
A strategy recogniser

Johan Jeuring
Joint work with Alex Gerdes and Bastiaan Heeren

Utrecht University and Open Universiteit Nederland
Computer Science

CEFP, Budapest, Hungary

June 2011

[CEFP: A strategy recogniser]

Running a strategy

A sequence of rules follows a strategy iff the sequence of rules
is (a prefix of) a sentence in the language generated by the
strategy.

An exercise gives us an initial term (say t0), and we are only
interested in sequences of rules that can be applied
successively to this term.

A possible derivation that starts with t0 can be depicted in the
following way:

t0
r0−→ t1

r1−→ t2
r2−→ t3

r3−→ . . .

Running a strategy is defined by:

run σ t0 = {tn+1 | r0 . . rn ∈ L (σ),∀i∈0...n : ti+1 ∈ apply ri ti }

[CEFP: A strategy recogniser]

Implementing function run

I run specifies how to run a strategy
I It amongst others enumerates all sentences in the

language of a strategy
I Enumerating all sentences is infeasible in practice.
I This lecture defines a practical implementation of a

strategy recogniser.

[CEFP: A strategy recogniser]

Outline of presentation

Reusing parser libraries?

Representing grammars

Functions empty and firsts

Strategies

Smart constructors

Running a strategy

Tracing a strategy

Feedback scripts

[CEFP: A strategy recogniser]

Reusing parser libraries?

[CEFP: A strategy recogniser]

Reusing existing parser libraries?

Instead of designing our own recogniser, we could reuse
existing parsing libraries and tools.

Our problem is quite different from other parsing applications:

I efficiency is not a key concern as long as we do not have
to enumerate all sentences. The length of the input is
very limited.

I we are not building an abstract syntax tree of the solution
to the exercise.

Still, one of the 67 parsing libraries on Hackage should work?

[CEFP: A strategy recogniser]

Problems with parsing libraries

I We are only interested in sequences of transformation
rules that can be applied to some initial term

I Grammar analyses for constructing a parsing table cannot
take the term from which you start into account

I The ability to diagnose errors in the input highly
influences the quality of the feedback services

I We have to recognise prefixes
I We cannot use backtracking and look-ahead because we

want to recognise strategies at each intermediate step
I Labels help to describe the structure of a strategy in the

same way as non-terminals do in a grammar
I Parsing libraries do not offer combinators for interleaving
I A strategy should be serialisable

[CEFP: A strategy recogniser]

Representing grammars

[CEFP: A strategy recogniser]

Representing grammars

data Grammar a = Symbol a
| Succeed
| Fail
| Grammar a : | : Grammar a
| Grammar a :?: Grammar a
| Grammar a :%: Grammar a
| Grammar a :%>: Grammar a
| Atomic (Grammar a)
| Rec Int (Grammar a)
| Var Int

a is used for symbols: for strategies, the symbols are rules, but
also Enter and Exit steps associated with a label.

Alternative representations for recursion are higher-order fixed
point functions, or nameless terms using De Bruijn indices.

[CEFP: A strategy recogniser]

many again

many :: Grammar a→ Grammar a
many σ = Rec 0 (Succeed : | : (σ :?: Var 0))

Later we will see that smart constructors are more convenient
for writing such a combinator.

[CEFP: A strategy recogniser]

Functions empty and firsts

[CEFP: A strategy recogniser]

Generating sentences

We use the functions empty and firsts to generate sentences of
a grammar.

[CEFP: A strategy recogniser]

Function empty: specification

empty (σ) = ε ∈ L (σ)

[CEFP: A strategy recogniser]

Function empty: implementation

empty :: Grammar a→ Bool
empty (Symbol a) = False
empty Succeed = True
empty Fail = False
empty (σ : | : τ) = empty σ ∨ empty τ
empty (σ :?: τ) = empty σ ∧ empty τ
empty (σ :%: τ) = empty σ ∧ empty τ
empty (σ :%>: τ) = False
empty (Atomic σ) = empty σ
empty (Rec i σ) = empty σ
empty (Var i) = False

[CEFP: A strategy recogniser]

Function firsts: specification

∀a, x : ax ∈ L (σ) ⇔ ∃σ ′ : (a, σ ′) ∈ firsts (σ) ∧ x ∈ L (σ ′)

[CEFP: A strategy recogniser]

Splitting off an atomic part

In firsts we deal with interleaving and atomicity.

For the case σ :%>: τ we need to split σ into an atomic part
and a remainder: Atomic σ ′ :?: σ ′′. After σ ′ we continue with
σ ′′ :%: τ . Here we use the property:

(〈a :?: σ〉 :?: τ) :%>: u = 〈a :?: σ〉 :?: (τ :%: u)

[CEFP: A strategy recogniser]

Function split

Function split transforms a strategy into (a, x, y), which should
be interpreted as 〈a :?: x〉 :?: y.

split :: Grammar a→ [(a,Grammar a,Grammar a)]
split (Symbol a) = [(a,Succeed,Succeed)]

split Succeed = []

split Fail = []

split (σ : | : τ) = split σ ++ split τ
split (σ :?: τ) = [(a, x, y :?: τ) | (a, x, y)← split σ] ++

if empty σ then split τ else []

split (σ :%: τ) = split (σ :%>: τ) ++ split (τ :%>: σ)

split (σ :%>: τ) = [(a, x, y :%: τ) | (a, x, y)← split σ]

split (Atomic σ) = [(a, x :?: y,Succeed) | (a, x, y)← split σ]

split (Rec i σ) = split (replaceVar i (Rec i σ) σ)

split (Var i) = error "unbound Var"

[CEFP: A strategy recogniser]

firsts in terms of split

firsts :: Grammar a→ [(a,Grammar a)]
firsts σ = [(a, x :?: y) | (a, x, y)← split σ]

[CEFP: A strategy recogniser]

Left-recursion again

I The definition of firsts (split) shows why left-recursion is
problematic.

I if grammar σ accepts the empty sentence, then running
the grammar many σ may result in non-termination.

I The problem with left recursion can be partially
circumvented by restricting the number of recursion
points (Recs and Vars) that are unfolded in the definition
of split (Rec i σ).

[CEFP: A strategy recogniser]

Strategies

[CEFP: A strategy recogniser]

Labels

I Grammar has no alternative for labels
I We use label information to trace where we are in a

strategy by inserting Enter and Exit steps for each
labelled substrategy

I We attach feedback messages to labels

data Step l a = Enter l | Step (Rule a) | Exit l

l represents the type of information associated with each label.

The type Rule is parameterised by the type of values on which
the rule can be applied.

[CEFP: A strategy recogniser]

Strategy

With the Step datatype, we can now specify a type for
strategies:

type LabelInfo = String
data Strategy a = S {unS :: Grammar (Step LabelInfo a)}

The Strategy datatype wraps a grammar, where the symbols of
this grammar are steps.

[CEFP: A strategy recogniser]

From Step to Strategy

fromStep :: Step LabelInfo a→ Strategy a
fromStep = S ◦ Symbol

[CEFP: A strategy recogniser]

IsStrategy

The (un)wrapping of strategies quickly becomes cumbersome
when defining functions over strategies.

class IsStrategy f where
toStrategy :: f a→ Strategy a

instance IsStrategy Rule where
toStrategy = fromStep ◦ Step

instance IsStrategy Strategy where
toStrategy = id

[CEFP: A strategy recogniser]

IsStrategy

LabeledStrategy represents strategies that have a label.

data LabeledStrategy a = Label { labelInfo :: LabelInfo
,unlabel :: Strategy a}

A labelled strategy is turned into a (normal) strategy by
surrounding its strategy with Enter and Exit steps.

instance IsStrategy LabeledStrategy where
toStrategy (Label a σ) = fromStep (Enter a)

:?: σ

:?: fromStep (Exit a)

[CEFP: A strategy recogniser]

Smart constructors

[CEFP: A strategy recogniser]

Smart constructors

I A smart constructor is a function that in addition to
constructing a value performs some checks,
simplifications, or conversions

I We use smart constructors for simplifying grammars.
I We introduce a smart constructor for every alternative of

the strategy language
I Definitions for succeed and fail are straightforward:

succeed, fail :: Strategy a
succeed = S Succeed
fail = S Fail

[CEFP: A strategy recogniser]

A smart constructors for labels

label :: IsStrategy f ⇒ LabelInfo→ f a→ LabeledStrategy a
label str = Label str ◦ toStrategy

[CEFP: A strategy recogniser]

A smart constructors for choice

The other constructors return a value of type Strategy, and
overload their strategy arguments.

For choices, we remove occurrences of Fail, and we associate
the alternatives to the right.

(<|>) :: (IsStrategy f , IsStrategy g)⇒ f a→ g a→ Strategy a
(<|>) = lift2 op

where
op :: Grammar a→ Grammar a→ Grammar a
op Fail τ = τ

op σ Fail = σ

op (σ : | : τ) u = σ ‘op‘ (τ ‘op‘ u)

op σ τ = σ : | : τ

[CEFP: A strategy recogniser]

Lifting functions

Lifting functions turn a function that works on the Grammar
datatype into an overloaded function that returns a strategy.

lift1 op = S ◦ op ◦ unS ◦ toStrategy
lift2 op = lift1 ◦ op ◦ unS ◦ toStrategy

[CEFP: A strategy recogniser]

A smart constructors for sequence

The smart constructor <?> for sequences removes the unit
element Succeed, and propagates the absorbing element Fail.

(<?>) :: (IsStrategy f , IsStrategy g)⇒ f a→ g a→ Strategy a
(<?>) = lift2 op

where
op :: Grammar a→ Grammar a→ Grammar a
op Succeed τ = τ

op σ Succeed = σ

op Fail = Fail
op Fail = Fail
op (σ :?: τ) u = σ ‘op‘ (τ ‘op‘ u)

op σ τ = σ :?: τ

[CEFP: A strategy recogniser]

A smart constructor for atomic

The binary combinators for interleaving, <%> and %>, are
defined in a similar fashion.

atomic :: IsStrategy f ⇒ f a→ Strategy a
atomic = lift1 op

where
op :: Grammar a→ Grammar a
op (Symbol a) = Symbol a
op Succeed = Succeed
op Fail = Fail
op (Atomic σ) = op σ
op (σ : | : τ) = op σ : | : op τ
op σ = Atomic σ

[CEFP: A strategy recogniser]

A smart constructor for recursion

fix :: (Strategy a→ Strategy a)→ Strategy a
fix f = lift1 (Rec i) (make i)
where

make = f ◦ S ◦ Var
is = usedNumbers (unS (make 0))
i = if null is then 0 else maximum is + 1

I First, we pass f a strategy with the grammar Var 0, and
we inspect which numbers are used (variable is of type
[Int]). Based on this information, we determine the next
number to use (variable i)

I We apply f for the second time using grammar Var i, and
bind these Vars to the top-level Rec

[CEFP: A strategy recogniser]

many again

We define the repetition combinator many with the smart
constructors.

many :: IsStrategy f ⇒ f a→ Strategy a
many σ = fix $ λx→ succeed <|> (σ <?> x)

[CEFP: A strategy recogniser]

Running a strategy

[CEFP: A strategy recogniser]

Applying a rule

To run a strategy, we apply the rules.

class Apply f where
apply :: f a→ a→ [a]

instance Apply Rule
-- implementation provided in framework

instance Apply (Step l) where
apply (Step r) = apply r
apply = return

[CEFP: A strategy recogniser]

Running a strategy

A strategy is a grammar over rewrite rules and Enter and Exit
steps for labels.

run :: Apply f ⇒ Grammar (f a)→ a→ [a]

run σ a = [a | empty σ]

++ [c | (f , τ)← firsts σ
, b ← apply f a
, c ← run τ b

]

[CEFP: A strategy recogniser]

Applying a strategy

Now that we have defined the function run we can also make
Strategy and LabeledStrategy instances of class Apply:

instance Apply Strategy where
apply = run ◦ unS

instance Apply LabeledStrategy where
apply = apply ◦ toStrategy

[CEFP: A strategy recogniser]

A breadth-first run

run returns results in a depth-first manner.

We define a variant of run which exposes breadth-first
behaviour:

runBF :: Apply f ⇒ Grammar (f a)→ a→ [[a]]

runBF σ a = [a | empty σ]

: merge [runBF τ b | (f , τ)← firsts σ
, b ← apply f a

]

where merge = map concat ◦ transpose

[CEFP: A strategy recogniser]

Tracing a strategy

[CEFP: A strategy recogniser]

Tracing a strategy

We extend run’s definition to keep a trace of the steps that
have been applied:

runTrace :: Apply f ⇒ Grammar (f a)→ a→ [(a, [f a])]

runTrace σ a = [(a, []) | empty σ]

++ [(c, (f : fs)) | (f , τ) ← firsts σ
, b ← apply f a
, (c, fs)← runTrace τ b

]

In case of a strategy, we can thus obtain the list of Enter and
Exit steps seen so far.

[CEFP: A strategy recogniser]

Tracing addFractions

We run addFractions on the term 2
5 + 2

3 .

2
5

+
2
3

=
6
15

+
2
3

=
6
15

+
10
15

=
16
15

= 1
1
15

[CEFP: A strategy recogniser]

Tracing addFractions

[Enter `0, Enter `1, Step LCD, Exit `1
, Enter `2, Step down(0), Step Rename, Step up
, Step down(1), Step Rename Step up, Step not
, Exit `2, Enter `3, Step Add, Exit `3
, Enter `4, Step Simpl, Exit `4, Exit `0
]

We determine at each point in the derivation where we are in
the strategy by enumerating the Enter steps without their
corresponding Exit step.

[CEFP: A strategy recogniser]

Feedback scripts

[CEFP: A strategy recogniser]

Textual feedback

Desirable features for textual feedback:

I support for different levels (abstract, concrete,
bottom-out)

I messages available in multiple languages
I can contain dynamic parts such as formulas that depend

on the exercise at hand
I should be easy for teachers to adapt feedback

[CEFP: A strategy recogniser]

Our approach: feedback scripts

client server

ActiveMath Ideas

feedback script

1. request

4. reply

2. diagnosis3. message

I Server has feedback scripts containing textual messages
I Scripts are used to transform an abstract diagnosis into a

message, which is returned to the learning environment
I Possible to select a specific script in a request (e.g. for

choosing the language)
I Syntax of the scripts might slightly deviate from syntax

presented here.

[CEFP: A strategy recogniser]

Translating rules

a · (b + c) ⇒ a · b + a · c (algebra.equations.linear.distr-times)

a = b ⇒ b = a (algebra.equations.linear.flip)

namespace algebra.equations.linear

text distr-times = {distribute}
text flip = {flip equation around}

I All rules are organized in a math taxonomy
I Script provides a translation for all rules of an exercise
I Declaring a namespace prevents long identifier names

[CEFP: A strategy recogniser]

Example: worked-out solution

text scale-to-one = {divide by @arg1}

4 · (x − 1) = 7⇒ distribute
4 · x − 4 = 7⇒ bring constants to right
4 · x = 11⇒ divide by 4
x = 23

4

I Rule translations are used in worked-out solutions
I Attributes (such as @arg1) are replaced by dynamic

content

[CEFP: A strategy recogniser]

Hints at different levels

hint abstract = {Use the procedure for solving linear
equations: If present, remove parentheses, and
isolate variable x}

hint concrete = {@expected}
hint bottom-out = {@expected: this results in @after}

I Attribute @expected is replaced by the (translation of
the) rule suggested by the strategy

I Attribute @after represents the term after application of
the expected rule

I Feedback texts can be further tailored for a specific
rule-level combination

I OpenMath is used for encoding mathematical objects

[CEFP: A strategy recogniser]

Feedback at different levels
feedback noteq = {This is incorrect.}
feedback buggy = {This is incorrect. @recognized}

feedback ok = {Well done! You used @recognized}
feedback same = {This is correct.}

Messages for buggy rules
text buggy.distr-times-plus = {Did you try to use

distribution? One term was not multiplied.}
text buggy.negate-one-side = {It seems you have negated

the terms on one side only.}

I The script contains messages for each type of diagnosis:
buggy, noteq, ok, same, detour, and unknown

I Messages can again be specialized for the levels

[CEFP: A strategy recogniser]

More features

I String definitions and an include mechanism provide a way
to reuse text fragments

I Conditionals make it possible to report tailor-made
feedback messages for specific cases

I Many more attributes help to enrich the messages with
dynamic content, including attributes for the number of
steps remaining or the subexpression that is replaced

I Also strategy labels can be used to construct messages
I Feedback scripts can be analyzed for correctness:

I Syntax errors are reported
I Unknown attributes and non-existing rule identifiers result
in warnings

I Scripts can be tested for completeness, i.e., whether all
cases are covered by the script

[CEFP: A strategy recogniser]

Conclusions

I We generate solutions to an exercise using the run
function on a strategy

I The run function is defined in terms of empty and firsts:
well-known functions on CFGs

I Smart constructors help in simplifying strategies
I Labels are used to trace (strategy) steps through an

exercise
I Feedback scripts provide textual feedback to users solving

exercises

	Reusing parser libraries?
	Representing grammars
	Functions empty and firsts
	Strategies
	Smart constructors
	Running a strategy
	Tracing a strategy
	Feedback scripts

