
A Programming Tutor for Haskell

Johan Jeuring
Joint work with Alex Gerdes and Bastiaan Heeren

Computer Science
Utrecht University and Open Universiteit Nederland

CEFP, Budapest, Hungary

June 2011

[CEFP: A Programming Tutor for Haskell]

Learning to program

Learning to program is hard. We don’t know exactly why, but:

I Beginners often have misconceptions about the syntax
and semantics of a programming language

I Analysing and creating a model of the problem that can
be implemented is difficult for a beginner

I Decomposing a complex problem into smaller subproblems
requires experience

I Most compilers give poor error messages

Can we develop an environment that supports learning to
program?

[CEFP: A Programming Tutor for Haskell]

A programming tutor for Haskell at CEFP?

I How do you write a functional program? How can I learn
it?

I Answer depends on who is asking
I Beginners: practice with many small exercises, and learn

from the feedback you get
I More experienced functional programmers: study a large

software system, and refactor and extend it at several
points.

These lectures: a programming tutor for Haskell targetting
beginners, which has been implemented in Haskell, using quite
a few advanced Haskell constructs.

[CEFP: A Programming Tutor for Haskell]

Outline of presentation

Programming environments for novices

Programming tutors

An example

Strategies for programming

Wrap up

[CEFP: A Programming Tutor for Haskell]

Programming environments for novices

[CEFP: A Programming Tutor for Haskell]

[CEFP: A Programming Tutor for Haskell]

[CEFP: A Programming Tutor for Haskell]

[CEFP: A Programming Tutor for Haskell]

An error message when using a Haskell compiler:

Prelude> let main = putChar ’a’ >> putChar

<interactive>:1:26:
Couldn’t match expected type ‘IO b’

against inferred type ‘Char -> IO ()’
In the second argument of ‘(>>)’, namely ‘putChar’
In the expression: putChar ’a’ >> putChar
In the definition of ‘main’: main = putChar ’a’ >> putChar

Mentioning that the function putChar is applied to too few
arguments, is probably more helpful for novice programmers.

[CEFP: A Programming Tutor for Haskell]

[CEFP: A Programming Tutor for Haskell]

[CEFP: A Programming Tutor for Haskell]

[CEFP: A Programming Tutor for Haskell]

Programming environments for novices

Quite a few programming environments for novices have been
developed:

I Scratch, Alice, and many predecessors
I ABC, Genie (structured editor for Pascal)
I Special editors for ‘mainstream’ programming languages
I Intelligent programming tutors

The categories of environments focus on (sometimes slightly)
different aspects of problems in learning (to program):

I Wanting to learn
I Learning by doing
I Learning through feedback

[CEFP: A Programming Tutor for Haskell]

Programming tutors

[CEFP: A Programming Tutor for Haskell]

Programming tutors

Programming tutors focus on learning through feedback. Most
tutors provide feedback to novice programmers by:

I giving hints (in varying level of detail)
I showing worked-out solutions
I reporting erroneous steps

So why aren’t programming tutors used everywhere?

[CEFP: A Programming Tutor for Haskell]

Challenges for programming tutors

Despite the potential advantages, programming tutors are not
widely used.

I Building a tutor is a substantial amount of work
I Using a tutor in a course is hard for a teacher: adapting or

extending a tutor is often very difficult or even impossible
I Having to specify feedback with each new exercise is

often a lot of work

Preferably, a programming tutor:

I supports easy specification of exercises
I automatically derives feedback and hints

[CEFP: A Programming Tutor for Haskell]

Approach to program construction

Some well-known approaches to constructing correct programs
are

I Use pre- and post-conditions to construct or verify a
program

I Refine a specification to an executable program
I Transform a program to a program with some desirable

properties

Our approach: construct a program that is provably equivalent
to a model solution.

Amounts to program refinement, but with a post-condition
expressed in terms of program equality.

[CEFP: A Programming Tutor for Haskell]

Approach to program construction

Some well-known approaches to constructing correct programs
are

I Use pre- and post-conditions to construct or verify a
program

I Refine a specification to an executable program
I Transform a program to a program with some desirable

properties

Our approach: construct a program that is provably equivalent
to a model solution.

Amounts to program refinement, but with a post-condition
expressed in terms of program equality.

[CEFP: A Programming Tutor for Haskell]

A programming tutor for Haskell

We are developing a programming tutor for Haskell. Using the
tutor, a student can:

I develop her program incrementally, in a topdown fashion
I receive feedback about whether or not she is on the right

track
I can ask for a hint when she is stuck
I see how a complete program is stepwise constructed

A teacher specifies an exercise by means of model solutions.

The tutor targets first-year computer science students.

Our tutor is an environment like ABC, with feedback
functionality, for a ‘mainstream’ language.

[CEFP: A Programming Tutor for Haskell]

[CEFP: A Programming Tutor for Haskell]

An example

[CEFP: A Programming Tutor for Haskell]

An example interactive session

Programming task: write a program that reverses a list:

reverse = <?>

Tutor response on Hint:
There are several ways you can proceed:
I Introduce a helper function that uses an accumulating

parameter.
I Use the foldl function.
I Use explicit recursion.

[CEFP: A Programming Tutor for Haskell]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse ′ <?>
where

reverse ′ acc <?> = <?>

Tutor response on Hint:

Apply reverse ′ to [], or use pattern matching for the second
argument of reverse ′.

[CEFP: A Programming Tutor for Haskell]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse ′ []
where

reverse ′ acc [] = <?>

Tutor response on Hint:
Refine the right hand side of the empty list case.

[CEFP: A Programming Tutor for Haskell]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse ′ []
where

reverse ′ acc [] = []

Tutor response on Check:

Incorrect [] in the right hand side of reverse ′ on line 3

[CEFP: A Programming Tutor for Haskell]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse ′ []
where

reverse ′ acc [] = acc

Tutor response on Hint:

Define the non-empty list case of reverse ′

[CEFP: A Programming Tutor for Haskell]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse ′ []
where

reverse ′ acc [] = acc
reverse ′ acc (x : xs) = <?>

Tutor response on Hint:

Define the recursive call of reverse ′

[CEFP: A Programming Tutor for Haskell]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse ′ []
where

reverse ′ acc [] = acc
reverse ′ acc (x : xs) = reverse ′ (y : acc) <?>

Tutor response on Check:

Error: Undefined variable y

[CEFP: A Programming Tutor for Haskell]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse ′ []
where

reverse ′ acc [] = acc
reverse ′ acc (x : xs) = reverse ′ (x : acc) xs

Tutor response on Ready?:
Done! You have correctly solved the exercise.

[CEFP: A Programming Tutor for Haskell]

Strategies for programming

[CEFP: A Programming Tutor for Haskell]

Strategies for programming

I A strategy specifies how to incrementally refine a program
I We use a strategy to calculate all kinds of feedback
I We have developed a combinator language for strategies,

using which we can develop and compose strategies

[CEFP: A Programming Tutor for Haskell]

reverse

There are several ways you can define the function
reverse :: [a] → [a], which reverses a list of elements.

reverse1 [] = []

reverse1 (x : xs) = reverse1 xs ++ [x]

reverse2 = reverse ′2 []

where reverse ′2 acc [] = acc
reverse ′2 acc (x : xs) = reverse ′2 (x : acc) xs

reverse3 = foldl (flip (:)) []

[CEFP: A Programming Tutor for Haskell]

Strategy example

The third program for reverse:

reverse3 = foldl (flip (:)) []

is recognised by the strategy:

patBind
<?> pVar "reverse"
<?> app <?> var "foldl"

<?> ((paren <?> app <?> var "flip"
<?> infixApp <?> con "(:)"

)

<%> con "[]"
)

[CEFP: A Programming Tutor for Haskell]

Representing strategies

Components of our strategy language:
1. Rewrite and refinement rules

2. Choice σ <|> τ

3. Sequence σ <?> τ

4. Interleave σ <%> τ

5. Unit elements succeed, fail
6. Labels label ` σ

7. Recursion fix f

I Labels are used to mark positions in a strategy
I Combinators are inspired by context-free grammars, and

by the algebra of communicating processes.

[CEFP: A Programming Tutor for Haskell]

Refinement rules

A refinement rule refines a hole.

Expression refinement rules:

<?> ⇒ λ<?> → <?> -- Introduce lambda abstraction
<?> ⇒ if <?> -- Introduce if-then-else

then <?>
else <?>

<?> ⇒ v -- Introduce variable v

Declaration refinement rule:

<?> ⇒ f <?> = <?> -- Introduce a function binding

[CEFP: A Programming Tutor for Haskell]

Holes

I A hole (<?>) is a placeholder for an incomplete part of a
program

I An exercise is finished when it does not contain holes
anymore

I We have holes for the following constructs:
I declarations, function bindings, expressions, alternatives,
patterns

The abstract syntax is augmented with hole constructors.

data Expr = Lambda Pattern Expr
| If Expr Expr Expr
| App Expr Expr
| Var String
| Hole
| . . .

[CEFP: A Programming Tutor for Haskell]

Recognizing flip

For Haskell’s prelude function flip:

flip = λf x y → f y x

we define the prelude strategy flipS, which takes a strategy fS
recognising a function f , and recognises both:

flip f
λx y → f y x

which explains the implementation of flipS:

flipS fS = app <?> var "flip" <?> fS
<|> lambda <?> pVar "x" <?> pVar "y"

<?> app <?> fS <?> (var "y" <%> var "x")

[CEFP: A Programming Tutor for Haskell]

A strategy prelude

I We have defined a strategy prelude for functions in
Haskell’s prelude

I Besides definition and use, these strategies can also be
used to recognise other variants, such as defining foldl in
terms of foldr:

foldl op e ≡ foldr (flip op) e ◦ reverse

[CEFP: A Programming Tutor for Haskell]

Using the prelude

patBind
<?> pVar "reverse"
<?> app <?> var "foldl"

<?> ((paren <?> app <?> var "flip"
<?> infixApp <?> con "(:)"

)

<%> con "[]"
)

Becomes

patBind
<?> pVar "reverse"
<?> foldlS (paren <?> flipS (infixApp <?> con "(:)"))

(con "[]")

[CEFP: A Programming Tutor for Haskell]

Program transformations

I Strategies derived from model solutions may be rather
strict and reject equivalent but only slightly different
programs

I Some of these differences cannot or should not be
captured in a strategy, such as inlining a helper-function

I We use the program transformations η- and β-reduction,
and α-conversion from the λ-calculus, to deal with such
differences

I Additionally, we perform desugaring rewrite steps
I Of course, comparing two programs for equality is in

general undecidable

[CEFP: A Programming Tutor for Haskell]

Normalisation

Normalisation proceeds as follows:

1. α-conversion
2. desugaring/preprocessing steps

I optimise constant arguments
I inlining: replace an expression by its definition
I rewrite infix notation to prefix
I rewrite where to let
I ...

3. β- and η-reduction

[CEFP: A Programming Tutor for Haskell]

Normalisation example

reverse = foldl f [] where f x y = y : x⇒ { where to let }
reverse = let f x y = y : x in foldl f []⇒ { Infix operators to (prefix) functions }
reverse = let f x y = (:) y x in foldl f []⇒ { Function bindings to lambda abstractions }
reverse = let f = λx y → (:) y x in foldl f []⇒ { Remove multiple lambda abstraction arguments }
reverse = let f = λx → λy → (:) y x in foldl f []

[CEFP: A Programming Tutor for Haskell]

Feasibility of using model solutions

I We only recognise variants of model solutions
I We cannot determine whether or not a solution is wrong

(but see one of the labs accompanying these lectures)
I In an experiment with lab exercises from first-year

students:
I our tool recognised 90% of the good solutions
I using 5 model solutions.

[CEFP: A Programming Tutor for Haskell]

Automatically deriving programming strategies

We automatically derive a strategy from a model solution:

I teachers can use Haskell
I much easier than specifying a strategy by hand
I combine solutions using <|>

We go from a model solution to a programming strategy by

I Pattern matching on the abstract syntax tree
I Mapping each (possibly combination of) language

construct to its corresponding refinement rule
I Using prelude strategies and the interleave combinator
<%> to add flexibility

[CEFP: A Programming Tutor for Haskell]

Calculating feedback

How do we calculate feedback?

I A strategy is specified as a context-free grammar over
refinement (or rewrite) rules

I Most feedback is calculated from the grammar functions
empty and firsts

I To verify that a submitted program follows a strategy we:
I apply all allowed rules to the previous program
I normalise the programs thus obtained
I and compare these against the normalised program
submitted by the student

[CEFP: A Programming Tutor for Haskell]

Relating strategies to locations in programs

I A program is constructed incrementally
I At the start there is a single hole
I Refinement rules introduce and refine holes
I A refinement rule always targets a particular location in

the program:

foldl (flip <?>) <?> ⇒ foldl (flip <?>) some_argument

I Every refinement rule is extended with information about
the location of the hole it refines

[CEFP: A Programming Tutor for Haskell]

Wrap up

[CEFP: A Programming Tutor for Haskell]

Background

I We have developed strategies and our strategy language
since 2006, and used it in
I algebra: solving all kinds of (in)equations, simplifying
expressions

I linear algebra
I propositional logic

I Our feedback services are used by
I The Freudenthal applets for high-school mathematics,
used by tens of thousands of pupils

I The MathDox mathematical learning environment for
mathematics (university and high-school)

I The European Math-Bridge service for remedial
mathematics, used by thousands of starting university
students all over Europe

[CEFP: A Programming Tutor for Haskell]

DWO Math Environment (with feedback)

[CEFP: A Programming Tutor for Haskell]

Related work

I Strategies are used in program transformation tools and
rewriting systems

I Strategies closely correspond to proof tactics used in
Isabelle, Coq, etc.

I Strategies have not been used for
recognition/parsing/feedback purposes before

I Existing programming tutors often start with reasoning on
an abstract level, pushing a student into a particular
direction

I In most tutors, developing an exercise is quite a lot of
work

I Tutors do not use strategies to give feedback

[CEFP: A Programming Tutor for Haskell]

Rest of the lectures

We have 4 slots to study the tutor for Haskell, its background,
and to work on exercises or a research project:

I Slot 1: Introduction, overview, tutors, strategies
I Slot 2: A strategy language
I Slot 3: A strategy recogniser
I Slot 4: Brief overview of the ideas framework.

Introduction to the exercises/project work

[CEFP: A Programming Tutor for Haskell]

Learning goals

I Construct a strategy for a particular kind of exercises
I Analyse and describe properties of a strategy
I Adapt our framework:

I the strategy language
I the strategy recogniser
I the feedback

[CEFP: A Programming Tutor for Haskell]

Exercises, projects, slides, and notes

We have made all our material available on

http:
//people.cs.uu.nl/johanj/homepage/Publications/CEFP/

I Exercises: exercises.pdf
I Slides:

I slides1.pdf: Introduction, overview, tutors, strategies
I slides2.pdf: The strategy language
I slides3.pdf: A strategy recogniser
I slides4.pdf: Brief overview of the ideas framework.
Introduction to the exercises/project work

I Lecture notes: notes.pdf

http://people.cs.uu.nl/johanj/homepage/Publications/CEFP/
http://people.cs.uu.nl/johanj/homepage/Publications/CEFP/
exercises.pdf
slides1.pdf
slides2.pdf
slides3.pdf
slides4.pdf
notes.pdf

[CEFP: A Programming Tutor for Haskell]

Software

Experiment on-line:

http://ideas.cs.uu.nl/ProgTutor/

Build the tutor on your own machine:

http://ideas.cs.uu.nl/trac/wiki/Download

http://ideas.cs.uu.nl/ProgTutor/
http://ideas.cs.uu.nl/trac/wiki/Download

[CEFP: A Programming Tutor for Haskell]

Project 1: Adapting feedback

A teacher should be able to add feedback to a model solution.

reverse = foldl {-# FEEDBACK Note ... #-} (flip (:)) []

and it should be possible to disallow or enforce particular
solutions described by a strategy:

reverse = {-# USEDEF #-} foldl (flip (:)) []

Furthermore, we might want to add a property to a function,
and use that in a strategy:

reverse =

{-# PROP foldl op e == foldr (flip op) e . reverse #-}
foldl (flip (:)) []

Implement these ideas for adapting strategies.

[CEFP: A Programming Tutor for Haskell]

Project 2: Automatic contract checking

We want the student’s definition reverse = <?> to satisfy the
function contract:

(x : true) → {y | y ≡ reverse x}

for some model solution of reverse. If a student refines with
<?> ⇒ foldl <?1> <?2>, this holds if both

assert ((x : true) → (y : true) → {z | z ≡ flip (:) x y} <?1>

assert (≡ []) <?2>

Strategies (and normalisation) help in constructing such
refinement (proof) steps.

Investigate if we can use contracts for blaming incorrect steps.

[CEFP: A Programming Tutor for Haskell]

Expectation management

I The current release of the tutor has been developed over
the last few months, and been released yesterday night

I The tutor still has to be tested in the classroom
I It will contain some glitches here and there
I Please report!

[CEFP: A Programming Tutor for Haskell]

Conclusions

Strategies can be used to calculate feedback for introductory
programming tasks.

More info:

I http://ideas.cs.uu.nl/
I johanj@cs.uu.nl
I alex.gerdes@ou.nl

http://ideas.cs.uu.nl/
mailto:johanj@cs.uu.nl
mailto:alex.gerdes@ou.nl

	Programming environments for novices
	Programming tutors
	An example
	Strategies for programming
	Wrap up

