results and Respondents

In table 1 the average process and practice scores are
listed for CCU. The first column listst the process for
which this practice is applicable. The second column
describes each practice and provides references to other
work in which these practices are described and dis-
cussed. In the third column the average score is provided
for each practice, obtained by the vendors. The final col-
umn lists the maximum score that could have been earnt.
The processes and practices of the CCU evaluation are
based on the CCU model [13], the SOFA model [19],
and some capabilities of the Software Dock [9] and have
been recorded into the SPICE based evaluation model.
Please note that the total scores for each process cannot
be compared to the scores of other processes. We be-
lieve that the four processes are equally important. In
table 2 the average scores for the release practices and
process are listed. The table describes the questions that
are posed to determine each practice score for the pro-
cesses. The scores that can be earned per question have
been determined by a committee of five representatives
from four product software vendors. The scores for each
practice are determined by between two and five ques-
tions each. For a full score listing, we refer to [11].

74 product managers submitted the survey, from soft-
ware vendors ranging from 1 to 460 employees (see ta-
ble 3). Three were excluded from the dataset on the
grounds of being from the wrong country or for being
a web service provider. Statistics Netherlands estimates
that there are 1400 software vendors in the Netherlands,
giving a 5 percent coverage of the total product software
industry. Furthermore, when asked the product man-
agers to categorize their business by checking at least
two categories (see table 3). By far the largest part of
product software vendors is building business productiv-
ity tools and enterprise resource planning systems. The
product managers were also asked to provide the devel-
opment technologies they used (results in table 3). The
Netherlands has many one-man software companies (16
benchmarked in this survey). This partly distorts the re-
sults of the overall survey. Currently we are gathering



Distribution of respondents
# Employees Product Categories Development Technologies
# Employees | # Respondents Category # Respondents || Development Technology | # Respondents
1 16 Business productivity 51 Java 18
2-4 10 Internet 36 C++ 14
5-7 8 Health care 5 dotNet 14
8-10 6 Home user 5 Pascal 14
11-20 9 Financial 4 PHP 12
21-50 10 Embedded 4 ASP 9
51-75 8 Extensions 3 C 8
76-100 3 Media 2 Basic 8
101-300 2 Games 1 Clarion 4
301-600 2 Perl 3
Lisp 1

Table 3. Distribution of Respondents

more results to draw conclusions about this group by ap-
plying a size classification.

4.1 Hypotheses Results

H1: A product software vendor’s scores for the
CCU processes are positively correlated to the age of
the company, the age of the product, the number of
natural languages in which the product is available,
the number of developers working on the product,
and the number of customers of the product. The re-
sults of the survey have been used to test this hypothesis.

Unexpectedly, there is hardly any correlation be-
tween product age and process scores. Though the
scores vary greatly, older products do not necessarily
have higher CCU scores. The product age (ranging from
0 to 22 years) only showed a slight upward trend for the
deployment process scores, possibly meaning that only
the deployment process score is influenced by the age
of a product. There exists a strong positive correlation
between the number of customers a product software
vendor has and its CCU scores, for all CCU processes.
The strongest positive correlation is found between de-
ployment process scores and the number of customers.
Clearly, the higher the number of customers, the more
likely a vendor is to spend time on minimizing overhead
by managing and improving CCU processes. In regards
to FTE developers there exists a strong positive correla-
tion between all processes except usage and activation
(where there is a hint of a negative correlation). An ex-
planation for this phenomenon has not yet been found.
The hypothesis thus only holds partly true.

H2: A younger technology platform will result
into lower scores for a product software vendor for
the CCU processes. To prove or disprove this hypoth-
esis, we have listed the technologies, the average CCU

87

scores, the average separate scores per process, and the
technology age.

First and foremost there does not seem to be a rela-
tionship between the age of a chosen development tech-
nology and the combined CCU process score. Some
technologies do obtain much higher scores than others,
however. At the top of the list are Visual FoxPro, C#,
Visual Basic, and Java. At the bottom of the list are C,
C++, and the scripting languages PHP and ASP. Fur-
thermore, there is a strong negative correlation between
development technology age and the deployment pro-
cess score, suggesting that newer technologies have bet-
ter deployment support.

H3: Recent changes in CCU processes are directly
correlated to product success. A series of three ques-
tions was asked to establish a causal relationship be-
tween CCU improvements and product success over the
last two years. To the first question, whether the prod-
uct was more successful, 62 answered they were more
successful, confirming our belief that product software
is booming business. Of course there are many more
factors that influence the success of a software prod-
uct. To remove this variable the respondent was asked
to value the relationship between product success and
recent CCU improvements, from “of no influence at all”
to “mostly caused by”. We found a direct relationship
between the success of a software vendor and its in-
vestment into the CCU process over the last two years
(r =0.26, p < 0.05), taking into account the answers to
the question on the relationship between product success
and CCU improvements.

4.2 Open Questions

To the open question “Into what area of CCU will
your organization soon invest” most respondents an-



swered they would invest into delivery methods of up-
dates (40%) and into update tools and methods (35%).
In regards to delivery the respondents explained they
wished to deliver through different media such as FTP
sites and portals and with different methods, such as
scheduled automatic updates. With regards to update
tools some answered they were investing into Microsoft
Windows Vista and some that they were using commer-
cially available installers such as InstallShield and Wix.
The third problem that was discussed frequently was re-
lease planning and scheduling (12%).

When asked how recent CCU improvements had
affected the product most respondents answered that
higher product quality had been reached (23%) and that
the product had become more reliable (21%). A close
third and fourth were less deployment problems (16%)
and lower development cost (16%). The less popular
choices were less time to find bugs (11%), more knowl-
edge about customers (5%) and shorter release cycles
(9%). The submitters answered questions on how many
people were active in the areas of CCU (release man-
agers, version system managers, etc) and development
(quality assurance, programmers, etc). When dividing
the number of employees active with CCU by the num-
ber of development personnel, an average of 16% is
found. This tells us that research contributions in CCU
can potentially affect 16% of development personnel on
average at product software vendors.

According to this survey the most important reasons
for CCU improvement are to serve more customers and
to serve them more cost-efficiently on a shared first
place. The runner-up was to reduce deployment prob-
lems. In contrast, these three were at the first place of
software vendors’ lists 19 times each, whereas the other
three ended up at the top of the list only approximately
six times each. The scores are computed by awarding 6
points for priority 1, 5 points for priority 2, etc.

4.3 Suggestions for CCU Improvement

Each of the 74 product software vendors received a
personalized and customized report, with up to eight
CCU improvement suggestions per process area. These
improvement suggestions were then annotated with a
relevance rating, based upon the ordering of a prod-
uct software vendor’s reasons why they would improve
CCU. The submitters received an average of thirteen im-
provement suggestions per survey report.

For the release process vendors generally do not use
a formal release planning. Furthermore, many product
software vendors set shortening release cycles or reduce
the time in which bugs are found as a prime priority.

88

This led to the advice “Introduce a formal release plan-
ning and share this within the organization” being issued
to 47 of the 74 product software vendors. The respon-
dents received the advice “Store external components
and development tools in a versioned repository with the
product” least often (13 times out of 74) due to the fact
that most of the vendors already do this.

For delivery the advice issued most frequently (47
times) was “Seek contact with your customers more of-
ten through alternative channels”, especially to those
vendors who set “Serving more customers” and “Re-
duce the time in which bugs are found” as their first and
second priority. This advice was especially provided to
those who do not use the product itself for knowledge
delivery, through pop-ups, for instance. In regards to
deployment the advice “Explicitly manage all relation-
ships between external products and yours” was issued
46 times, especially to those vendors who set “Reduce
deployment problems” and “Serve customers more cost-
effectively” as their top priorities. Another improvement
suggestion was 46 times as well, but with a lower aver-
age relevance rating, was “Enable your product update
tool to facilitate custom solutions by customers and part-
ners” because many product vendors do not leverage the
advantages of a software supply network yet [17, 16].

Finally, in regards to usage and activation “Send au-
tomatic error reports” was advised 53 times to those
software vendors with the top priorities “Reduce de-
ployment problems” and “Serve customers more cost-
effectively”. Furthermore, improvement suggestions of-
ten concerned licenses, such as “Enable the customer to
renew their license without your manual intervention”
and “Generate licenses automatically after entering a
sales contract” (43 and 44 times). With the report sent
back to the product software vendors a small survey is
included that is used to evaluate the advice.

We received 19 short surveys about the benchmark
reports. All short surveys reported that the benchmark
had changed their view of the CCU processes and that
they increasingly saw the CCU processes as intercon-
nected. Of the 19 surveys two reported that they planned
no new changes due to the benchmark report, two re-
ported that they would make large changes to their CCU
processes, and the other 15 reported they would make
small changes due to the report.

4.4 Exploring Relationships

The benchmark survey delivered us with a large set
of data, consisting of answers to yes/no questions, mul-
tiple choice questions, and a large amount of open ended
questions. We attempted to find new relationships be-



tween yes/no questions using two-sided Pearson’s good-
ness of fit chi-square tests. We used an algorithm to find
whether relationships existed between all yes/no ques-
tions. We (obviously) found strong relationships be-
tween conditional questions, where the submitter could
only provide an answer if the submitter had answered
yes or no to the previous question.

Many obvious relationships surfaced: first, there ex-
ists a relationship between whether a product’s licenses
expire and whether a product software vendor can pro-
vide temporary licenses (r = 0.411,p < 0.0002). Fur-
thermore, if a vendor is aware of how a customer con-
figures the product, it is also aware of what hardware the
customer uses (r = 0.605,p < 0.001) and of the cus-
tomer’s customisations (r = 0.455,p < 0.001). Also,
the number of users is related to the number of languages
in which the product is released (r = 0.338, p < 0.003).

We have defined two major practices, the use of a
concrete release planning that states release dates for
major, minor, and bugfix releases, and the practice to
have a release scenario that states exactly what needs
to happen on the day of a release. These two prac-
tices are related to eachother (r = 0.293,p < 0.011).
Furthermore we find that release planning is related to
the explicit management of development tools (r =
0.328,p < 0.04), the explicit management of prereq-
uisite components (r = 0.311,p < 0.07), and the use
of an update tool (r = 0.237,p < 0.042).We find the-
ses relationships easy to explain. As the software supply
network surrounding a software product grows, so do its
dependencies [16]. These dependencies must be man-
aged explicitly, including a specific planning of when
the software product will support newer versions.

With regards to development we found that as there
are more product developers, releases (r = —0.251,p <
0.031) and bugfixes (r = —0.286,p < 0.007) become
less frequent. The same holds for customer contact
(r = —0.25,p < 0.048). If a vendor uses a prod-
uct update tool, it is probably also aware of the cus-
tomer specific solutions that have been created (r =
0.432,p < 0.001). Also, as customer data, settings, and
product adjustments are stored externally from the prod-
uct, it becomes easier to deploy the product in a devel-
opment, test, acceptation, and production environment
(r =0.234,p < 0.037).

5 CCU Practice Results

Release - Typically, software vendors will have their
major releases checked by an average of 5 pilot cus-
tomers. Furthermore, bug fixes are published every one

89

month to six months. 10 respondents publish daily bug
fixes. Minor releases are published every two months
to one year. Major releases are published every year to
three years. Please note that only seven respondents did
not publish all three types of releases. We can safely as-
sume that the major, minor, and bug fix release schedule
is universal. 37% of organizations use a formal release
planning with dates attached. Of this 37%, 70% has a
formal publishing policy towards this planning.

Only 52% of the respondents have a formal release
scenario or plan that describes the steps taken for a re-
lease. Releases are stored most of the time on a shared
network drive within the organization, with a versioned
repository as a close second. Frequently respondents an-
swered that their old releases are available to customers.
Tools that have been built by the respondent’s organi-
zation are only managed as if they were commercially
purchased tools in 55% of the cases. 69% of the respon-
dents use components-off-the-shelf integrated into their
products. In 75% of the cases these products are saved
alongside the product in a release repository, ensuring
version compatibility.

Delivery - Product customers are contacted most fre-
quently by e-mail and the software vendor’s website.
Only 12 of the 74 respondents inform customers using
their own product. Bugs are reported most frequently
through e-mail, by phone, and by an on-line bug system.
Furthermore, 15 of the vendors send automatic feed-
back reports when the product encounters an error. Cus-
tomers are kept up to date yearly, every three months,
or monthly in regards to product information. Software
is mostly delivered through a website, with CD-Rom
as a close second. Furthermore, 12 of the respondent’s
products are delivered by USB stick. 47 of the respon-
dents’ products are delivered when a customer manually
pulls it from the vendor. Only 12 of the 74 respondents
have developed their product to pull updates automati-
cally from their servers on a regular basis. In 55% of
the cases software products can be downloaded by the
customer from any location, instead of a preset site, en-
couraging customers to only download an update once
from the vendor for any amount of workstations. 75%
of the products are sent to customers in full, where later
on parts are (de-)activated by a license file. The other
25% deliver the product to customers on a get what you
paid for basis.

Deployment - Respondents estimate that on average
4.26% of deployments fail and require extra assistance.
Some respondents, however, report up to 35% of failed
deployments. Approximately one fourth of the respon-
dents use InstallShield to deploy their products. Fur-
thermore, MSI (19%) and ZIP (24%) are popular for-



mats for delivery. Only 3 of the cases deliver their prod-
ucts as open source. 52% of the respondents uses an
update tool to update their customers’ configurations.
Customer data and content is separated from product
files by 68% of respondents. Furthermore, 40% of re-
spondents has functionality for correctness checking of
a customer’s configuration. Product update and installa-
tion tools check for harddisk space most often, with the
operating system and already present customer data as a
close second and third. The least is checked whether the
end-user is using the right hardware (6%). 21 respon-
dents report that their deployment tool, if any, cannot au-
tomatically (attempt to) resolve deployment problems.
For those tools that can resolve deployment problems,
the detection and use of data from previous installations
is most common.

In 49% of the respondents’ products, the product up-
date tool can deal with customizations. Update tools are
most commonly used for major and minor updates. The
tools are less commonly used for patch updates and con-
tent updates. In 34% of the cases the product update tool
can update the product at runtime. Furthermore, 85%
of the tools can be deinstalled without complex manual
steps. Furthermore, in 51% of the cases minor updates
can be undone. Finally, in 84% of the cases the prod-
uct can be installed in a Development-Test-Acceptation-
Production environment.

Usage and Activation - 95 percent of the respon-
dents use license files, containing information on the
purchased modules, the number of users, and the cus-
tomer name and address. Customers pay per floating
user or per user name most often. Pay per usage is quite
popular as well, with 19 of the 74 respondents using it
to bill their customers. 45% of the cases uses licenses
that expire. 13 product software vendors have mecha-
nisms in place that enables customers to renew a license
without the intervention of the vendor. 65% of the cases
provides temporary licenses on a regular basis. In 20%
of the cases licenses are automatically generated from
contracts. 28% of the vendors makes use of usage feed-
back reports. 78% of the vendors is aware of all cus-
tomizations that have been built on top of their products.
In 30% of the cases software vendors send back error
reports in case of a crash or error.

The average scores per practice are high, which ex-
plains that product software vendors perform well when
it comes to license management. Furthermore, they pro-
vide many different reporting features in their products
(which are sent back to the vendor in only 30% of the
cases, mind). Product software vendors perform well
when it comes to license management and product usage
reporting. This does not necessarily mean that this area

90

does not deserve attention, though. We believe there is
still much research to be done when it comes to the min-
ing of data from feedback reports.

6 Conclusions and Discussion

This paper presents the results of a survey of 74 prod-
uct software vendors in the Netherlands. The survey
was created using the CCU process evaluation model,
which is presented in detail. The survey allows us to
generalize conclusions from earlier research that CCU
processes of product software companies are generally
implemented to a very limited degree. Furthermore, the
results from the survey show that CCU improvements
have a significant positive effect on product success. Fi-
nally, the results demonstrate weak points in CCU pro-
cesses, such as a lack of CCU tools. In earlier work
the CCU evaluation model was presented [13], and vali-
dated at nine product software vendors. This work, how-
ever, could not easily be generalized to be applicable to
a larger group of product software vendors. The survey
enabled a further detailing of the model, adding weights
to practices and capabilities using an expert panel. Fur-
thermore, the survey enables us to validate our hypothe-
ses from the nine case studies and to show that CCU is
an area that urgently requires more research.

The survey results show that CCU is an underdevel-
oped area that requires more attention and tooling. The
areas that deserve most attention are the release, deliv-
ery, and deployment processes, due to the fact that prod-
uct software vendors on average only implement be-
tween one third and one half of the capabilities of each
practice. The main results of such research will improve
customer retention rates for product software vendors,
product success, and update and deployment reliability.

CCU research and tools should be geared towards re-
lease planning, knowledge delivery, component updat-
ing, and feedback reports. This is indicated by four
facts. Only 37% of the software vendors uses a for-
mal release planning. Secondly, only 20% of the soft-
ware vendors use their own product to share knowledge
with customers, such as product knowledge and product
news. In the area of deployment many product software
vendors do not perform any configuration correctness
checking or provide any checks before installation of a
product. finally, only 30% uses automatic error report-
ing from customers for the usage and activation process.
One of the most important contributions of the survey
is that CCU improvements show a significant relation-
ship with software product success. When also taking
into account that 16% of product software development



personnel is involved in CCU related processes, CCU
proves to be a fruitful area for research and evaluation.

The fact that many software vendors underperform in
crucial CCU processes and the many suggested products
by vendors that are currently unavailable on the market,
suggest that CCU is a developing process area of soft-
ware engineering. When looking at software products
currently available to support CCU processes it becomes
clear that especially in the area of knowledge interaction
between customers and vendors there is a lack of sup-
port tools. As a result of this we have started working
on the Pheme [1] prototype communication infrastruc-
ture for knowledge delivery. This infrastructure consists
of small server applications that are installed on differ-
ent nodes (for instance customers, vendors, and release
servers) that share different knowledge packages, such
as updates, product information, product feedback, etc.
We hope to implement the tool at a number of the re-
spondents of the survey.

References

http://www.cgbs.nl/Pheme.

http://www.isospice.com/.

http://www.limesurvey.org.
http://www.productsoftware.nl.

http://www.sdu.nl.

A. Carzaniga, A. Fuggetta, R. Hall, A. van der Hoek,

D. Heimbigner, and A. Wolf. A characterization frame-
work for software deployment technologies. In Technical
Report CU-CS-857-98, Dept. of Computer Science, Uni-

versity of Colorado, 1998.
E. Dolstra. Integrating software construction and soft-

ware deployment. In B. Westfechtel and A. van der
Hoek, editors, 1th International Workshop on Software
Configuration Management (SCM-11), volume 2649 of
LNCS, pages 102-117, Portland, Oregon, USA, 2003.
Springer-Verlag.

E. Dolstra, E. Visser, and M. de Jonge. Imposing a mem-
ory management discipline on software deployment. In
ICSE '04: Proceedings of the 26th International Con-
ference on Software Engineering, pages 583-592. IEEE,

2004.
R. S. Hall, D. Heimbigner, and A. L. Wolf. A coopera-

tive approach to support software deployment using the
software dock. In International Conference on Software

Engineering, pages 174-183, 1999.
S. Jansen. Software Release and Deployment at Planon:

a case study report. In Technical Report SEN-E0504.

CWTI, 2005.
S. Jansen. Customer configuration updating in a software

supply network. PhD Thesis, Utrecht University, 2007.
S. Jansen and S. Brinkkemper. Modelling deploy-

ment using feature descriptions and state models for
component-based software product families. In 3rd In-
ternational Working Conference on Component Deploy-
ment (CD 2005), LNCS. Springer—Verlag, 2005.

(7]

(8]

(9]

(10]

(1]

[12]

91

[13] S. Jansen and S. Brinkkemper. Definition and validation
of the key process areas of release, delivery and deploy-
ment of product software vendors: turning the ugly duck-
ling into a swan. In proceedings of the International Con-
ference on Software Maintenance (ICSM2006, Research

track), September 2006.
S. Jansen, S. Brinkkemper, and G. Ballintijn. A process

framework and typology for software product updaters.
In Ninth European Conference on Software Maintenance

and Reengineering, pages 265-274. IEEE, 2005.
S. Jansen, S. Brinkkemper, G. Ballintijn, and A. van

Nieuwland. Integrated development and maintenance of
software products to support efficient updating of cus-
tomer configurations: A case study in mass market erp
software. In Proceedings of the 21st International Con-

ference on Software Maintenance. IEEE, 2005.
S. Jansen, A. Finkelstein, and S. Brinkkemper. Provid-

ing transparency in the business of software: A mod-
elling technique for software supply networks. In Pro-
ceedings of the 8th IFIP Working Conference on Virtual

Enterprises, 2007.
S. Jansen and W. Rijsemus. Balancing total cost of own-

ership and cost of maintenance within a software sup-
ply network. In proceedings of the IEEE International
Conference on Software Maintenance, Philadelphia, PA,

USA, September, 2006.
Object Management Group. Deployment and Configura-

tion of Component-based Distributed Applications Spec-

ification. 2003.
E. Plsil, D. Blek, and R. Janecek. Sofa/dcup: Architec-

ture for component trading and dynamic updating. In
Proceedings of the International Conference on Config-
urable Distributed Systems, page 43, Washington, DC,

USA, 1998. IEEE.
D. Saywell and A. Cotton. Spreading the word: Practical

guidelines for research dissemination strategies. WEDC

publishers, UK, 1999.
A. van der Hoek. Design-time product line architectures

for any-time variability. In Science of Computer Pro-
gramming, special issue on Software Variability Man-

agement, to appear, 2004.
L. Xu and S. Brinkkemper. Concepts of product soft-

ware: Paving the road for urgently needed research.
In First International Workshop on Philosophical Foun-
dations of Information Systems Engineering. LNCS,

Springer-Verlag, 2005.
A. Zeller. Yesterday, my program worked. today, it does

not. why? volume 24, pages 253-267, New York, NY,
USA, 1999. ACM Press.

[14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

Acknowledgements

We are very grateful to the representatives of the soft-
ware vendors that participated in the DELIVER working
group of the Platform for Productsoftware and contributed to
the benchmark survey. Furthermore, the authors thank Merel
van Geest, Vedran Bilanovic, Ronald Batenburg, Lidwien van
de Wijngaert, and Tijs van der Storm for their many inspiring
ideas that contributed to this paper.



