

Abstract— The context in which software is developed

determines its evolution. Specifically for software developed as a

product by startups, the uncertainty of market, platform and

team not only determine the evolution of the product, but also of

the process. During the lifecycle of the product the organization

changes and different product improvement and process

improvement patterns can be observed. With this in mind the

Abernathy and Utterback dynamic innovation model proves to be

an applicable view for the evolution of product software and its

process. In this paper we introduce this theoretical model as a

basis for further research in the co-evolution of product software

development. Based on an anecdotal case study of a Software-as-

a-Service product an example of the co-evolution of process and

product in the software product industry is provided.

Index Terms— Software evolution, software process evolution,

product software, co-evolution

I. INTRODUCTION

HE product software industry is a rapidly growing sector

[1]. This industry builds software as a standardized

product which is sold to many customers [2]. Newcomers are

attracted by the outlook of selling a standard product to many.

Even after the burst of the dot-com bubble, many new product

software companies start. Unfortunately many have ceased to

exist, while trying to follow the footsteps of the Redmond

giant.

The entrepreneurial nature of these startup or green field

companies is highly attractive. However little seems to be

known about the dynamics of those companies operating in the

product software industry. A common image is a linear

approach; one starts with an idea, selects a development

method, elaborates on the idea, creates the product and finally

implements the product in the market. As if all product

I. Heitlager is with VivaCadena b.v., Keizersgracht 169-1, 1016 DP,

Amsterdam, The Netherlands since the start of the company in 2000 as

director technology (ilja.heitlager@vivacadena.com) and affiliated as external

researcher at the Institute of Information and Computing Sciences of the

University of Utrecht, The Netherlands.

S. Jansen and R. Helms are with the Institute of Information and

Computing Sciences of the University of Utrecht, The Netherlands.

S. Brinkkemper is full professor at the Institute of Information and

Computing Sciences of the University of Utrecht, The Netherlands

(s.brinkkemper@cs.uu.nl)

introductions would in fact follow the same path.

These startups are characterized by their high dynamics,

meaning rapid changes, and great uncertainty. The uncertainty

exists on three levels: market, platform and team level. On the

other hand they have to meet economical objectives, meaning

they have to carefully balance investments with returns. This

restricts their moves and choices.

It is too optimistic to assume that market uncertainty is

resolved with the first introduction of the product to the

market. Therefore product innovations will continue to take

place to meet market demand. This leads to the evolution of

the software product. As the company starts software

development and support processes cope with the major

changes in the early stages of the product. However these

processes are of a different order than processes required if the

company has to cope with scale.

The linear viewpoint is too restricted and in reality product

software companies show much more diverse dynamics. While

they try to reduce uncertainty on all three levels on one hand

and have to commit to economical objectives on the other

hand, both product and process co-evolve as the company is

maturing.

The community is now challenged to formulate a unified

theory on the evolution of software and software process [3]

[4]. At the same time, the industry is also much in need [2] as

some feel they have to ‘rewrite the books’ of software

engineering [5][6][7]. To understand the dynamics and co-

evolution of these product software startup companies we

would like to seek theoretical support in the dynamic

innovation model of Abernathy and Utterback, a well

established innovation model for manufacturing industries

[8][9][10] .

We show an example of the dynamic nature of these startup

environments as we describe the evolution of the product,

process and organization in its initial stages in a short

anecdotal case study. We discuss a Software-as-a-Service

(SaaS), formerly known as Application Service Provider

(ASP), product operating in the Supply Chain Management

Understanding the dynamics of product

software development using the concept of co-

evolution

I. Heitlager, S. Jansen, R. Helms and S. Brinkkemper

T

Industry. We reflect on the choices made and generalize on

these findings using the dynamic innovation model of

Abernathy and Utterback.

In the next section of this paper we elaborate on the

difference between the development of software in a project

based environment and product software developed in startup

company. In section III we discuss the anecdotal case study,

after which an explanation of the Abernathy and Utterback

theoretical model follows in section IV. We conclude in

section V.

II. THE CHARACTERISTICS OF A PRODUCT SOFTWARE

ENVIRONMENT

The construction of new piece of software in a start up

company for a niche market is an exciting endeavor. The niche

market is unknown and therefore the revenues and

requirements are uncertain, hard to predict. The team is new

and last, but not least, the platform to develop against is still to

be selected. Starting from these uncertainties the business is

seeking exponential growth by ‘opening up the market’.

Looking for growth is a natural response of a business to

prevent itself from early termination. A project however has

quite the opposite objective. By its very nature a project has to

end itself. There is a fundamental difference between software

delivered as a project and software developed as a product. It

is essential to understand these differences because they will

lead to different dynamics.

Since the goal of a project is to end itself, it looks for

certainty by being rigid in preferably all of the quadrupled:

time, resources, features and quality. This is shown in the

controversy between Disciplined and Agile methods of

software construction on following a plan versus the

embracement of change [13]. Security is formulated, at least

from the contract point of view. These contracts are preferably

offered to well trained and experienced teams.

Market uncertainty however is not offering the luxury of

contract security. These kinds of environments attract a more

entrepreneurial crowd, broadly orientated, with a sense for

market needs and prepared to pick up and perform whatever is

required. Furthermore, since new ground is covered many

issues are addressed for the first time. And these are not

necessarily handled in the most optimal and repeatable way.

Any system looking for exponential growth, such as a

business, is requiring flexibility and adaptability before

optimal efficient execution. Growth can only be assured, if the

system adapts to new requirements. As such for green field

business environments the agile principles, like valuing

interactions over process and working software over

documentation, seem to be more appropriate [13] [14]. We

observed however that these principles simply don’t last. A

business will change as it matures. In its initial organization is

more fluid; agile and entrepreneurial. As product and market

mature, many major changes are expected. However as the

market demand increases, the organization has to adopt and

prepare for scale. The product has to service many different

customers. Moreover, the organization has to keep up with the

large volume of requests and demands. This situation is

requiring more structured and efficient processes. This is much

more in line with disciplined rigid methodologies.

In these dynamic environments the decision making cannot

consider the product itself, but has to consider the production

means, meaning the development and support processes, also.

In such environments an integral view on the product

development as whole is required, taking all business and

engineering aspects into account [12]. It is essential to take

these into account in order to have a better understanding of to

the dynamics and evolution of both product and its production

processes. This conclusion is also drawn by Lehman with the

formulation of the 8
th

 law, evolution processes must be

considered multi-level, multi-loop and multi-agent feedback

systems, as with the ‘FEAST hypothesis’ that to achieve major

process improvement global dynamics must be taken into

account [3]. This will be explained in the next section.

III. AN ANECDOTAL CASE STUDY

We would like to exemplify the global dynamics and co-

evolution of product and process by the following anecdotal

case study. In this case study we will give a brief historical

overview of major events regarding the evolution of the

product, development and support processes and organization.

The object of study is VivaCadena. This Dutch company

was founded in 2000. Its mission is to become a world leader

as strategic service provider for enterprises, which see

strategic value in their distributions chains. Its market is retail

companies, wholesale companies and manufacturing

companies with respect to finished goods distribution. The first

author of this paper started as employee number 3 when the

company was founded.

The company constructed some prototypes initially, which

were tested in the market with customers. After one year the

first real customer arrived and the first version of the software,

with the same name as the company, was constructed. The

choice was made for a Software-as-a-Service based

application. VivaCadena offers its functionality as an add-on

product on existing Enterprise Resource Planning (ERP)

applications by exchanging data over the web. The choice for

add-on software was made, as since from the start the

constraint was set not to rebuild existing ERP systems. Instead

the core guiding principle was to offer additional intelligence

and leverage on the existing IT infrastructures.

Figure 1, VivaCadena Enterprise Architecture

In short VivaCadena is collecting transactional information

about the supply chain once a day from central systems (Figure

1). It will send back procurement parameters once a day. The

solution offers an improved planning methodology based on

the notion of responsive supply chains.

The customer enterprise has already invested into the IT

execution environment to capture sales and automatically

place orders. Physically it is exchanging transactional and

master data daily from the reference environment. After

processing at the VivaCadena servers new planning parameters

are sent back and users have access to exception reports over

the internet. The complete discussion of the application itself

however is outside the scope of this paper.

The investment mentality was to start with a small team (5

persons) to be flexible and to keep start up costs low.

Although not yet formulated in 2000, the team operated

according to the agile principles [14] of valuing working

software over documentation and relying on close interaction

instead of process. In this entrepreneurial environment the

organization relied on broadly oriented individuals without

written job descriptions. The first version of the product was

built with generic off-the-shelf database, interfacing and

reporting technology. The product, while already being

delivered and operational, underwent many major changes.

New insights were incorporated easily without too much

emphasis on process. The application, being an add-on

product, was mapped straight to the customer data models

without much consideration for data exchange interfacing

standards.

The marketing strategy was to prove the concept. Therefore

a wide range of different customers was targeted. As a

consequence the early selection of the customer platform could

not be made.

To put it differently: The product would still be in its

formulating stage, if it was defined to connect to all possible

platforms. This would surely lead to failure as it would run out

of resources before being finalized. Although we do not deny

the truth that applying changes during requirements

formulation is cheaper than after implementation, the company

had to deliver a product. Given the market uncertainty it was

assumed to be better to apply changes than to have a product

which is not attractive to the market or not ready at all. Only

once the market is more stable and requirements are better

known it is probably the right time to improve the change

process by better requirement management. Getting to know

the market is also a matter of restricting all possible options

and focus on the current opportunities.

The first three implementations of the product therefore

lacked a standard architecture and each individual

implementation looked like it was built up from the ground,

mixing generic and customized code in one monolithic

application. As such, bugs had to be fixed and tested for each

individual installation. During that first period focus was more

on delivery than on structure.

The application was a clear example of Lehman’s second

law; that complexity increases unless work is done to maintain

it [3][3][2]. The number of implementations was still

manageable by the small team, however it was clearly

understood that this approach was not scalable.

A fundamental difference between this particular application

and more traditional shrink-wrapped software is that the

VivaCadena application can be marked as consult-ware, a

popular term used for software that requires adaptation to the

specific environment for its implementation. It has a similar

problem feature set, but in the roll-out it still relies on

individual implementation, as it has to be fit to the specific

supply chain and platform configuration.

As mentioned before the monolithic nature and direct fit to

customer environment was perceived as non-scalable. And

after VivaCadena implemented the first three customers, the

company felt it had gained enough knowledge. As such

requirements could be reformulated for the development of a

new architecture. The monolithic nature made the system hard

to maintain, extend and test. To make the product scalable and

attractive to the many platforms, a clear distinction between

custom and generic code was required. With this reformulation

a dominant design emerged, leading to version 2.0. A choice

was made to deliver a generic product with standard data

loading and processing primitives based on an event driven

architecture. The architecture contains a standard extendable

set of business logic primitives to process the daily load. An

xml based domain specific language was developed to

customize for each individual installation and cope with the

various platforms and environments.

Figure 2, VivaCadena High Level Architecture

The application (Figure 2) has, on a high level, the

following modules: A core database (Storage: Core) which is

under strict versioning, a flexible and configurable interface

layer (INT-LOADER) to load, transform, filter and enrich

customer data (MSG). The loader is based on an event-driven

architecture. A configurable set of business logic (BUS-

LOGIC) primitives to calculate the planning and supportive

parameters. It is configurable to the specific implementation,

using a Process Definition Language (PDL). For the delivery

of exception reports it contains an off-the-shelf reporting

engine (REG-ENG), configurable using a Report Definition

Language (RDL).

The important notion is the clear distinction between core

development of data model and processing primitives and the

customization layer which composes features using a

secondary xml based domain specific language. The secondary

language allowed for easy configuration of the processing

primitives while restricting the implementation team leaving

the core feature extensions to the core development team. As

stated core elements are under strict version control.

A data quality (DQ) module is a supportive module for root

cause analysis after incidents. Since this is an add-on product

many incidents are caused by interfacing issues not necessary

internal to the system. Many times incidents are caused by data

issues from the customer. A lesson learned from the first few

implementations.

Once the architecture was set, architectural erosion was

controlled. Adaptation required for specific platforms were

handled in the customization layer using the Process Definition

Language. Furthermore the flexible architecture allowed better

extendibility since extensions to the core layer now only take

place in predefined areas. The extensions in VivaCadena are

classified in one of the following categories:

1. Support: all features and extensions required to

support the operation.

2. Technical: all features and extensions required to

cope with platform issues.

3. Conceptual: all features and extensions considered

functional requirements delivering the actual

functionality.

It was found that already after 8 installations the majority of

conceptual improvements stabilized as a clear example of the

fifth law of Lehman on the Conservation of Familiarity [2].

Initially, the team was solely occupied with the delivery of

the product. With the arrival of more customers things

changed however. Having more customers required more

resources and therefore new processes. Quality had to be

ensured and changes in operational systems had to be

propagated fast and in a controlled and repeatable way,

without interruption. The initial team, knowing the application

by heart, was able to propagate changes without much effort or

error. The growing team saw less experienced people. The new

team members did not have the chance to grow with the

application, like the original team members. Therefore they

lack a thorough and deep understanding of the application.

The product evolved from a custom build specific

monolithic application to a flexible architecture with a core

and custom layer. Using this approach the application is

protected against architectural erosion from the many different

platforms encountered in the different customer environments.

It also allowed better reuse and made way for improvements of

support processes.

The lack of experience as a consequence of growth is

buffered by more mature risk averting procedures. And the

standard core architecture allowed so. A whole new set of

process improvements where implemented, like the

development of unit tests for individual parts of the software.

Also automated deployment tools and packagers were

developed to ensure changes were propagated in a controlled

manner. A Development Test Accept and Production (DTAP)

environment was installed, to pretest every change before

rolling into production. This is a well known industry practice

to use multiple similar environments to separate core

development from testing and production. It allows to ‘pretest’

changes before they are accepted into production.

Product innovations still continued. New requests where

formulated by customers, which could not be resolved in the

initial core layer. The majority of the effort however was on

process improvements.

Basically more process was implemented by adding more

artifacts like tests and checklists. The notion of adding more

process later in a project is known, but unelaborated, by the

advocates of the Unified Process [16]. As such a whole

constellation of products was created for testing, configuration,

monitoring and deployment. As an insight we state that as the

business grows not only the product itself evolves, but also its

production means and support artifacts.

It was observed that while the initial team was still relying

on their craftsmanship to, for example, configure the product

directly into the database, the growth required more specific

tools to test and check. It required the mechanization of menial

and repeatable support tasks. For example, the original team

knew which parameters to check before releasing a new

implementation. The new team members did not always check

all parameters, although prescribed in documents. By molding

these tests into code the configuration parameters check was

standardized. Using this approach discipline is enforced by

mechanization.

Although the team was initially a great supporter of the

Agile camp they had to shy away from a few principles due to

increase of scale and introduction of new people. For example

the need for documentation became eminent for training and

supporting the new team members. Relying on one-on-one

knowledge transfer is too time consuming. Also solely relying

on tacit knowledge in people is not considered a business

continuity principle. At the start, the product was too volatile

to have the documentation cope with the changes. As soon as

the dominant design appeared documentation was brought

back to standard.

Figure 3, VivaCadena 2.0 organization chart

With the growth, the company reorganized two years ago

and set up multiple teams (Figure 3). The core versions are

being further developed by the original R&D team which still

operates according to Agile principles. New implementations

are done by an implementation team, which operates under a

firm waterfall like project approach. Such was now possible

since the company had now learned the pitfalls of performing

the implementations. Simple changes are maintained by a First

Line development team on an ad-hoc basis. This team is

operating in a pure reactive mode. Most of the simple changes

can be performed at customization level and the First Line

team operates as a filter to the core R&D team. The First Line

development team also operates as a root cause analysis team

for new and unknown incidents and bugs. With root cause

analysis solutions and process improvements are formulated

either on tool, operational or implementation level. Only those

that are caused at core application level are escalated to the

Emergency development team, basically one of the R&D team

members ‘on call’, for further analysis and resolution.

What is observed is that the company organization structure

and the application architecture evolve together and that due to

the nature of the company both see a clear separation in core

and customization. It is assumed that with the further growth

of the company more specialization will occur.

Currently the company has a dozen implementations over

several continents with about 40 employees under direct

contract and subcontract. It is preparing itself for a new wave

of customers. As such it is standardizing its procedures and

measurement systems to further improve quality. As a

technique it is separating roles and responsibilities and has

implemented quality measurement systems like ISO. It is now

improving the implementation process to make it more

standard and predictable.

When still being small, the company was relying on a few

generalists valuing people and interactions. Currently it has to

rely, for its implementations and further development, on

process and tool. The company is living according the Deming

rule, “it is not the person, it is the process”.

IV. ABERNATHY AND UTTERBACK MODEL REVISITED

While seeking for a better understanding of the observed

phenomena, we found a resemblance with the dynamic model

of innovation of Abernathy and Utterback for manufacturing

companies [8][9][10]. The essence of the model is that the

innovation patterns in product and process of a productive unit

change as it matures.

The model is based on historical studies in the

manufacturing industry in different areas such as photo

cameras, electronics industry, the development of the DC 3

airplane and other technologies. It states that the innovations in

product, process and company structure change drastically as

the company evolves from a small technology driven

enterprise to a high volume producer (see Figure 4). The

productive unit can be as simple as a startup company or a

single department of a larger company to the industry as a

whole.

Figure 4, The Abernathy and Utterback dynamic model

The model states that there are distinctive patterns. At the

start of a company the pattern is fluid as the atmosphere is

entrepreneurial and organization structure is flat. The company

is relying on broadly oriented and highly skilled labor. The

product characteristics are underdetermined and the product

sees many major changes many times with many custom

designs. As such production processes are inefficient. This

clearly marks the first year of the company.

The innovation patterns change as soon as market demand

increases. This phase is called specific and emphasis is on cost

reduction. The innovations are mostly on quality and pressures

to reduce costs. The product characteristics are stabilized with

undifferentiated standard products. Changes still occur but are

of incremental nature and the costs of changes are high. The

organizational structure is rigid and structured. As the

company is maturing the service management and

implementation process are showing signs of rigidity. This is

the structure VivaCadena is now moving towards.

As the productive unit moves from fluid to specific it has to

go through a transition phase. In this phase a dominant design

emerges, which is marked by a reduction of product

innovations. The organization sees many project and tasks

groups mostly occupied with process innovations to prepare

for scale. This is also found in the second stage of

VivaCadena.

For a full explanation of the model we refer to [8][9][10].

The mapping of the domain of manufacturing to software

development does require some clarification. In our mapping

we translate product innovation with any of the functional

requirement activities. We have mapped process improvement

to non-functional requirement implementation and process

improvement of the development and service management

processes. The concept of dominant design is translated to the

specific architecture which makes all future progress possible.

In the case study the advent of the VivaCadena 2.0

architecture.

V. CONCLUSION

It has often been asked by researchers how to set up an

evolutionary process of software development. The reasons for

evolution can only be understood by looking at a higher

abstraction level. Evolution caused by the system or context in

which software is developed.

Our research is focused on the specifics of product software.

This industry is characterized by great uncertainty in market

and platform. Resolving market uncertainty requires a flexible

organization. This offers many opportunities for startup

companies as opposed to more rigid and mature organizations.

However these startup companies add a third level of

uncertainty due to the team composition.

Although the body of knowledge on methods and techniques

is large, the acceptance and usage seems to be low [19].

VivaCadena was no different initially. We find an explanation

in the fact that market uncertainty demands matching

requirements first before process execution excellence

becomes a dominant theme. Market uncertainty can however

only be taken away with actual working software, and as a

result this software has to evolve and will see many changes.

The discussion between the Agilists and Disciplined

disciples in the software engineering methodology discussion

is often about which method is more appropriate. A much

heard statement is that agile methods only work for small

teams [13]. As market uncertainty can only be taken away with

actual working software an Agile approach seems more

appropriate. However as market demand is increases the

organization has to change to cope with the high volume. This

provides a need for more disciplined and process

improving/cost reduction approaches. As such the discussion

should not be held about the mutual exclusion of the

methodologies, but rather on their coexistence in time.

New customers will bring new requirements. Therefore

changes to the software will occur. However the Abernathy

and Utterback model predict that these changes are of a more

incremental nature. Therefore during the complete lifecycle of

the software product both product and process evolve, but with

different patterns. With the increase of market demand the

transition from fluid to specific has to take place.

The transition speed from fluid to specific is determined by

the market itself and not so much by a good development

process alone. We would like to state that a good evolution

theory should incorporate the notion of a dominant design,

being a firm architecture on which the product and process can

evolve.

As soon as the architecture is defined, scale up can take

place. If not, Lehman’s second law will be active as soon as

you hit the market. The importance of early investments in

architecture for flexibility described in the studies of

MacCormack [17][18].

We seek to formulate an evolutionary step-up model for the

product software development process and its organization in

co-evolution with software itself. As a start we have only

generalized on basis of an anecdotal case study and therefore

our research needs more empirical evidence. The evolutionary

model will support in the decision making for innovation

managers and product software engineers regarding how en

when to invest in product or process. Our initial findings have

shown that for product software development, like for

manufactured products, the dynamics, and therefore the order

of co-evolution of product and process, are predetermined.

ACKNOWLEDGMENT

The authors would like to thank Yohyon van Zantwijk

founder and owner of VivaCadena b.v. for the opportunity to

write this paper. The authors would also like to thank the

anonymous reviewers for there remarks.

REFERENCES

[1] OECD, The software sector: Growth, structure and policy issues,

OECD Reports DSTI/ICCP/IE(2000)8/REV2, 2001.

[2] L. Xu, S. Brinkkemper: “Concepts of Product Software: Paving the

Road for Urgently Needed Research”, CAiSE Workshops (2) pp. 523-

528, 2005.

[3] M.M. Lehman, “Rules and Tools for Software Evolution Planning and

Management”, Annals of Software Engineering, vol. 11, no. 1, pp. 15-

44, 2001.

[4] M.M. Lehman, SETh proposal, EPSRC, 2001.

[5] Web 2.0 conference, see http://www.web2con.com/.

[6] T. O’Reilly, Web 2.0 Manifest, O’Reilly, 2005, Available:

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-

web-20.html.

[7] 37 Signals, Getting Real, 2006, Available: http://www.37signals.com/

[8] J.M. Utterback and W.J. Abernathy, “A dynamic model of process and

product innovation”, Omega, 1975.

[9] W.J. Abernathy and J.M. Utterback , “Patterns of Industrial Innovation”,

Technology Review, 1978.

[10] J.M. Utterback, Mastering the Dynamics of Innovation, Boston, MA:
HBS Press, 1994.

[11] M.M. Lehman, D.E. Perry, W.M. Turski, “Why is it so hard to find

Feedback Control in Software Processes?”, Proceedings of the 19th

 Australasian Computer Science Conference, Melbourne, Australia,

Jan.-Feb. 1996.

[12] K. Rautiainen, et all, “4CC: a framework for managing software product

development”, Engineering Management Journal, vol. 4, no. 2, June

2002.

[13] B. Boehm and R. Turner, Balancing Agility and Discipline, A guide to

the perplexed, Reading, MA: Addison Wesley, 2005.

[14] Agile Manifesto, 2001, Available: http://www.agilemanifesto.org/.

[15] K.H. Bennett and V.T. Rajlich, “Software Maintenance and Evolution: a

Roadmap” in The Future of Software, C. ACM, pp. 73-87, 2000.

[16] W.E. Royce, Software Project Management: A Unified Framework.

Reading, MA: Addison-Wesley, 1998.

[17] A. MacCormack, “Product-Development Practices that Work: How

Internet Companies Build Software”, MIT Sloan Management Review,

vol. 42, no. 2, pp. 75--84, 2001.

[18] A. MacCormack and R. Verganti, “Managing the Sources of

Uncertainty: Matching Process and Context in Software Development”,

Journal of Product Innovation Management, vol. 20, no. 3, pp. 217-

232, 2003.

[19] M. Cusumano, A. MacCormack, C.F. Kemerer, W. Crandall, “A Global

Survey of Software Development Practices”, MIT Report 178, June,

2003, Available: http://ebusiness.mit.edu/.

