
A Programming Tutor for Haskell
Exercises and Projects

Johan Jeuring, Alex Gerdes, and Bastiaan Heeren

CEFP, June 2011

In this document we provide both exercises and some projects. The exercises serve to introduce
you to several aspects of our programming tutor. The projects are more challenging. Actually,
some projects deal with some of our ongoing research, and we welcome contributions from par-
ticipants. Substantial contributions on these projects are probably interesting enough for a scien-
tific paper, and we would welcome co-authors/contributors.

Exercises

1. Familiarise yourself with the programming tutor for Haskell by playing with it. Please visit
http://ideas.cs.uu.nl/ProgTutor/.

2. Install the programming tutor on your machine. The sources for the programming tutor
can be downloaded from http://ideas.cs.uu.nl/trac/wiki/Download. Follow the instruc-
tions in the README file.

3. Take your favourite beginner’s exercise, and add it to the programming tutor. Look at the
file src/FPTutor.hs to find out how you add a new exercise to the programming tutor. You
might be interested in how the strategies are inferred from model solutions: have a look at
the function compileStrategy in the module Domain.FP.StrategyInference.

4. Add a strategy for the prelude function scanr to the strategy prelude file Domain.FP.PreludeS.
Include some of the properties for scanr.

5. The goal of this exercise is to develop a simple strategy for rewriting a λ-term into SKI-
combinators (see Feedback/trunk/src/Domain/Lambda.hs). For example, λx → λy → x y
can be transformed into S (S (K S) (S (K K) I)) (K I), where

S = λx y z→ x z (y z)
K = λx y→ x
I = λx→ x

The file Lambda.hs contains a definition of a datatype for the λ-calculus, which can represent
variables, application and abstraction. This datatype is an instance of the class Uniplate, so
that you can use combinators like somewhere, bottomup, etc. to traverse over λ-terms. We can
produce an SKI-term from a λ-term, by means of the following rules:

– λx→ y⇒ I, if x y,
– λx→ a⇒ K a, if x does not appear free in a
– λx→ a b⇒ S (λx→ a) (λx→ b)

The document contains a strategy for calculating an SKI-term form a λ-term, but the defini-
tion of the rules is missing. Add these definitions.

6. Suppose we want to support a student with transforming her program to a point-free pro-
gram. A point-free program is a program without variables, using only function composition,
application (denoted by :@: here), and other constructs. For example,

λx→ λy→ x :@: y
⇒ {Write infix operation as prefix function }

λx→ λy→ (:@:) :@: x :@: y
⇒ { Remove an abstraction: λy→ f :@: y⇒ (f :@:) }

λx→ ((:@:) :@: x :@:)
⇒ {Write sectioned operation (last occurrence of :@:) as a prefix function }

http://ideas.cs.uu.nl/ProgTutor/
http://ideas.cs.uu.nl/trac/wiki/Download
src/FPTutor.hs
Feedback/trunk/src/Domain/Lambda.hs


λx→ (:@:) :@: ((:@:) :@: x)
⇒ { Introduce composition }

λx→ ((:@:) ◦ ((:@:) :@:)) :@: x
⇒ { Remove an abstraction }

(((:@:) ◦ ((:@:) :@:)) :@:)
Define rewrite rules and a strategy for transforming a λ-term (extended with infix operations,
and possible other constructors for representing special λ-terms) to a point-free program.
Termination will prove to be hard, if at all possible. You can reuse the file Lambda.hs for this
exercise.

7. (a) The lecture notes contain definitions of the functions empty and firsts. Another grammar
analysis function that is useful in top-down parsing is the function follow, which returns
the symbols that can follow upon a non-terminal in a derivation using a context-free
grammar. In our situation a non-terminal is a strategy, and a non-terminal that appears
in the right-hand side of a production is a recursive non-terminal. Such a strategy is in-
troduced by means of Rec i for some natural number i, and referred to by means of Var i.
We want the function follow to determine the rules that can be applied after a strategy
starting with a Rec has been used recognized. Define function follow.

(b) Use the functions empty, firsts, and follow to determine whether or not a strategy is LL(1).
A strategy is LL(1) if given the next input symbol, we know which path to take in a
strategy, and no backtracking is required. If a grammar is not LL(1), left-factoring might
help to make it LL(1).

Projects

1. At the moment our tutor does not support datatypes. Which refinement rules do we need to
add to also support the development of datatypes in our tutor?

2. Sometimes we want to enforce a student to use a particular construct in a program, for exam-
ple, we might ask: define reverse using the function foldl. Think about how to provide support
for either enforcing or disallowing particular solutions in a strategy. Can we solve this by
annotating model solutions using pragma’s, for example?

3. If we accept a solution of a student, we know it is provably equal to a model solution, and
hence correct. We cannot prove a solution to be wrong. Think about how to add support
for proving a student to be wrong to our framework. Proving a student to be wrong can be
done by other showing that a student solution doesn’t pass some unit tests we specify for
a solution, or by formulating a contract, and showing that a student solution doesn’t fulfill
the contract. To perform tests or verify contracts on incomplete solutions, we have to adapt
existing unit testers or contract checkers.

2


