A Process Model and Typology for
Software Product Updaters

Slinger Jansen Sjaak Brinkkemper
Centre for Mathematics and Computer Scienceénstitute of Information and Computing Sciences
Amsterdam, The Netherlands Utrecht University
Email: r.l.jansen@cwi.nl Utrecht, The Netherlands

Email: s.brinkkemper@cs.uu.nl

Gerco Ballintijn
Centre for Mathematics and Computer Science
Amsterdam, The Netherlands
Email: g.ballintijin@cwi.nl

Abstract— Product software is constantly evolving underestimated.
through extensions, maintenance, changing require- The contribution of this article is threefold.
ments, changes in configuration settings, and chang- sty a process model is provided that embodies

ing licensing information. Managing evolution of th fi dat d th d
released and deployed product software is a complex € soltware update process an € uncovere

and often underestimated problem that has been the areas of deployed software evolution. Secondly, a
cause of many difficulties for both software vendors typology is provided to classify software product

and customers. This paper presents a process modelypdaters. Finally, the process model is used to

and typology to characterize techniques that support compare current techniques and technology, and to

product software update methods. Also, this paper . dicat hat il dtob d
assesses and surveys a variety of existing technique§n ICate what areas still need to be covered.

against the characterisation framework and lists un- Updati_ng Software can be seen a.SImOVing from
solved problems related to software product updaters. one configuration to another by addition, removal,

replacement, or reconfiguration of software func-
tionality. A physical software update contains the
applicable functionality and configuration alter-
Managing evolving software is a complex tashtions. By this definition, changing a license or
for software distributors and vendors. Moreoversome configuration setting can also be seen as
maintaining a large software system, such as gart of the software update process. To discuss
business ERP application, can be particularly diffthe concepts and technologies of this paper, we
cult and time consuming. The tasks of adding nemtroduce the notion of software product updaters.
features, adding support for new hardware devicés software updater automates the process steps
and platforms, system tuning, and defect fixing alhvolved with software updates. The main aim of
become exceedingly difficult as a system ages amdproduct updater is to continuously support user
grows. needs within changing circumstances. A product
One particular area of software evolution thatipdater must communicate updated configurations
requires more research, is the evolution of releasefl components to users but also communicate
and installed applications. To deal with the evoback to the vendor what parts of the environment
lution of released software, distributors and verhave changed, such as necessary components and
dors currently have the choice of either buyinghanged user requirements.
an (expensive) general product updating tool or The remainder of this paper is organized as
building propietary tools. After a thorough analfollows. Section 2 describes what the software
ysis, to be presented in this paper, we concludgpdate process looks like. The steps that make up
that both approaches unfortunately have significatite update process are modelled and explained. We
problems. On the one hand, existing software ugdso provide a typology for updaters and finally
date tools usually do not provide all the require@valuate current software updaters in relationship
functionalities. On the other, the effort and risk ofo the process model. Section 3 further defines
building product update tools “in house” is ofterthe steps of delivery and deployment and uses the

1. PRODUCTUPDATING

detailed descriptions to evaluate the same updaterdeliver Update - Once a customer has been in-
against the detailed descriptions. Finally, we diformed of an update, the vendor wishes to transfer
cuss the presented process model and our futdte update to the customer site by mail, e-mail,

work in Section 4. a website from which the customer can download
(pull) the update, or a memory resident process

2. THE PRODUCT SOFTWARE UPDATING that automatically receives and installs an update.
PROCESS Several issues, which partly are discussed in this

paper, arise when the transfer of an update occurs,
such as security problems and the format in which
This Section describes the software product ughe update is sent to the customer.
date process model and a detailed description is|nstall/Deploy Update - A customer installs
given of the steps that make up the process. Thg update wishing to gain functionality, improve
update process model has two participants: the Cyserformance, and fix problems. The deployment
tomer and the vendor. The process model, shown i updates is the most complex software update
Figure 1, is based on customer states and vendgfocess step, and is explained in further detail in
customer interaction, and has been derived fro&ection 3.
other update model descriptions and the evaluatedRollback/Deinstall Update - When a customer
tools. The customer blocks are states in this digvishes to go back to a previous configuration, an
gram, with the bold lined states being final stategipdate must be rolled back or deinstalled. Dein-
The Uninformed Customer state is the start poirtallation introduces requirements on the software
for the process. Solid arrows are state transitionggchitecture and its extensibility, such as state
which can be activated by both the vendor and byansformations to the older configurations, and
the customer. The dotted arrows show interactigRcremental updates instead of destructive updates.
between the vendor and the customer. Once the(Re)configure Update - An update can be
vendor offers the customer the ability to update ge)configured before activation and after activa-
product of that vendor the update process is infion. These settings can often be changed at run-
tiated. The following list describes all the proces§ime or by editing some configuration file, such as
steps in the product update model in detail: the httpd.conf file for the Apache webserver.
Advertise Update - An update will first be Vendor Feedback -An opportunity that is often
made available in some release repository. Whemgissed by software producers, but widely used by
vendor wishes to provide updates to its customerr instance Microsoft and Exact Software [1], is
the customers first need to be informed through the use of vendor feedback after the deployment
available communication channels. of an update or component. Feedback generated by
Receive Information - Customers inform them- the deployer of the update can be sent back to the
selves about updates from a vendor through comendor to be used for future testing and feedback
mercial channels, such as web sites, mail, e-madn the deployment process.
and portals. Other channels are memory residentActivate Update - After deployment the update
notifiers, such as the Windows Update Notifier, anghust be activated so that the update can be used
memory resident processes that automatically st@y the customer. The activation process step is
downloading an update once a customer acceptgeefold and consists of configuration, a license
the update that is sent. approval, and running the update. The configura-
Receive Update -A customer can receive antion binds all unbound variabilities that have been
update automatically and manually. Issues for réatroduced by the update. Licensing, if necessary,
ceiving the update are security, authenticity ofnakes sure that the software update is used accord-
the update, and integrity checks. Another issue iag to the vendor-customer contract.
the checking of pre-download dependency checksDeactivate Update - Deactivation is required
such as available disk space and the presencewatien a user does not want or is not allowed to
dependent components. use the update anymore. The most important part
Remove Update -The presence of the updateof deactivation is the return of a license key to the
data that has been downloaded during the Receileensing system or deployment and distribution
Update step, enables switching between configuraystem. If a deployment and distribution system
tions and redistribution of updates. For this reasas present, the deactivation process could also
the remove update is an explicit step in the updatégnal the server so that future updates for the
process model. deactivated software are no longer sent to this

2.1. Update Process Model

Uninformed /

Customer

Receive Info |

Advertise Update
o vendor |Advetsel pdate ,| Informed
: Customer
Vendor Receive Update Remove
Repository Y
DeliverUpdate »| Customer
Possesses Update
Rollback/
Deploy/Install Update I Deinstall
Re)configure Q
77 ()g Installed
Vendor Feedback Customer
Activate Update Deactivate
.
(Re)configure Q Activated
Customer
Fig. 1. Update Process Model
workstation or workspace. vendor distributes through a software distributer

or where a vendor uses COTS (commercial-off-

For our research we have evaluated the coveratfe-shelf components) in its product, however, we
of these process steps for a number of techniquabstract from such scenarios because these do not
currently used in the field or implemented byadd to our contribution.
academia. The evaluation shows what parts of the
process model are still uncovered, how cover
process steps have been implemented by the techin order to obtain more insight in the available
niques, and what requirements are imposed Ifoduct update technology we distinguish three
these implementations. types of product updaters. The typology is created

Each of the process Steps has Specific requir@ecause it creates more InSIght into the SpeCifiC
ments and problem areas. Two process steps ti@gilable technology and draws out the process
are crucial for the process model, being deliverjnodel for evaluation of product software update
and deployment, are further explained in detail ifechniques. The three types are distinguishable by
Section 3. The release and derelease steps on pking at delivery and deployment methods and
vendor side have not been included in this moddpolicies, and by looking at process coverage.
The reason for this is that in this paper we do « Package Deployment Tools -During the
not focus on the processes that take place on the evaluation of update tools many package
side of the software vendor. At present our focus deployment tools (PDTs) were encountered.
lies on the implementation and process model of These deployment technologies are based on
product update software and we are less interested the concept of a package, and on a site
in the development process of the software that repository that stores information representing
is actually distributed. The same holds for the the state of each installed package. A pack-
channels through which the software and require- age is an archive that contains the files that
ments are communicated. In our model we assume constitute a system together with some meta-
the presence of one vendor and one customer. data describing the system. Examples of these
A more complex scenario is imaginable where a package tools are Red Carpet, APT, Loki-

2. A Typology for Product Updaters

Updaté, RPM-updaté, Nix [2], SWUP, and

Portagé. RPM, Portage, and Nix are the most
advanced.

« Generic Product Updaters -Generic product
updaters (GPUs) are updaters that completel
abstract from a product and attempt to be
usable for any product. Two generic product
updaters that are available commercially are

InstallShield and PowerUpdafe

« Vendor Product Updaters - Vendor prod-
uct updaters (VPUs) specifically facilitate the
update process of one product, such as Mit
crosofts Windows XP update, Exact Soft-
ware’s Product Updater [3], and Symantec’s
LiveUpdate.

The typology described above is largely inspired
by Carzanigas grouping [4] of deployment tech-
nigues and Ajmanis listing of update techniques
[5]. One specific technology has not yet been
included in the typology, being runtime updaters,
which are further discussed in Section 4. Thig
technology, however, can still be described using

the updater typology.

2.3. Evaluation of Update Process Coverage

In Table | is displayed how the evaluated updats
techniques cover the process steps that make
the update process model. The process covera
for update techniques shows different classes g

updaters and enables identification of updaters. Th
process coverage also displays what areas certg
techniques focus on and what process steps ne
more research from both academia and the industr
e Means that a process is completely covered.

Means that the process is only partially covered
Coverage has been evaluated based on a number
characteristics of each process step, but for the sal
of brevity we cannot go into more detail. For in-
stance, partial support for “send update” means thg
there are means to get the update to the customg

such as a release repository and communicati
channels. Full support for “send update” means thg
push technology is also available.

2.4. Discussion

When looking at the process coverage of the
various techniques, there are clear distinctions be
tween the types. One of those distinctions is thﬂ

http://www.lokigames.com/
2http://www.kleemann.org/rpm-update/oldindex.html
Shttp://swup.trustix.org/
4http://www.gentoo.org/doc/en/portage-manual.xml
Swww.installshield.com

Swww.powerupdate.com

UPDATE TECHNIQUEPROCESSCOVERAGE

e
©
=
3] ° ole o °
2 ©
S| o
% [a)
o
=T ° oo o °
g5
< 5
o 8
E —
02 o ° . %
xc ;
8 S
)
o
S o
= o ()
CIC) E |oe|oe|ejo|0|0o|0o|0|0|e %
El & X
B @
ol ¥ .
Q| ¢ =
= ole|o) o 8
=] pud
S -
[n Q'E
— B
T ®© Q
‘J,"S_oooooooooooooo(—n:’
£35 =R}
=)
k]
g g
2
< o
(—Uqc)'coooooooooooooogL
Sl o o)
=) Q5
A S5
2o n >
U9 |.> 2 =T
j_e8'8_ooooooooooooooLLE
=) * >
O
X~
el X
inS8 38
ﬁcgooo o o|o >
-:,gﬂ) 3]
y_) L >
S S
Sl o
S92 o o
s = —
| s © ©
Vo |o|o|e]|e o|lo|o|e|e =
gf>o_ 3]
k) c
|~ 8
S ..
O|S)
at |32 &
OE|o|o|e|e o|lo|o|e|e D)
er, | &
i)
DPDPRPPRPREEEEEDDPDD
R /RRa)alalalal W%
~ QOO l>>>>
¥
ol 2l 8 | le| || |e
T o
@ S[3|g80 I IS g
v o |S|o|o| (8 S 2| |8
1) D T == =3 olaln o°
5] el 2] © | > oo D (Q
12 SslezE 2| BIEREPR
e SB[ERaA x2S
oSXrmiiKxzZzno/ aw=3ST
TABLE |

current package deployment tools do not suppadelivery and deployment are further explained. The
any form of vendor feedback. We will not discussipdating techniques are then evaluated against the
each type of updater. provided definitions.

The generic product updaters (GPUs) cover
many of the process steps. Especially in the aregy
of licensing and customer interaction the GPUs are ™
strongly represented. Firstly, the GPUs have to be Delivery formats identify many characteristics
used by different parties, sometimes even using updaters. Some updaters, such as PDTs focus
different platforms, and therefore need to providen the sole delivery of packages, whereas GPUs
as many different update scenarios as possiblgtempt to support the full myriad of delivery
Secondly, the GPUs in this evaluation are, with thisrmats. Delivery formats affect the size of updates
exception of the Software Dock [6], commerciathat are delivered to customers. The choice of
tools, and therefore licensing and customer interadelivery format therefore affects the total model of
tion are required. Finally, when compared to othatelivery, especially in an environment with limited
updaters, the GPUs have most options for vendegsources.
feedback, which is a commercially attractive solu- New configurations can be delivered to cus-

tion for getting feedback from customers. tomers in different ways. The configurations can

The package deployment tools (PDTs) are toolse transferred in the following formats:
specifically designed to deploy and install packages

on (usually) open source based systems. These’
systems are often extended with external tools from
which our evaluation abstracts. The tools therefore
cover all standard process steps strongly, but in the
areas of customer interaction and licensing they
are not sufficient. The reasons for this are part of
the nature of package deployment. Firstly, issues
such as vendor feedback are solved on another®
level, usually through bug reporting systems and
developer communities. Secondly, licensing is not *
an issue, since most of the software available in
the open source community is free.

Vendor product updaters (VPUs) are generally °
weaker in the areas of transferral and deployment,
yet stronger in the areas of customer interaction and
licensing. In the area of customer interaction the
VPUs are strongly represented, because that is their
"bread and butter”. One clear distinction between
VPUs and GPUs is that removal and rollback is not
supported in most VPUs. Whereas GPUs assume
that the deployed products will be removed, VPUs
assume their products and updates will remain
deployed forever, which is not surprising in the Without some pre-processing at the customer
case of updates for a virus removal tool or securitgite, each of these formats would place some
updates. VPUs are have restricted functionalityestrictions on the final deployment environment.
because they have been designed to only perfotdfowever, when correctly assembled before deploy-
these steps for one product and one way of vendanent these formats are interchangeable. For exam-
customer interaction. We see that many of thple, file deltas for a complete component can be
methods used in VPUs are simplifications of thesed to generate the new component. The chosen
more complex software update models. delivery format(s) affect different factors, such as
the size of updates and the deployment method, and
together with the deployment issues and deploy-

Two steps in the proposed process model forment policies uniquely identify an updater. Service
the core of our model, being delivery and depacks are similar to component packages in our
ployment. In this Section the process steps afelivery formats.

Delivery

Packages of Components A package of
components can be delivered to a customer.
Usually these packages first need to be un-
packed, before they can be installed and acti-
vated. Examples of techniques that use pack-
ages are RPM-update, APT, DeployMe, Red
Carpet, Portage, and Nix.

Components -A separate component consists
of a batch of files.

Files - The simplest form of transfer data
are separate files. These files can be licenses,
configuration settings, and binaries.

File deltas - Differences between a customer
site configuration and a vendor site configura-
tion can be expressed as file deltas. File deltas
can be transferred using efficient algorithms
such as Rsync [7]. A file delta is a listing
of differences between two file versions, with
which any of the two versions can generate
the other version. Sending just the difference
between files is more efficient than sending
the complete file.

3. DELIVERY AND DEPLOYMENT

3.2. Deployment deployment methods mentioned above can just as

The process of installing updates introduce¥ell be applied to source distributions.
most complexity for software vendors. The soft- Other issues that deal with deployment are the
ware architecture of a system determines the e®bility of a technique to provide scripting, to do
tensibility of the system, whether the update cafiéPendency analysis, to perform integrity checking,
occur at runtime or not, and whether there ar® deploy multiple versions of the same component,
scripting tools available to perform certain task§nd to enable push technology. Each of these abil-
(such asMake). Finally, dependencies need to pdties puts specific requirements on the deployment
checked during deployment, such as dependencd implementation architecture.
on the operating system, the presence of certainScripting is used to perform post deployment
components, the compatibility between the updaf@nfiguration on an update. Such scripts can be
and the current customer configuration, and mar{ged to execute, activate, configure, compile and
others. build an update. Scripts can be shell scripts, which

To deploy or install the delivered softwareare often used by package deployment tools, but
a choice for an appropriate deployment metho@dlso a specifically designed language that regis-
needs to be made. Some of these methods are: ters or unregisters Plug-ins. In the process model

. Overwrite - The deployment method em-Presented in Figure 1 we did not yet introduce

ployed most often by software vendors is th&erification of an update, such as synchronisation
method of overwriting the application ﬁ|es,checks, signatures, and completeness checkers. In

license files, or configuration settings. Th@ach of the three final states, a customer should be

solution bases itself on the assumption that trP!€ to perform verification steps. _
deployed set of files or components does not Dependency analysis is a much studied area of

change over time due to external forces. Thefd€Ployment [11] and aims to provide a complete
is no way to rollback an overwrite, unless théind consistent set of components. To achieve this
customer is using a versioned file system. Or@*@l many problems need to be tackled, such

example of an overwriting update method i€S support for multiple versions of components,
the Windows Updater which will first unregis_automatic resolution of dependencies, and explicit

ter a dll, overwrite it with a newer version, andanagement of the dependencies. One specific
register it again. Another example is the Exac@Pility of dependency checking that places extra
Software Product Updater, which compares afpduirements on th_e deployment architecture is
the versions of the locally available files to thdéh® Support for multiple versions of a component.

available files on the release site. When thefdultiple version support is therefore part of the
are differences, the product updater overwritedvaluation process model and is a technology that
only the different files on the customer site. enables switching between configurations and hav-

Plug-in - Plug-ins are often used to creatd"d tWo components depend on different versions

extensible configurations. The method of usf another component. Finally, push technology
ing Plug-in architectures simply support théPUtS extra requirements on the implementation of

extensions of a configuration by addition andn® messaging architecture of an updater. A cus-
removal of unique Plug-ins. Other Plug-intomer needs to be able to receive updates automat-

[8] can handle different versions of the samdcally and the vendor needs to be aware of all the
Plug-in as well. customer workspaces.

« Deinstall/Reinstall - For many applications 3 3 - gyajuation of Delivery and Deployment
an update constitutes the uninstallation of all .) . .
previous installed versions of that applica- The evaluation of the following techniques in-
tion’. cludes more specific definitions of the delivery and
In the open source community applications ar: eploymen't process steps than the evaluati.or?.done
often delivered and deployed as source distrib)y Carzaniga et al [12], because the definitions
’%E)ed to be made more explicit. The evaluation

tions. These source distributions first need to b ows that updaters arouped by iust the process
compiled, which can be seen as a separate ste P 'S group y € p
verage do not distinguish subtle yet important

in the deployment process. Well known system i in del f i d deol i

that assist with source distributions are Maak [9 erences in defivery formats and deploymen

and RTools [10]. It should be noted that the thre olicies. These differences have been listed here,
and provide a more detailed and defined evalua-

7Examples are: NullSoft Winamp, LavaSoft Ad-Aware, etc tion framework. To obtain the detailed framework,

we have focussed on delivery and deploymentlepend on files as the primary format of transfer
Delivery and deployment are more complex thato the customer. These files generally overwrite
the other process steps, because there are mthre previous installation, except when these files
alternatives to efficiently achieve the goals that ar@re special Plug-ins, such as virus definitions for
part of these process steps. LiveUpdate or unregistered dlls for Microsoft SUS.
The evaluation in Table Il includes a descriptioThe VPUs do not incorporate much dependency
of what formats of delivery are used by eaclanalysis, scripting, or integrity checking. Finally,
updater. The evaluation also describes what deplajte VPUs do not make use of push technology.
ment methods and architectures are supported by
each updater. Finally, some issues that uniquely
identify an update technique are evaluated. The The aim of this paper is to show that there is
criteria for evaluation are similar to those for Tableno product updater that provides all functionalities
I required by software vendors. On the other hand
From the evaluation of the updaters against thtbe development of VPUs is not an efficient solu-
descriptions of delivery and deployment we dedud#on, since each software vendor is implementing
the following. To begin with, the generic prod-a subset of the process steps shown in our process
uct updaters (GPUs) support all different deliverynodel. It is surprising that no GPU has yet been
formats. Especially the two most advanced tooladopted universally by the industry. One of the
in this category, PowerUpdate and InstallShieldgasons for presenting the process model in Figure
are the only tools able to deal with all formatsl and the typology is to redefine the requirements
of delivery. These are also the only tools that aren and re-establish the need for such GPUs.
able to send across file deltas, instead of complete
files. The GPUs are not well represented in th&1- Typology
deployment feature area, because these features ar€he types presented in the typology all have
specific to deployment environments, from whictspecific requirements and functionalities. To be-
the GPUs wish to abstract. However, GPUs amgin with GPUs are generally commercial tools
quite able when it comes to commercially interfocussed on deploying software on Windows based
esting push technology, especially when compareystems, with the exception of PowerUpdate, which
to the other updater categories. GPUs generally @ now focussing on multi platform deployment.
not make use of Plug-in technology, which can be Secondly, the discussed PDTs have some inter-
explained by the fact that Plug-ins are largely deesting characteristics. Nix, for instance, is a “stop
pendent on the Plug-in software architecture. GPUke world” system, whereas Portage and RPM
are strongly represented for the feature of scriptingmply extend current functionality. Nix, however,
since it is required to perform post installatiorstores components in isolation from each other in
configuration steps. a part of the file system called the store, where
The package deployment tools (PDTs) suppogach component has a globally unique name that
only package deployment and generally only sugnables pointer scanning. The construction of com-
port deinstallation and reinstallation to update ponent configurations and the resulting closures are
package. Scripting and dependency analysis atlescribed using Fix store expressions. Safe deploy-
always present in package deployment systenmsent is achieved by distributing these expressions,
to enable post deployment configuration and conalong with all components in the store referenced
pleteness checking with other components. PDTy them.
do not use push technology, which can be ex- Another interesting PDT is Portage. Portage,
plained by the fact that (open source) users of theas most other package management system, can
PDTs often do not want others to be in chargeesolve dependencies; but one feature that makes it
of their software. PDTs are strongly representedifferent is the fact that it also supports conditional
in the areas of dependency analysis and integritiependencies. By changing one configuration vari-
checking. The dependency analysis is required fable in a Portage configuration file it can disable
PDTs because packages have many dependewpfional support (and thus the need to depend on it)
relationships with other packages. Automatic resder particular features or libraries at compile time.
lution of these dependencies therefore is a valualie addition Portage enables multiple versions of
feature. Integrity checking prevents instability anghackages installed simultaneously to satisfy the de-
ensures authenticity. mands of other packages. The traditional approach
Finally, the Vendor product updaters (VPUSs) alto this problem has been to treat different versions

4, DISCUSSION ANDFUTURE WORK

Delivery Deployment Deployment
Format Policy n Issues o
@ =
| 2a| |8
1518 l8] |¢
2|5 slSlc|S2|2l2|e <
¢ |2 S22 |I81|B|8|5 |2)
L 3|E|8|lallC|2|%|S|2|B|2E|G]|S
e |€|S|lz|z|d|a|d8||A|8|E|S|a|d
PowerUpdate GPU || o . . ° ° . .
InstallShield GPU || o
Red Carpet GPU || o . . e | o | o o| o
Software Dock GPU ° . ° ° ° ° ° o o ° o
FileWave GPU ° . . o
APT PDT . ° ° ° °
RPMupdate PDT ° ° B B ° o
Nix PDT ° ° ° ° ° ° ° o
SWUP PDT . ° ° °
Portage PDT ° . ° ° ° ° o
Loki Update VPU . . ° o
Exact PU VPU B . o
Windows XP SUS| VPU ° ° ° o o o
LiveUpdate VPU . o | o .
Legend:e Full support;o Partial Support
GPU: General product updater; VPU: Vendor product updater;
PDT: Package deployment tool

TABLE Il
UPDATE TECHNIQUEBUSINESS ANDDEPLOYMENT ISSUES

of the same package as different packages withinvent the wheel. Another disadvantage is that the
slightly different names, such as with RPM andipdaters commonly perform destructive updates.
APT. Microsoft Software Update Services, for instance,

overwrites dlls, without any rollback functionality.
Thirdly, there are advantages and disadvantages

to VPUs. To begin with there are commercial A category of update technology that is not
advantages to VPUs. An important reason for usingpecified in this paper is runtime updating, because
VPUs instead of GPUs for software vendors isun-time updating is not widely applied for soft-
that they themselves are responsible for the updatare products yet. Much work has been done in
processes of their products. For Norton Anti-Virushe areas of runtime and dynamic updating [13].
for example, Norton is completely responsible foProviding a service or system that is available 24
security procedures, network management, and alburs a day is a commercially attractive solution
other aspects having to do with product updatingo many problems. These systems of course also
Often VPUs are a cheap solution over GPUsvolve with time, thereby requiring some extensible
however, VPUs can only cover a small problenmechanism. We shall not list these mechanisms
area compared to general product updaters and there, but Ajmani has created a list of mechanisms
complexity of the software updating process growand component frameworks [5]. There are two im-
as requirements increase. When requirements gertant factors to consider when looking at runtime
stated for the product updater to support differentpdating, being continuity and state transfer [14]
versions, customers, customisations, and licens¢t5]. An interesting technique, designed by Ajmani
it soon becomes apparent to the software veand Liskov [8], attempts to support many different
dor that specialized knowledge is required. Theersions of one component at runtime, thereby en-
limited availability of such tools and the cost ofabling runtime extension. Runtime updaters, how-
implementing a GPU, have lead many softwarever, are generally focussed around one technology,
vendors to develop their own VPUs and essentialjuch as CORBA or J2EE, and do not focus on

any other process modules than transferral andThe listed techniques can support the industry
deployment. Simple versions of these technologiemd can be inspirational for those designing their
are often used in other product updaters, such awn technique. The presented material paves the

Microsoft SUS or LiveUpdate. way to build a generally applicable product updater.
However, many of the problems mentioned in this
4.2. Delivery and Deployment paper have already been solved by tools such as

. Nix and the Software Dock. Our plan is to reuse
The discussed features of the deployment pro- . .

i . some of these techniques and build a component
cess introduce many questions about software up

dating techniques. To begin with, the file deltd/ameWork to support all aspects of the software

format and push technology is not (yet) Stronglupdate process. Such a tool can contribute to the

¥ndustry and open source community as a plaftform

represented among the evaluated software updaters. X .
. or development of update techniques and provide

The absence of the file delta format can be X" ctandard architecture for such a tool

plained by the fact that bandwidth and diskspace '

are cheap nowadays and therefore the time anth. Related Work

money invested in such technology is not prof-

thi duct undat d ¢ f}-}chniques. For the evaluation a list of techniques
IS paper are product updalters and cUSIomers i, sseq on runtime updating from Ajmani [5]

more Interested in having a working product thalﬂas been used. On the lower levels of component

g pmd;lCt thatlt.'sl acutely and alwayls up to d?t pdate architectures, Clegg [16] provides an eval-
econdly, mulliple versions are only SUPPOTtef g, o component update methods for imple-

by technologies from academia (software docl§h ; ;

. . . . t f -t dating.
Nix) and Portage. The complexity of dealing with enters ot run-ime updating
multiple versions of the same component, which.5. Conclusion

is crosscutting through a system, has not receivedrhe contribution of this article is threefold. To

sufficient attention. Finally, prgctically all toqls begin with we present a process model that repre-
perform some deployment environment checkingents the software update process and uncovers the
whether the tool checks for diskspace, such as e of deployed software evolution that require
Exact Product Updater, or provides an advancefl,re research. Also, we provide a typology that

customizable checking mechanism, such as theggifies software updaters. Finally, we use the

PowerUpdate and InstallShield GPUs. process model and typology to compare current
update tools.

4.3. Future Work

One requirement that has as of yet been undis- REFERENCES

cussed is what Carzaniga et al [12] refer to adll S. Jansen, G. Ballintijn, and S. Brinkkemper, “Software i
site abstraction, the ability to abstract from the Release and Deployment at Exact, A Case Study Report
) y Technical Report CWI, 2004.

vendor-customer model and introduce one or mor] E. Dolstra, E. Visser, and M. de Jonge, “Imposing a

redistribution sites into the model. Carzaniga et al memory ”\R/a”fgfmem diSSC]jtp””e oo software de%‘g’ggzﬁ"
already refer to a redistribution tool, the Interdock, \Eec s004. ¢ o e SNIneenng (ICSE04)

in their model, yet no implementation has yet beer3] s. Jansen, G. Ballintijn, and S. Brinkkemper, “Integrated
created. An open research issue is to redefine such SCM/PDM/CRM and Delivery of Software Products to

n architecture where (re)distribution of MDo- 160.000 Customers,” iffechnical Report CWI, sumbmit-
an architecture ere (e) stribution or compo ted for publication 2005.

nents, files, licenses, and configuration settings arg] R. S. Hall, D. Heimbigner, and A. L. Wolf, “Evaluating
modelled. software deployment languages and schema,ld8M,
. 1998, pp. 177-196.
The aim of the issues listed in this paper IS[5] s. Ajmani, “A review of software upgrade techniques for

to explicitly define software update problems ex- distributed systems,” Aug. 2002.
perienced in the field. One striking conclusion(€l R. Hall, D. Heimbigner, and A. L. Wolf, "A coopera-
hat be drawn from the evaluation is that re- tive approach to support software deployment using the
tha _Can _e) W V. uatl ! software dock,” inInternational Conference on Software
configuration is highly underestimated for product Engineering 1999, pp. 174-183. _
updating. Another problem is that many of thel?] A. Tridgell, *Efficient algorithms for sorting and synchro-

. f f d ; d nization,” Ph.D. dissertation, 1999.
requirements of so tW_ar_e vendors for product up'[8] S. Ajmani, “Automatic software upgrades for distributed
daters are not yet satisfied by GPUs. systems,” Apr. 2003, ph.D. thesis proposal.

[9] E. Dolstra, “Integrating software construction and soft- Software Dock - The Software Dock, a project that
ware deployment,” inllth International Workshop on started at the University of Colorado, is a system of
Software Configuration Management (SCM-1dgr. Lec- |gosely coupled, cooperating, distributed components
ture Notes in Computer Science, B. W(_estfechtel, Ed., Vofhat are bound together by a wide area messaging and
2649. Portland, Oregon, USA: Springer-Verlag, Mayeyent system. The components include field docks for

[10] aooé” Egrr}ggglg'lj Schaefer. and T. S. Yoo “RtooisMaintaining site specific configuration information by

Tools for software management in a distributed computing®nNSUmMers, release docks for managing the configuration
environment,” Summer 1988, pp. 85-93. and release of software systems by producers, and a

[11] M. Larsson and I. Crnkovic, “Configuration managemenvariety of agents for automating the deployment process.
for component-based systems,” Proc. Int. Conf. on FileWave - FileWave is quite similar to Red Carpet
Software Engineering (ICSE), May 2002001. with a lot less features. Mostly, FileWave focusses on

[12] A. Carzaniga, A. Fuggetta, R. Hall, A. van der Hoekdeployment of applications on Mac OS X environments,
D. Heimbigner, and A. Wolf, A characterization frame-though recently they have started to support Microsoft

13 S e 00, 1550 . D252 enironments as wel
ware updating,” irSIGPLAN Conference on Programming APT - The Advaced Pagkage Tool |nstal|s packaggs
Language Design and Implementati@001, pp. 13-23. and_ manages dependencies _automatlcally for Debian

[14] V. Mencl, Z. Petrova, and F. Plasil, “Update descriptior€nvironments. APT has been implemented for Red Hat
language,” inWeek of Doctoral Students WDS,a®99. by Connectiva.

[15] R. Bialek and E. Jul, “A framework for evolutionary, =~ RPMupdate - RPM is the Red Hat Package Manager.
dynamically updatable, component-based system§hia Nix - Nix is a system for software deployment de-
24t!’1 |IEEE International Confer_e_r_\ce on Distributed Com-\/ek)ped by the Trace research group. It Supports the
puting Systems Workshopachioji, Tokyo, Japan, March creation and distribution of software packages, as well

23-24 2004, pp. 326-331. - .
[16] S. Clegg, “Msc independent study: Evolution in extensibleas the installation and subsequent management of these

p on target machines.
t-based it , 2003. -
component-based systems SWUP - Swup is short for “Software Updater” and

ACKNOWLEDGMENT can automatically update packages together \withn,
. independent of the package manager.

We would like to thank Eelco Dolstra for our portage - Portage is the package manager for Gentoo
fruitful discussions on configuration settings. We.inux. Portage has some slight advantages over the
would also like to thank Sameer Ajmani for provid-other package deployment tools, such as conditional
ing an unpublished list of update techniques on-lingePendencies.

d Ti der St f ¢ ivel . Loki Update - The Loki Update Tool is a small tool
and 1is van der Storm for extensively reviewing, iiyen to support the most trivial tasks of updating, such

the paper. Finally, we would like to thank Arie vanas downloading and installing.

Deursen for his helpful review. Exact PU - The Exact Software Product Updater
provides the mechanisms for delivering packages and
APPENDIX updates to the customer. When the product updater is
SHORT DESCRIPTION OFUPDATE run at the customer site, it needs to be provided with
TECHNOLOGIESUSED an installation location (CD ROM or the Web), a license

file and a local installation that is updated.

PowerUpdate - PowerUpdate is a commercial mul- Microsoft SUS - Microsoft Software Update Service

customers. The updater works mainly at runtime.

?;iveUpdate - Symantec provides different types of

- - r’[b'rotection systems for computers connected through a

tegrity of pr.Od“CtS on the.C“SFomer side. , network. Symantecs Antivirus and Firewall software are
InstallShield - InstallShield is PowerUpdate’s IargestWidely used, and are updated through LiveUpdate. Our

tcr?r?e[e.tltorland.tdg:erfs f:joml PowertLdezli\/tlg in trf]tebfa(:t(%valuation also includes the license tool LiveSubscrip-
atitis only sutable for deployment on MICTOSOMt baS€(q, - hecause it covers a relevant part of the update
environments and cannot do integrity checking. Process

Red Carpet - Red Carpet is a software deploymen
tool for Linux. Red Carpet works through installtion
channels that can be used to communicate and deploy
updates at customers. Red Carpet supports automatic de-
pendency and conflict resolution. One important feature
of Red Carpet is that they provide Ximian, which is
basically a server that contains many different packages
that can be deployed for free.

supports features such as environment analysis and cros
platform deployment. PowerUpdate can also check i

