A Programming Tutor for Haskell

Johan Jeuring
Joint work with Alex Gerdes and Bastiaan Heeren

Computer Science
Utrecht University and Open Universiteit Nederland

CEFP, Budapest, Hungary

June 2011

8 Open Universiteit
www.ou.nl

Learning to program

Learning to program is hard. We don’t know exactly why, but:

» Beginners often have misconceptions about the syntax
and semantics of a programming language

» Analysing and creating a model of the problem that can
be implemented is difficult for a beginner

» Decomposing a complex problem into smaller subproblems
requires experience

» Most compilers give poor error messages

Can we develop an environment that supports learning to
program?

8 [CEFP: A Programming Tutor for Haskell]

A programming tutor for Haskell at CEFP?

» How do you write a functional program? How can | learn
it?

» Answer depends on who is asking

» Beginners: practice with many small exercises, and learn
from the feedback you get

» More experienced functional programmers: study a large
software system, and refactor and extend it at several
points.

These lectures: a programming tutor for Haskell targetting

beginners, which has been implemented in Haskell, using quite
a few advanced Haskell constructs.

8 [CEFP: A Programming Tutor for Haskell]

Outline of presentation

Programming environments for novices
Programming tutors

An example

Strategies for programming

Wrap up

8 [CEFP: A Programming Tutor for Haskell]

[CEFP: A Programming Tutor for Haskell]

200

EE] @ | + | & htp:/scratch. mit.edu/

Apple Google Maps Wikipedia

ORATHT A

Scratch | Home | imagine, program, share

¢ | (Qv scratch

magie - rogram » share | Lesin or Signu for an account [—

Create and share your own interactive
stories, games, music, and art
Check out the 1,773,363 projects

change x by (piel =
from around the world! o . d_ > Mm@y

vl |affect to @

To create your own projects:

Be a part of Scratch
Day - a worldwide
network of
gatherings, where
Scratchers come

‘together to meet,
share, and learn.

Find out more |
by scratchdad;

by i
ScratchEd

[CEFP: A Programming Tutor for Haskell]

Alice.org

hitp: /[www.alice.org

¢ [(Qr alice

Alices

About Alice , Downloads

An Educational Software that teaches students
computer programming in a 3D environment

Teaching » Community »Publications

{ ¥

nstltute

environment thatmakes It easy to creale | | Instructional materials to support
an animation for telling a story, playing students and teachers in Using this new
o . Resources include textbooks,
I test banks,
rirouCory computng. Imsus 3D and more. Other authors have
, creating

Attend a summer workshop! For
interested high school and college
instructors.

Read more...

tofaciliate a less ‘additional textbooks.
frustrating first programming
experience. New! - Subscribe (o the Alice Educator
Malling List!

[CEFP: A Programming Tutor for Haskell]

The Advantages of ABC as an Introductory Programming Language
| & || + @ ntp:/ /homepages.cwi.nlf~steven/abc fteaching.html ¢ | (Qr abe prog
Apple Google Maps Wikipedia

The Advantages of ABC as an Introductory
Programming Language

| ABC leaves time to teach the principles

With a programming language like Pascal, the experience is that most of the time in class is spent on the
details of the language, leaving too little time to teach about what really matters: the principles of
programming. Quite possibly, a one-term course may not even get round to introducing pointers. With ABC,
the full language can be covered in a few hours, leaving ample time to treat interesting and instructive
examples of programming in detail.

| ABC is good for teaching the principles

Unlike BASIC, ABC is a language that offers strong support for structured programming, even better than
Pascal. Refinements, for top-down stepwise program development, are an integral part of the language.
Because of the powerful data-types of ABC, including tables (associative arrays), algorithms can be written at

a problem-oriented level of abstraction. There is no GOTO statement in ABC, and expressions do not have
side-effects.

[ABC lets you choose interesting examples

[CEFP: A Programming Tutor for Haskell]

An error message when using a Haskell compiler:

Prelude> let main = putChar ’a’ >> putChar

<interactive>:1:26:
Couldn’t match expected type ‘I0 b’
against inferred type ‘Char -> I0 ()’
In the second argument of ‘(>>)’, namely ‘putChar’
In the expression: putChar ’a’ >> putChar
In the definition of ‘main’: main = putChar ’a’ >> putChar

Mentioning that the function putChar is applied to too few
arguments, is probably more helpful for novice programmers.

[CEFP: A Programming Tutor for Haskell]

nt -8 x|
File Interpreter Help
~
= BN |4
-
| | | "
FOR LEARMNING HASKELL
Prelude> takelhile (< 1000) (iterate (*Z] 1)
[l,2,4,8,16,32,64,128,256,512]
Prelude> sin .2
Warning: Function composition (.) immediately followed by number
Hint: If a Float was meant, write "0.27
Otherwise, insert a space for readability
Type error in infix application
expression : s5in . 2
operator HEN
type :{a-¥hb) == ic-»a) -=c-=h
right operand H-1
type : Int
does not match @ ¢ -> a
Preludesx
=
fxlsin .4

[CEFP: A Programming Tutor for Haskell]

Racket
<[> |[&]]+ [@nttp://racket-lang.org/ & | (Q- Drscheme
Apple Google Maps Wikipedia

(CA Racket)

About Download Documentation PLaneT Community Learning

Need Help?

Racket is a Start Quickly
programming " . , <> B Download
language. #lang web-server/insta Racket

(define (start request)

(response/xexpr
* (html
(body "Hello World"))))

Draw more pictures or build a web server from scratch.
Racket includes both batteries and a programming
enviranment, so get started!

Grow your Program Grow your Language Grow your Skills

Racket's interactive mode Extend Racket whenever you Whether you're just starting out,
encourages experimentation, need to. Mold it to better suit want to know more about

and quick scripts easily your tasks without sacrificing programming language
comnnse intn lareer svstems interonerahilitv with existing annlicatinns or models_looking

[CEFP: A Programming Tutor for Haskell]

=10lx

Ble Edt Yew Fgvorbes Jook Hep “
ek v = - DD A Do G B O W-E=
ckdress [hetpef)132. 191, L0, 22-B000)s ke oaspeond to-masfeemn = Peo ek

Errors in your solution, try sgain

Group by
Hawing
Order by

Sioms racwer— Rt

Schema for the COMPANY Database
The geseral dascription of the datsBase s svsilable here, Clicking an the nama of 3 tabla brings up the 1sble Selsils, Primary kopr
stribute list are ynderlined, forsign keys are in il

able name Attribute lis

DEPARTMINT DNAME DNUMELE MGE MGESTAR TOATE
EMPLOYEE [BD LNAME MINIT FRAME BEDATE ADDRESS SEX SALARY SUPERVISOR DADH
DERL_LOCATIONE DNSTER DLOCATION
BEONCT PRAME BPAUMILE PLOCATION DAL
WORKE DN EIR PYGHOURE
CEOESDENT, ETRD GEDERDENT. MAME 153 BDATE RELATIONSHID

2] pone oD Internet 7]

[CEFP: A Programming Tutor for Haskell]

Programming environments for novices

Quite a few programming environments for novices have been
developed:

» Scratch, Alice, and many predecessors

» ABC, Genie (structured editor for Pascal)

» Special editors for ‘mainstream’ programming languages
» Intelligent programming tutors

The categories of environments focus on (sometimes slightly)
different aspects of problems in learning (to program):

» Wanting to learn
» Learning by doing
» Learning through feedback

8 [CEFP: A Programming Tutor for Haskell]

[CEFP: A Programming Tutor for Haskell]

Programming tutors

Programming tutors focus on learning through feedback. Most
tutors provide feedback to novice programmers by:

» giving hints (in varying level of detail)
» showing worked-out solutions

> reporting erroneous steps

So why aren’t programming tutors used everywhere?

8 [CEFP: A Programming Tutor for Haskell]

Challenges for programming tutors

Despite the potential advantages, programming tutors are not
widely used.

» Building a tutor is a substantial amount of work

» Using a tutor in a course is hard for a teacher: adapting or
extending a tutor is often very difficult or even impossible

» Having to specify feedback with each new exercise is
often a lot of work

Preferably, a programming tutor:

> supports easy specification of exercises

» automatically derives feedback and hints

8 [CEFP: A Programming Tutor for Haskell]

Approach to program construction

Some well-known approaches to constructing correct programs
are

» Use pre- and post-conditions to construct or verify a
program

» Refine a specification to an executable program

» Transform a program to a program with some desirable
properties

8 [CEFP: A Programming Tutor for Haskell]

Approach to program construction

Some well-known approaches to constructing correct programs
are

» Use pre- and post-conditions to construct or verify a
program
» Refine a specification to an executable program

» Transform a program to a program with some desirable
properties

Our approach: construct a program that is provably equivalent
to a model solution.

Amounts to program refinement, but with a post-condition
expressed in terms of program equality.

8 [CEFP: A Programming Tutor for Haskell]

A programming tutor for Haskell

We are developing a programming tutor for Haskell. Using the
tutor, a student can:

v

develop her program incrementally, in a topdown fashion

receive feedback about whether or not she is on the right
track

v

v

can ask for a hint when she is stuck

v

see how a complete program is stepwise constructed

A teacher specifies an exercise by means of model solutions.
The tutor targets first-year computer science students.
Our tutor is an environment like ABC, with feedback

functionality, for a ‘mainstream’ language.

8 [CEFP: A Programming Tutor for Haskell]

lafo) (&) (]

OO HE Apple Google Maps Wikipedia

OU - Functional Programming Tutor

& | (@ pdf annotation s

Functional Programming Tutor)k

Hint [Step | solution | Ready? | Clear || Back

Exercise: Feedback:

Write a function that reverses a list: myreverse : [a] -> [a] Introduce the variable pattern acc.

everse’ (1
erse’ age (1= ...

Check

[CEFP: A Programming Tutor for Haskell]

[CEFP: A Programming Tutor for Haskell]

An example interactive session

Programming task: write a program that reverses a list:

| reverse = <7>

Tutor response on Hint:

There are several ways you can proceed:

» Introduce a helper function that uses an accumulating
parameter.

» Use the foldl function.

» Use explicit recursion.

8 [CEFP: A Programming Tutor for Haskell]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse’ <7?7>
where
reverse’ acc <?7> = <7>

Tutor response on Hint:

Apply reverse’ to [], or use pattern matching for the second
argument of reverse’.

8 [CEFP: A Programming Tutor for Haskell]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse’ []
where
reverse’ acc [] = <?7>

Tutor response on Hint:

Refine the right hand side of the empty list case.

8 [CEFP: A Programming Tutor for Haskell]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse’ []
where
reverse’ acc [] = []

Tutor response on Check:

Incorrect [] in the right hand side of reverse’ on line 3

8 [CEFP: A Programming Tutor for Haskell]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse’ |[]
where
reverse’ acc [| = acc

Tutor response on Hint:

Define the non-empty list case of reverse’

8 [CEFP: A Programming Tutor for Haskell]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse’ ||
where
reverse’ acc [] = acc
reverse’ acc (x:xs) = <?>

Tutor response on Hint:

Define the recursive call of reverse’

8 [CEFP: A Programming Tutor for Haskell]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse’ []
where
reverse’ acc [] = qacc
reverse’ acc (x: xs) = reverse’ (y:acc) <?7>

Tutor response on Check:

Error: Undefined variable y

8 [CEFP: A Programming Tutor for Haskell]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse’ []
where
reverse’ acc [] = qacc
reverse’ acc (x:xs) = reverse’ (x :acc) xs

Tutor response on Ready?:

Done! You have correctly solved the exercise.

8 [CEFP: A Programming Tutor for Haskell]

[CEFP: A Programming Tutor for Haskell]

Strategies for programming

» A strategy specifies how to incrementally refine a program
» We use a strategy to calculate all kinds of feedback

» We have developed a combinator language for strategies,
using which we can develop and compose strategies

8 [CEFP: A Programming Tutor for Haskell]

reverse

There are several ways you can define the function
reverse :: [a] — [a], which reverses a list of elements.

reversey] =[]
reversey (x :xs) = reversey xs H [x]

reverse, = reverse) ||
where reverse), acc [] = acc
reverse, acc (x : xs) = reversel (x:acc) xs

| reverses = foldl (flip (:)) []

8 [CEFP: A Programming Tutor for Haskell]

Strategy example

The third program for reverse:

| reverses = foldl (flip (:)) []
Is recognised by the strategy:

patBind
<> pVar "reverse"
<> app <> var "foldl"
<> ((paren <> app <> var "f1lip"
<> infixApp <> con " (:)"
)
<%o> con "[1"

)

8 [CEFP: A Programming Tutor for Haskell]

Representing strategies

Components of our strategy language:

1. Rewrite and refinement rules

Choice
Sequence
Interleave
Unit elements
Labels
Recursion

=@ o W@

o<>T
o> T

o <Jo>T
succeed, fail
label £ o

fix f

> Labels are used to mark positions in a strategy

» Combinators are inspired by context-free grammars, and
by the algebra of communicating processes.

[CEFP: A Programming Tutor for Haskell]

Refinement rules

A refinement rule refines a hole.

Expression refinement rules:

<7?> = A<7?> — <7> - Introduce lambda abstraction
<?>=if <> -- Introduce if-then-else

then <7>

else <7>
<?>=0v -- Introduce variable v

Declaration refinement rule:

| <?>=f <?>=<7> - Introduce a function binding

8 [CEFP: A Programming Tutor for Haskell]

Holes

» A hole (<?>) is a placeholder for an incomplete part of a
program

» An exercise is finished when it does not contain holes
anymore

» \We have holes for the following constructs:

» declarations, function bindings, expressions, alternatives,
patterns

The abstract syntax is augmented with hole constructors.

data Expr = Lambda Pattern Expr
| If Expr Expr Expr
| App Expr Expr
| Var String
| Hole

8 [CEFP: A Programming Tutor for Haskell]

Recognizing flip

For Haskell's prelude function flip:

| flip=Xxy—fyx

we define the prelude strategy flipS, which takes a strategy fS
recognising a function f, and recognises both:

fip f
My —=fyx
which explains the implementation of flipS:

flipS fS = app <> var "f1ip" <> fS
<> lambda <> pVar "x" <> pVar "y"
<> app <> fS <> (var "y" <Vo> var "x")

8 [CEFP: A Programming Tutor for Haskell]

A strategy prelude

» We have defined a strategy prelude for functions in
Haskell’s prelude

» Besides definition and use, these strategies can also be
used to recognise other variants, such as defining foldl in
terms of foldr:

| foldl op e = foldr (flip op) e o reverse

[CEFP: A Programming Tutor for Haskell]

Using the prelude

patBind
<> pVar "reverse"
<> app <> var "foldl"
<> ((paren <> app <> var "flip"
< infixApp <> con " ()"
)
<Y%> con "[1"

)

Becomes

patBind
<> pVar "reverse"
<> foldlS (paren <> flipS (infixApp <> con " (:)"))
(con "[1")

8 [CEFP: A Programming Tutor for Haskell]

Program transformations

» Strategies derived from model solutions may be rather
strict and reject equivalent but only slightly different
programs

» Some of these differences cannot or should not be
captured in a strategy, such as inlining a helper-function

» We use the program transformations 7- and B-reduction,
and a-conversion from the A-calculus, to deal with such
differences

» Additionally, we perform desugaring rewrite steps

» Of course, comparing two programs for equality is in
general undecidable

8 [CEFP: A Programming Tutor for Haskell]

Normalisation

Normalisation proceeds as follows:

1. a-conversion

2. desugaring/preprocessing steps

optimise constant arguments

inlining: replace an expression by its definition
rewrite infix notation to prefix

rewrite where to let

vV VY vV VY

3. B- and 7m-reduction

8 [CEFP: A Programming Tutor for Haskell]

Normalisation example

| reverse =foldl f [] wheref xy =y :x

= { where to let }

| reverse=1letf xy=y:xin foldl f []

= { Infix operators to (prefix) functions }

| reverse=1letf xy = () y xin foldl f []

= { Function bindings to lambda abstractions }

| reverse=1letf =Xxy — () y x in foldl f []

= { Remove multiple lambda abstraction arguments }
| reverse=1letf = Xx — Xy — (:) y x in foldl f []

8 [CEFP: A Programming Tutor for Haskell]

Feasibility of using model solutions

» We only recognise variants of model solutions
» We cannot determine whether or not a solution is wrong
(but see one of the labs accompanying these lectures)

» In an experiment with lab exercises from first-year
students:

» our tool recognised 90% of the good solutions
» using 5 model solutions.

8 [CEFP: A Programming Tutor for Haskell]

Automatically deriving programming strategies

We automatically derive a strategy from a model solution:

» teachers can use Haskell
» much easier than specifying a strategy by hand
» combine solutions using <>

We go from a model solution to a programming strategy by

» Pattern matching on the abstract syntax tree

» Mapping each (possibly combination of) language
construct to its corresponding refinement rule

» Using prelude strategies and the interleave combinator
<%> to add flexibility

8 [CEFP: A Programming Tutor for Haskell]

Calculating feedback

How do we calculate feedback?

» A strategy is specified as a context-free grammar over
refinement (or rewrite) rules

» Most feedback is calculated from the grammar functions
empty and firsts
» To verify that a submitted program follows a strategy we:

> apply all allowed rules to the previous program

» normalise the programs thus obtained

» and compare these against the normalised program
submitted by the student

8 [CEFP: A Programming Tutor for Haskell]

Relating strategies to locations in programs

A program is constructed incrementally
At the start there is a single hole
Refinement rules introduce and refine holes

A refinement rule always targets a particular location in
the program:

| foldl (flip <?>) <?> = foldl (flip <?>) some_argument

» Every refinement rule is extended with information about
the location of the hole it refines

8 [CEFP: A Programming Tutor for Haskell]

[CEFP: A Programming Tutor for Haskell]

Background

» We have developed strategies and our strategy language
since 2006, and used it in

algebra: solving all kinds of (in)equations, simplifying
expressions

> linear algebra

propositional logic
feedback services are used by

The Freudenthal applets for high-school mathematics,
used by tens of thousands of pupils

The MathDox mathematical learning environment for
mathematics (university and high-school)

The European Math-Bridge service for remedial
mathematics, used by thousands of starting university
students all over Europe

[CEFP: A Programming Tutor for Haskell]

DWO Math Environment (with feedback)

DWO Math Enviroment - Mozilla Firefox

festand Bewerken Beeld Geschiedenis Bladwijzers Eztra Help

f DWO Math Enviroment -+ -
% >> B: Examples quadreq @ Miet ingelogd
g‘ ; E: 4. quadreq 3
Los de vergelijking op. VO 00 F 2 () mee i solve 11
x2Zx—4)=0

D | de factoren op 0 stellen ‘

x=0of 2Zx—4=0
constante termen naar rechts
‘brengen

x=0 of 2x=4 D

wariabele vrijmaken door beide lanten)

te delen
x=0of x=2
it OO @ QO @ f
Score: 10 totaal: 10

[CEFP: A Programming Tutor for Haskell]

Related work

» Strategies are used in program transformation tools and
rewriting systems

» Strategies closely correspond to proof tactics used in
Isabelle, Coq, etc.

» Strategies have not been used for
recognition/parsing/feedback purposes before

» Existing programming tutors often start with reasoning on
an abstract level, pushing a student into a particular
direction

» In most tutors, developing an exercise is quite a lot of
work

» Tutors do not use strategies to give feedback

8 [CEFP: A Programming Tutor for Haskell]

Rest of the lectures

We have 4 slots to study the tutor for Haskell, its background,
and to work on exercises or a research project:

» Slot 1: Introduction, overview, tutors, strategies
» Slot 2: A strategy language
» Slot 3: A strategy recogniser

» Slot 4: Brief overview of the ideas framework.
Introduction to the exercises/project work

8 [CEFP: A Programming Tutor for Haskell]

Learning goals

» Construct a strategy for a particular kind of exercises
» Analyse and describe properties of a strategy

» Adapt our framework:

» the strategy language
» the strategy recogniser
» the feedback

8 [CEFP: A Programming Tutor for Haskell]

Exercises, projects, slides, and notes

We have made all our material available on

http:
//people.cs.uu.nl/johanj/homepage/Publications/CEFP/

> Exercises: exercises.pdf
> Slides:

» slidesl.pdf: Introduction, overview, tutors, strategies

» slides2.pdf: The strategy language

» slides3.pdf: A strategy recogniser

» slides4.pdf: Brief overview of the ideas framework.
Introduction to the exercises/project work

> Lecture notes: notes.pdf

8 [CEFP: A Programming Tutor for Haskell]

http://people.cs.uu.nl/johanj/homepage/Publications/CEFP/
http://people.cs.uu.nl/johanj/homepage/Publications/CEFP/
exercises.pdf
slides1.pdf
slides2.pdf
slides3.pdf
slides4.pdf
notes.pdf

Software

Experiment on-line:
http://ideas.cs.uu.nl/ProgTutor/
Build the tutor on your own machine:

http://ideas.cs.uu.nl/trac/wiki/Download

8 [CEFP: A Programming Tutor for Haskell]

http://ideas.cs.uu.nl/ProgTutor/
http://ideas.cs.uu.nl/trac/wiki/Download

Project 1: Adapting feedback

A teacher should be able to add feedback to a model solution.
| reverse = foldl {-# FEEDBACK Note ... #-} (flip (:)) []

and it should be possible to disallow or enforce particular
solutions described by a strategy:

| reverse = {-# USEDEF #-} foldl (flip (:)) []

Furthermore, we might want to add a property to a function,
and use that in a strategy:

reverse =
{-# PROP foldl op e == foldr (flip op) e . reverse #-}

foldl (flip ()) []

8 Implement these ideas for adapting strategies.

[CEFP: A Programming Tutor for Haskell]

Project 2: Automatic contract checking

We want the student'’s definition reverse = <7> to satisfy the
function contract:

| (x:true) — {y | y = reverse x}

for some model solution of reverse. If a student refines with
<?> = foldl <?1> <75>, this holds if both

assert ((x:true) — (y:true) = {z|z=flip (:) x y} <?1>
assert (= []) <?>>

Strategies (and normalisation) help in constructing such
refinement (proof) steps.

Investigate if we can use contracts for blaming incorrect steps.

8 [CEFP: A Programming Tutor for Haskell]

Expectation management

v

The current release of the tutor has been developed over
the last few months, and been released yesterday night

v

The tutor still has to be tested in the classroom

v

It will contain some glitches here and there

v

Please report!

8 [CEFP: A Programming Tutor for Haskell]

Conclusions

Strategies can be used to calculate feedback for introductory

programming tasks.

More info:

» http://ideas.cs.uu.nl/
» johanj@cs.uu.nl

» alex.gerdes@ou.nl

[CEFP: A Programming Tutor for Haskell]

http://ideas.cs.uu.nl/
mailto:johanj@cs.uu.nl
mailto:alex.gerdes@ou.nl

	Programming environments for novices
	Programming tutors
	An example
	Strategies for programming
	Wrap up

