
Hints and feedback
in

learning environments for algebra
technology for following and helping students

Johan Jeuring
Joint work with Alex Gerdes and Bastiaan Heeren

Utrecht University and Open Universiteit Nederland
Computer Science

Symposium on Algebra and ICT, Utrecht

December 13, 2011

2[Hints and feedback in learning environments for algebra]

Learning environments for algebra §1

I There are many learning environments for algebra
I Learning by doing: learning environments for algebra

typically offer a wide variety of interactive exercises
I Learning through feedback: feedback services are often

delegated to external tools, such as computer algebra
systems, or domain reasoners

I A domain reasoner offers the possibility to:
• generate steps
• analyse steps

3[Hints and feedback in learning environments for algebra]

4[Hints and feedback in learning environments for algebra]

5[Hints and feedback in learning environments for algebra]

6[Hints and feedback in learning environments for algebra]

Feedback services §1

Our domain reasoners offer several feedback services:

I Diagnosis of a step by a user
I Hint on how to continue
I Worked-out solution
I Report common mistake (buggy rule)
I Check finished

This talk:

I How do we provide feedback services?
I What are the important concepts that play a role?

7[Hints and feedback in learning environments for algebra]

Outline of presentation §1

1. Introduction

2. Feedback services

3. Rewrite rules

4. Views

5. Strategies

6. Related work

7. Future work and conclusions

8[Hints and feedback in learning environments for algebra]

Outline of presentation §2

1. Introduction

2. Feedback services

3. Rewrite rules

4. Views

5. Strategies

6. Related work

7. Future work and conclusions

9[Hints and feedback in learning environments for algebra]

Feedback services §2

A domain reasoner offers the possibility to:

I generate steps
I analyse steps

We generate steps to

I give one or more hints on how to take a next step
I show a worked-out solution

We analyse steps to

I determine the correctness of a step
I detect applications of buggy rules
I check if an exercise is finished

10[Hints and feedback in learning environments for algebra]

Feedback services via the web §2

Our feedback services are available via the web, as web services.

For example, a learning environment can ask our domain
reasoners to get the first step in solving the linear equation

5 · (x − 1) = x − 1
2

The tool responds with: remove the division by multiplying with
2. (All in XML.)

11[Hints and feedback in learning environments for algebra]

Documentation §2

The documentation on

http://ideas.cs.uu.nl/docs/latest/exercises.html

shows the details:

I Services, for example onefirst
I Exercises, for example algebra.equations.linear
I Rules, for example

• good: algebra.equations.linear.remove-div
• buggy: algebra.equations.buggy.minus-minus

I Examples, see page

http://ideas.cs.uu.nl/docs/latest/exercises.html

12[Hints and feedback in learning environments for algebra]

Users §2

The following learning environments use our feedback services:

I The Digital Mathematical Environment from the
Freudenthal Institute
> 100.000 hits

I Math-Bridge (based on ActiveMath)
> 50.000 hits, but partly untraceable: local installations of
our services

I Mathdox
Couple of thousands hits

I Our own tutor for logic
> 10.000 hits

13[Hints and feedback in learning environments for algebra]

Requirements §2

We have the following requirements for our feedback services,
and hence our domain reasoners:

I they can automatically diagnose student interactions
I they satisfy the cognitive fidelity principle
I their components are

• observable
• adaptable
• composable

Furthermore, to make the code-base manageable:

I they are generic

14[Hints and feedback in learning environments for algebra]

Concepts in our domain reasoners §2

1. Rewrite rules
• Specify how terms can be manipulated
• Can represent common misconceptions (‘buggy rules’)

2. Views and canonical forms
• For recognizing forms and defining notational conventions
• Missing link between rules and strategies
• Examples: ax2 + bx + c = 0; 3 1

2 ; e1 + e2 + . . .+ en

3. Rewrite strategies
• Guide the process of applying rewrite rules
• Use a strategy language, similar to tactic languages

(theorem proving), CFG’s, and parser combinator libraries

15[Hints and feedback in learning environments for algebra]

Outline of presentation §3

1. Introduction

2. Feedback services

3. Rewrite rules

4. Views

5. Strategies

6. Related work

7. Future work and conclusions

16[Hints and feedback in learning environments for algebra]

Rewrite rules §3

I distr-times rewrite rule for mathematical expressions:

a · (b + c) ⇒ a · b + a · c

I Exercise: solve 3 · (4 · x − 1) + 3 = 7 · x − 14

3 · (4 · x − 1) + 3 = 7 · x − 14
⇒ { distr-times }

12 · x = 7 · x − 14
⇒ { var-left, parameter = 7 · x }

5 · x = −14
⇒ { times, parameter = 1

5 }
x = −14 / 5

16[Hints and feedback in learning environments for algebra]

Rewrite rules §3

I distr-times rewrite rule for mathematical expressions:

a · (b + c) ⇒ a · b + a · c

I Exercise: solve 3 · (4 · x − 1) + 3 = 7 · x − 14

3 · (4 · x − 1) + 3 = 7 · x − 14
⇒ { distr-times }

12 · x = 7 · x − 14
⇒ { var-left, parameter = 7 · x }

5 · x = −14
⇒ { times, parameter = 1

5 }
x = −14 / 5

17[Hints and feedback in learning environments for algebra]

Applying and recognizing rules §3

I A rule can be applied by a domain reasoner:
3 · (x + 4) ⇒ 3 · x + 3 · 4

to give a hint or to show a worked-out solution
I and a domain reasoner can analyse a student submission to

detect the application of a rule:

3 · x + 3 · 4 OK with previous expression 3 · (x + 4)?

Apply distr-times (and other rules allowed in this
expression) to the previous expression and compare the
result

18[Hints and feedback in learning environments for algebra]

Rules with parameters §3

I Some rules need extra information, such as:
var-left, parameter = 7 · x
times, parameter = 1

5
...

I This information is used to give feedback to students, for
example when they ask for a hint

I It is computed within the rule
I What do we do when recognizing a different parameter?

12 · x ≡ 7 · x − 14 ⇒ 6 · x ≡ x − 14

19[Hints and feedback in learning environments for algebra]

Parametrized rules §3

I Parametrized rules are rules that contain free
meta-variables:

∀ c : a = b ⇒ a + c = b + c
These are not proper rewrite rules anymore

I A parametrized rule can only be applied when instantiated
with a particular expression for c

I We can often construct an analyser that recognizes the
application of a parametrized rule in a student submission

20[Hints and feedback in learning environments for algebra]

Buggy rules §3

Buggy rules capture common errors of students:

(a + b)2 ⇒ a2 + b2

a
b + c

d ⇒
a+c
b+d

∀ c : a = b ⇒ a + c = b − c

I Each class of exercises has a number of buggy rules
attached

I Buggy rules are tried whenever a student submission is
incorrect

I Based on teachers’ experience
I Can be overdone (Hennecke’s thesis gives 350 buggy rules

for the fraction domain)

21[Hints and feedback in learning environments for algebra]

Minor rules §3

Minor rules are rules without a visual effect, used to perform
tasks such as:

I moving down into a term
I updating an environment, for example with the ‘nice’

factors found in a quadratic equation
I automatic simplification, such as replacing x + 0 by x
I keeping track of where we are in the solution to the

exercise, for example: at form ax2 + bx + c = 0, apply the
quadratic formula

Minor rules play an important role when implementing the
‘gestalt view’ related rules that analyse the current form of the
expression to determine which next step to take.

22[Hints and feedback in learning environments for algebra]

Ordering rules §3

I Often, many rules are applicable to an expression
I A student may apply any of the applicable rules, but which

rule do we show when giving a hint?
I Which rule to show when:

5 · (x − 1) = x − 1
2

I We order rules to select the most relevant rule
I To solve linear equations, we could use

ruleOrdering = [removeDivision, flipEquation, times]

22[Hints and feedback in learning environments for algebra]

Ordering rules §3

I Often, many rules are applicable to an expression
I A student may apply any of the applicable rules, but which

rule do we show when giving a hint?
I Which rule to show when:

5 · (x − 1) = x − 1
2

I We order rules to select the most relevant rule
I To solve linear equations, we could use

ruleOrdering = [removeDivision, flipEquation, times]

23[Hints and feedback in learning environments for algebra]

Outline of presentation §4

1. Introduction

2. Feedback services

3. Rewrite rules

4. Views

5. Strategies

6. Related work

7. Future work and conclusions

24[Hints and feedback in learning environments for algebra]

What does a step look like? §4

But wait:

3 · (4 · x − 1) + 3 = 7 · x − 14⇒ 12 · x = 7 · x − 14?

You are doing much more in this step!

3 · (4 · x − 1) + 3
⇒ (3 · 4 · x − 3 · 1) + 3
⇒ (12 · x − 3 · 1) + 3
⇒ (12 · x − 3) + 3
⇒ (12 · x + (−3)) + 3
⇒ 12 · x + (−3 + 3)
⇒ 12 · x + 0
⇒ 12 · x

24[Hints and feedback in learning environments for algebra]

What does a step look like? §4

But wait:

3 · (4 · x − 1) + 3 = 7 · x − 14⇒ 12 · x = 7 · x − 14?

You are doing much more in this step!

3 · (4 · x − 1) + 3

⇒ (3 · 4 · x − 3 · 1) + 3
⇒ (12 · x − 3 · 1) + 3
⇒ (12 · x − 3) + 3
⇒ (12 · x + (−3)) + 3
⇒ 12 · x + (−3 + 3)
⇒ 12 · x + 0
⇒ 12 · x

24[Hints and feedback in learning environments for algebra]

What does a step look like? §4

But wait:

3 · (4 · x − 1) + 3 = 7 · x − 14⇒ 12 · x = 7 · x − 14?

You are doing much more in this step!

3 · (4 · x − 1) + 3
⇒ (3 · 4 · x − 3 · 1) + 3

⇒ (12 · x − 3 · 1) + 3
⇒ (12 · x − 3) + 3
⇒ (12 · x + (−3)) + 3
⇒ 12 · x + (−3 + 3)
⇒ 12 · x + 0
⇒ 12 · x

24[Hints and feedback in learning environments for algebra]

What does a step look like? §4

But wait:

3 · (4 · x − 1) + 3 = 7 · x − 14⇒ 12 · x = 7 · x − 14?

You are doing much more in this step!

3 · (4 · x − 1) + 3
⇒ (3 · 4 · x − 3 · 1) + 3
⇒ (12 · x − 3 · 1) + 3

⇒ (12 · x − 3) + 3
⇒ (12 · x + (−3)) + 3
⇒ 12 · x + (−3 + 3)
⇒ 12 · x + 0
⇒ 12 · x

24[Hints and feedback in learning environments for algebra]

What does a step look like? §4

But wait:

3 · (4 · x − 1) + 3 = 7 · x − 14⇒ 12 · x = 7 · x − 14?

You are doing much more in this step!

3 · (4 · x − 1) + 3
⇒ (3 · 4 · x − 3 · 1) + 3
⇒ (12 · x − 3 · 1) + 3
⇒ (12 · x − 3) + 3

⇒ (12 · x + (−3)) + 3
⇒ 12 · x + (−3 + 3)
⇒ 12 · x + 0
⇒ 12 · x

24[Hints and feedback in learning environments for algebra]

What does a step look like? §4

But wait:

3 · (4 · x − 1) + 3 = 7 · x − 14⇒ 12 · x = 7 · x − 14?

You are doing much more in this step!

3 · (4 · x − 1) + 3
⇒ (3 · 4 · x − 3 · 1) + 3
⇒ (12 · x − 3 · 1) + 3
⇒ (12 · x − 3) + 3
⇒ (12 · x + (−3)) + 3

⇒ 12 · x + (−3 + 3)
⇒ 12 · x + 0
⇒ 12 · x

24[Hints and feedback in learning environments for algebra]

What does a step look like? §4

But wait:

3 · (4 · x − 1) + 3 = 7 · x − 14⇒ 12 · x = 7 · x − 14?

You are doing much more in this step!

3 · (4 · x − 1) + 3
⇒ (3 · 4 · x − 3 · 1) + 3
⇒ (12 · x − 3 · 1) + 3
⇒ (12 · x − 3) + 3
⇒ (12 · x + (−3)) + 3
⇒ 12 · x + (−3 + 3)

⇒ 12 · x + 0
⇒ 12 · x

24[Hints and feedback in learning environments for algebra]

What does a step look like? §4

But wait:

3 · (4 · x − 1) + 3 = 7 · x − 14⇒ 12 · x = 7 · x − 14?

You are doing much more in this step!

3 · (4 · x − 1) + 3
⇒ (3 · 4 · x − 3 · 1) + 3
⇒ (12 · x − 3 · 1) + 3
⇒ (12 · x − 3) + 3
⇒ (12 · x + (−3)) + 3
⇒ 12 · x + (−3 + 3)
⇒ 12 · x + 0

⇒ 12 · x

24[Hints and feedback in learning environments for algebra]

What does a step look like? §4

But wait:

3 · (4 · x − 1) + 3 = 7 · x − 14⇒ 12 · x = 7 · x − 14?

You are doing much more in this step!

3 · (4 · x − 1) + 3
⇒ (3 · 4 · x − 3 · 1) + 3
⇒ (12 · x − 3 · 1) + 3
⇒ (12 · x − 3) + 3
⇒ (12 · x + (−3)) + 3
⇒ 12 · x + (−3 + 3)
⇒ 12 · x + 0
⇒ 12 · x

25[Hints and feedback in learning environments for algebra]

Similar problems §4

I Economy of rules: I want to describe
a · (b + c) ⇒ a · b + a · c

but preferably not also:
a · (b − c) ⇒ a · b − a · c
−a · (b + c) ⇒ −a · b − a · c

I Canonical forms: a + (−b) should be presented as a − b
I Granularity: users at different levels need different

granularity of rules
I Recognizing user steps: when showing steps to users, we

want to apply some simplifications automatically. When
recognising steps, however, such simplifications are not
obligatory

26[Hints and feedback in learning environments for algebra]

Views §4

A view views an expression in a particular format:

I a match function returns an equivalent value in a different
format, for example:

match plusView (a − b) ⇒ a + (−b)
match plusView (−(a + b)) ⇒ −a +−b

I a build function to return to the original domain, for
example:

3 · (4 · x − 1)
⇒ { match plusView on 4 · x − 1 }

3 · (4 · x + (−1))
⇒ { distribute · over + }

3 · 4 · x + 3 · (−1)
⇒ { simplify using rationalView }

12 · x − 3

27[Hints and feedback in learning environments for algebra]

Views and rules §4

I Many rules use one or more views for matching on the
left-hand side

I Many rules use one or more views to clean up a result
expression after rewriting

I Views and parametrized rules solve the problem of making
all steps in solving an exercise explicit

28[Hints and feedback in learning environments for algebra]

Outline of presentation §5

1. Introduction

2. Feedback services

3. Rewrite rules

4. Views

5. Strategies

6. Related work

7. Future work and conclusions

29[Hints and feedback in learning environments for algebra]

Strategies for solving quadratic equations §5

I Naive strategy:
Apply rewrite rules exhaustively until solved

I Algorithmic strategy:
(1) Write the equation in the form ax2 + bx + c = 0
(2) Solve using the quadratic formula

I Expert (‘Gestalt view’) strategy:
(1) Inspect the form of the equation
(2) Possibly rewrite the equation into a nice form
(3) Based on the form of the equation, use the appropriate
substrategy:

(3a) In case no linear term: take square root
(3b) In case no constant term: factorise and solve
(3c) In case nice factors: factorise and solve
(3d) Use quadratic formula

29[Hints and feedback in learning environments for algebra]

Strategies for solving quadratic equations §5

I Naive strategy:
Apply rewrite rules exhaustively until solved

I Algorithmic strategy:
(1) Write the equation in the form ax2 + bx + c = 0
(2) Solve using the quadratic formula

I Expert (‘Gestalt view’) strategy:
(1) Inspect the form of the equation
(2) Possibly rewrite the equation into a nice form
(3) Based on the form of the equation, use the appropriate
substrategy:

(3a) In case no linear term: take square root
(3b) In case no constant term: factorise and solve
(3c) In case nice factors: factorise and solve
(3d) Use quadratic formula

29[Hints and feedback in learning environments for algebra]

Strategies for solving quadratic equations §5

I Naive strategy:
Apply rewrite rules exhaustively until solved

I Algorithmic strategy:
(1) Write the equation in the form ax2 + bx + c = 0
(2) Solve using the quadratic formula

I Expert (‘Gestalt view’) strategy:
(1) Inspect the form of the equation
(2) Possibly rewrite the equation into a nice form
(3) Based on the form of the equation, use the appropriate
substrategy:

(3a) In case no linear term: take square root
(3b) In case no constant term: factorise and solve
(3c) In case nice factors: factorise and solve
(3d) Use quadratic formula

30[Hints and feedback in learning environments for algebra]

A strategy specification language §5

We need the following concepts for specifying a strategy:

I apply a basic rewrite rule, (”· distributes over +”)
I sequence (”first . . . then . . . ”) s <?> t
I choice (”use one of the substrategies for ...”) s <|> t
I unit elements succeed , fail
I labels label ` s
I recursion fix f
I apply exhaustively (”repeat . . . as long as possible”) repeat
I traversals (”apply . . . top down”) topDown

31[Hints and feedback in learning environments for algebra]

A strategy for solving quadratic equations §5

quadraticStrategyG =
label "Quadratic Equation Strategy" $ repeatS $

-- Relaxed strategy: even if there are "nice" factors,
-- allow use of quadratic formula
somewhere (generalForm <|> generalABCForm)
|> somewhere zeroForm
|> somewhere constantForm
|> simplifyForm
|> topForm

where
-- ax2 + bx + c == 0, without quadratic formula

generalForm = label "general form" ...

generalABCForm = ...

...

32[Hints and feedback in learning environments for algebra]

Domain reasoners: the main idea §5

I Use rewrite strategies for exercises
I A strategy describes valid sequences of rules
I View a strategy specification as a context-free grammar
I Track intermediate steps by means of parsing

Feedback service Parsing problem

finished is the empty sentence (ε) accepted?

provide hint compute the “first set”

worked-out solution construct a sentence

diagnosis try to recognize the rewrite rule that
was used, and parse this rule as the
next symbol of the input

32[Hints and feedback in learning environments for algebra]

Domain reasoners: the main idea §5

I Use rewrite strategies for exercises
I A strategy describes valid sequences of rules
I View a strategy specification as a context-free grammar
I Track intermediate steps by means of parsing

Feedback service Parsing problem

finished is the empty sentence (ε) accepted?

provide hint compute the “first set”

worked-out solution construct a sentence

diagnosis try to recognize the rewrite rule that
was used, and parse this rule as the
next symbol of the input

33[Hints and feedback in learning environments for algebra]

No new thing under the sun? §5

Many approaches to plan recognition transform it into
a parsing problem. A grammar specifies how plans are
decomposed into actions and sub-actions, and a
particular sequence of observations is regarded as a
sentence to be parsed with respect to this grammar.

From: Formal Approaches to Student Modelling, John Self,
1994.

34[Hints and feedback in learning environments for algebra]

Contributions §5

A strategy language should be generic, support the automatic
calculation of feedback, satisfy the cognitive fidelity principle,
and be observable, adaptable, and composable.

Our contribution is:

I Observability of strategies, which makes it possible to
• communicate a strategy
• verify a strategy
• adapt a strategy

I Compositionality of strategies, which makes it easier to
combine and reuse strategies

35[Hints and feedback in learning environments for algebra]

Outline of presentation §6

1. Introduction

2. Feedback services

3. Rewrite rules

4. Views

5. Strategies

6. Related work

7. Future work and conclusions

36[Hints and feedback in learning environments for algebra]

Computer algebra systems §6

Computer algebra systems (CASs) are almost useless for
interactive exercises.

I A CAS can calculate a final answer, and use that to check
correctness of a step

I A CAS has no clue about intermediate steps
I It is hard to determine if an expression is a solution:

factor (x2 − 6 x + 9) gives (x − 3)2, but what about

(3− x)2

(x − 3) (x − 3)
(3− x) (3− x)
9 · (1− x

3)
2

I A domain reasoner can be viewed as an idiosyncratic CAS

37[Hints and feedback in learning environments for algebra]

Specifying feedback per exercise §6

Specifying feedback per exercise is infeasible:

I authoring size: each exercise has to be extended with all
feedback possibilities: can easily blow up every exercise by
a factor of 10 to 20. Generation might help here.

I maintenance: strategies are regularly extended or adapted.
If strategies and feedback are encoded in exercises you get
a maintenance nightmare

I adaptivity: ‘my students can solve a linear equation in a
single step’...

I student model: there needs to be central control on
feedback to be able to report on student progress

38[Hints and feedback in learning environments for algebra]

Other domain reasoners §6

Carnegie learning: Algebra Cognitive tutor

I Advanced, commercial tool, widely used in the US

Superconnie

I Advanced set of tools for editing maths and interactive
exercises

Mathpert

I Applying rewrite rules to (sub)expressions. No free editing

None of these use observable, compositional rewrite strategies.

39[Hints and feedback in learning environments for algebra]

Outline of presentation §7

1. Introduction

2. Feedback services

3. Rewrite rules

4. Views

5. Strategies

6. Related work

7. Future work and conclusions

40[Hints and feedback in learning environments for algebra]

Future work: student model §7

I Existing tools with student models:

I Student models are rather coarse, and say nothing about
particular misconceptions

I Our domain reasoner gets very detailed information about
student interactions: develop a student model based on
these interactions

I Use this student model to make students work on
particular misconceptions

41[Hints and feedback in learning environments for algebra]

Future work: automatic assessment §7

I Automatic assessment is applied standard in multiple
choice questions, and sometimes also based on final
answers using a CAS.

I On paper, teachers correct derivations
I We have performed automatic assessment in the

programming domain. True positives: 89%
I For mathematics this is promising too: filter out correct

solutions and solutions with common errors to focus on
real problems

42[Hints and feedback in learning environments for algebra]

Future work: adapting domain reasoners §7

I Students are different

I Teachers are different
I How can we best support adaptation of our strategies,

both based on student model, and based on teacher
requirements?

42[Hints and feedback in learning environments for algebra]

Future work: adapting domain reasoners §7

I Students are different
I Teachers are different

I How can we best support adaptation of our strategies,
both based on student model, and based on teacher
requirements?

42[Hints and feedback in learning environments for algebra]

Future work: adapting domain reasoners §7

I Students are different
I Teachers are different
I How can we best support adaptation of our strategies,

both based on student model, and based on teacher
requirements?

43[Hints and feedback in learning environments for algebra]

Conclusions §7

I We have developed a framework based on rewrite rules,
views, and strategies, which can be used to relatively easily
develop domain reasoners

I Our domain reasoners are used by quite a few learning
environments for mathematics, such as the Freudenthal
Institute’s DWO

I By making algebraic procedural knowledge explicit in
open-source software, we think we can make big steps
forward in helping a student learn algebra

More info

I http://ideas.cs.uu.nl/
I J.T.Jeuring@uu.nl

http://ideas.cs.uu.nl/
mailto:J.T.Jeuring@uu.nl

	Introduction
	Feedback services
	Rewrite rules
	Views
	Strategies
	Related work
	Future work and conclusions

