A strategy recogniser

Johan Jeuring

Joint work with Alex Gerdes and Bastiaan Heeren

Utrecht University and Open Universiteit Nederland Computer Science

CEFP, Budapest, Hungary

June 2011

Running a strategy

A sequence of rules follows a strategy iff the sequence of rules is (a prefix of) a sentence in the language generated by the strategy.

An exercise gives us an initial term (say t_0), and we are only interested in sequences of rules that can be applied successively to this term.

A possible derivation that starts with t_0 can be depicted in the following way:

$$t_0 \xrightarrow{r_0} t_1 \xrightarrow{r_1} t_2 \xrightarrow{r_2} t_3 \xrightarrow{r_3} \ldots$$

Running a strategy is defined by:

$$run \sigma t_0 = \{ t_{n+1} \mid r_0 \dots r_n \in \mathcal{L} (\sigma), \forall_{i \in 0 \dots n} : t_{i+1} \in apply r_i t_i \}$$

Implementing function run

- run specifies how to run a strategy
- It amongst others enumerates all sentences in the language of a strategy
- Enumerating all sentences is infeasible in practice.
- This lecture defines a practical implementation of a strategy recogniser.

Outline of presentation

Reusing parser libraries?

Representing grammars

Functions *empty* and *firsts*

Strategies

Smart constructors

Running a strategy

Tracing a strategy

Feedback scripts

0

Reusing parser libraries?

Reusing existing parser libraries?

Instead of designing our own recogniser, we could reuse existing parsing libraries and tools.

Our problem is quite different from other parsing applications:

- efficiency is not a key concern as long as we do not have to enumerate all sentences. The length of the input is very limited.
- we are not building an abstract syntax tree of the solution to the exercise.

Still, one of the 67 parsing libraries on Hackage should work?

Problems with parsing libraries

- We are only interested in sequences of transformation rules that can be applied to some initial term
- Grammar analyses for constructing a parsing table cannot take the term from which you start into account
- The ability to diagnose errors in the input highly influences the quality of the feedback services
- We have to recognise prefixes
- We cannot use backtracking and look-ahead because we want to recognise strategies at each intermediate step
- Labels help to describe the structure of a strategy in the same way as non-terminals do in a grammar
- Parsing libraries do not offer combinators for interleaving
- A strategy should be serialisable

Representing grammars

Representing grammars

data Grammar a = Symbol a | Succeed | Fail | Grammar a :|: Grammar a | Grammar a :*: Grammar a | Grammar a :%: Grammar a | Grammar a :%>: Grammar a | Atomic (Grammar a) | Rec Int (Grammar a) | Var Int

a is used for symbols: for strategies, the symbols are rules, but also Enter and Exit steps associated with a label.

Alternative representations for recursion are higher-order fixed point functions, or nameless terms using De Bruijn indices.

many again

many :: *Grammar* $a \rightarrow Grammar$ a*many* $\sigma = Rec \ 0 \ (Succeed : : (\sigma : \star: Var \ 0))$

Later we will see that smart constructors are more convenient for writing such a combinator.

Functions *empty* and *firsts*

Generating sentences

We use the functions *empty* and *firsts* to generate sentences of a grammar.

Function *empty*: **specification**

empty
$$(\sigma) = \epsilon \in \mathcal{L} (\sigma)$$

Function *empty*: implementation

:: Grammar $a \rightarrow Bool$ empty empty (Symbol a) = False empty Succeed = True empty Fail= Falseempty (σ :|: τ)= empty $\sigma \lor$ empty τ empty (σ :*: τ)= empty $\sigma \land$ empty τ *empty* (σ :%: τ) = *empty* $\sigma \land$ *empty* τ *empty* (σ :%>: τ) = *False empty* (*Atomic* σ) = *empty* σ *empty* (*Rec* $i \sigma$) = *empty* σ empty (Var i) = False

0

Function *firsts*: **specification**

$\forall a, x : ax \in \mathcal{L} (\sigma) \Leftrightarrow \exists \sigma' : (a, \sigma') \in firsts (\sigma) \land x \in \mathcal{L} (\sigma')$

Splitting off an atomic part

In *firsts* we deal with interleaving and atomicity.

For the case σ :%>: τ we need to split σ into an atomic part and a remainder: *Atomic* σ' :*: σ'' . After σ' we continue with σ'' :%: τ . Here we use the property:

 $(\langle a : \star: \sigma \rangle : \star: \tau) : \gg : u = \langle a : \star: \sigma \rangle : \star: (\tau : \colon: u)$

Function *split*

Function *split* transforms a strategy into (a, x, y), which should be interpreted as $\langle a : \star : x \rangle : \star : y$.

split :: *Grammar* $a \rightarrow [(a, Grammar a, Grammar a)]$ split (Symbol a) = [(a, Succeed, Succeed)]split Succeed = [] split Fail = [] split $(\sigma : |: \tau) = split \sigma + split \tau$ *split* $(\sigma : \star: \tau) = [(a, x, y : \star: \tau) | (a, x, y) \leftarrow split \sigma] +$ if empty σ then split τ else [] split (σ :%: τ) = split (σ :%>: τ) + split (τ :%>: σ) split $(\sigma: \% : \tau) = [(a, x, y: \%: \tau) | (a, x, y) \leftarrow split \sigma]$ split $(Atomic \sigma) = [(a, x: \star: y, Succeed) | (a, x, y) \leftarrow split \sigma]$ $split (Rec \ i \ \sigma) = split (replaceVar \ i (Rec \ i \ \sigma) \ \sigma)$ split (Var i) = error "unbound Var"

firsts in terms of split

firsts :: *Grammar*
$$a \rightarrow [(a, Grammar a)]$$

firsts $\sigma = [(a, x : \star; y) | (a, x, y) \leftarrow split \sigma]$

Left-recursion again

- The definition of *firsts* (*split*) shows why left-recursion is problematic.
- if grammar σ accepts the empty sentence, then running the grammar *many* σ may result in non-termination.
- The problem with left recursion can be partially circumvented by restricting the number of recursion points (*Recs* and *Vars*) that are unfolded in the definition of *split* (*Rec* i σ).

Labels

- Grammar has no alternative for labels
- We use label information to trace where we are in a strategy by inserting Enter and Exit steps for each labelled substrategy
- We attach feedback messages to labels

data Step l a = Enter l | Step (Rule a) | Exit l

l represents the type of information associated with each label.

The type Rule is parameterised by the type of values on which the rule can be applied.

Strategy

With the *Step* datatype, we can now specify a type for strategies:

type LabelInfo = String
data Strategy a = S {unS :: Grammar (Step LabelInfo a)}

The *Strategy* datatype wraps a grammar, where the symbols of this grammar are steps.

From *Step* **to** *Strategy*

fromStep :: *Step LabelInfo*
$$a \rightarrow Strategy a$$

fromStep = $S \circ Symbol$

IsStrategy

The (un)wrapping of strategies quickly becomes cumbersome when defining functions over strategies.

class IsStrategy f where toStrategy :: $f a \rightarrow Strategy a$ instance IsStrategy Rule where toStrategy = fromStep \circ Step instance IsStrategy Strategy where toStrategy = id

IsStrategy

LabeledStrategy represents strategies that have a label.

data LabeledStrategy a = Label {labelInfo :: LabelInfo , unlabel :: Strategy a}

A labelled strategy is turned into a (normal) strategy by surrounding its strategy with *Enter* and *Exit* steps.

instance IsStrategy LabeledStrategy **where** toStrategy (Label $a \sigma$) = fromStep (Enter a) :*: σ :*: fromStep (Exit a)

Smart constructors

Smart constructors

- A smart constructor is a function that in addition to constructing a value performs some checks, simplifications, or conversions
- We use smart constructors for simplifying grammars.
- We introduce a smart constructor for every alternative of the strategy language
- Definitions for *succeed* and *fail* are straightforward:

succeed, fail :: Strategy a succeed = S Succeed fail = S Fail

A smart constructors for labels

label :: *IsStrategy* $f \Rightarrow$ *LabelInfo* \rightarrow $f a \rightarrow$ *LabeledStrategy* a *label str* = *Label str* \circ *toStrategy*

A smart constructors for choice

The other constructors return a value of type *Strategy*, and overload their strategy arguments.

For choices, we remove occurrences of *Fail*, and we associate the alternatives to the right.

 $\begin{array}{l} (\triangleleft >) :: (IsStrategy f, IsStrategy g) \Rightarrow f \ a \rightarrow g \ a \rightarrow Strategy a \\ (\triangleleft >) = lift2 \ op \\ \hline \textbf{where} \\ op :: Grammar \ a \rightarrow Grammar \ a \rightarrow Grammar \ a \\ op \ Fail \ \tau = \tau \\ op \ \sigma \qquad Fail = \sigma \\ op \ (\sigma : |: \tau) \ u \ = \sigma \ `op` (\tau \ `op` u) \\ op \ \sigma \qquad \tau \ = \sigma : |: \tau \end{array}$

Lifting functions

Lifting functions turn a function that works on the *Grammar* datatype into an overloaded function that returns a strategy.

$$\begin{array}{ll} lift1 \ op = S & \circ \ op \circ unS \circ toStrategy \\ lift2 \ op = lift1 \circ op \circ unS \circ toStrategy \end{array}$$

A smart constructors for sequence

The smart constructor \iff for sequences removes the unit element *Succeed*, and propagates the absorbing element *Fail*.

 $(\iff) :: (IsStrategy f, IsStrategy g) \Rightarrow f a \rightarrow g a \rightarrow Strategy a$ $(\iff) = lift2 op$ where

op :: Grammar $a \rightarrow$ Grammar $a \rightarrow$ Grammar aop Succeed $\tau = \tau$ op σ Succeed $= \sigma$ op Fail _ = Fail op $[\sigma : \star: \tau] u = \sigma \circ p^{\star} (\tau \circ p^{\star} u)$ op $\sigma = \tau = \sigma : \star: \tau$

A smart constructor for atomic

The binary combinators for interleaving, <%> and %>, are defined in a similar fashion.

```
atomic :: IsStrategy f \Rightarrow f \ a \rightarrow Strategy \ a

atomic = lift1 op

where

op :: Grammar a \rightarrow Grammar \ a

op (Symbol a) = Symbol a

op Succeed = Succeed

op Fail = Fail

op (Atomic \sigma) = op \sigma

op (\sigma :|: \tau) = op \sigma :|: op \tau

op \sigma = Atomic \sigma
```

θ

A smart constructor for recursion

$$\begin{array}{l} fix :: (Strategy \ a \to Strategy \ a) \to Strategy \ a \\ fix \ f = lift1 \ (Rec \ i) \ (make \ i) \\ \textbf{where} \\ make = f \circ S \circ Var \\ is = usedNumbers \ (unS \ (make \ 0)) \\ i = \textbf{if} \ null \ is \ \textbf{then} \ 0 \ \textbf{else} \ maximum \ is + \end{array}$$

- First, we pass f a strategy with the grammar Var 0, and we inspect which numbers are used (variable *is* of type [*Int*]). Based on this information, we determine the next number to use (variable *i*)
- ► We apply *f* for the second time using grammar *Var i*, and bind these *Var*s to the top-level *Rec*

many again

We define the repetition combinator *many* with the smart constructors.

many :: *IsStrategy* $f \Rightarrow f \ a \rightarrow Strategy \ a$ *many* $\sigma = fix \ \lambda x \rightarrow succeed \ \Leftrightarrow (\sigma \iff x)$

Running a strategy

Applying a rule

To run a strategy, we apply the rules.

class Apply f where $apply :: f \ a \to a \to [a]$ instance Apply Rule -- implementation provided in framework instance Apply (Step 1) where apply (Step r) = apply r $apply _ = return$

Running a strategy

A strategy is a grammar over rewrite rules and *Enter* and *Exit* steps for labels.

$$run :: Apply f \Rightarrow Grammar (f a) \rightarrow a \rightarrow [a]$$

$$run \sigma a = [a | empty \sigma]$$

$$+ [c | (f, \tau) \leftarrow firsts \sigma$$

$$, b \leftarrow apply f a$$

$$, c \leftarrow run \tau b$$

Applying a strategy

Now that we have defined the function *run* we can also make *Strategy* and *LabeledStrategy* instances of class *Apply*:

instance Apply Strategy where apply = run ∘ unS instance Apply LabeledStrategy where apply = apply ∘ toStrategy

A breadth-first run

run returns results in a depth-first manner.

We define a variant of *run* which exposes breadth-first behaviour:

 $runBF :: Apply f \Rightarrow Grammar (f a) \rightarrow a \rightarrow [[a]]$ $runBF \sigma a = [a \mid empty \sigma]$ $: merge [runBF \tau b \mid (f, \tau) \leftarrow firsts \sigma$ $, b \leftarrow apply f a$] where $merge = map \ concat \circ transpose$

Tracing a strategy

We extend *run*'s definition to keep a trace of the steps that have been applied:

 $\begin{array}{l} \textit{runTrace} :: \textit{Apply } f \Rightarrow \textit{Grammar} (f \ a) \rightarrow a \rightarrow [(a, [f \ a])] \\ \textit{runTrace} \ \sigma \ a = [(a, []) \ | \textit{empty} \ \sigma] \\ & + [(c, (f : fs)) \mid (f, \tau) \leftarrow \textit{firsts} \ \sigma \\ & , \ b \ \leftarrow \textit{apply} \ f \ a \\ & , \ (c, fs) \leftarrow \textit{runTrace} \ \tau \ b \end{array}$

In case of a strategy, we can thus obtain the list of *Enter* and *Exit* steps seen so far.

0

Tracing *addFractions*

We run *addFractions* on the term
$$\frac{2}{5} + \frac{2}{3}$$
.
 $\frac{2}{5} + \frac{2}{3} = \frac{6}{15} + \frac{2}{3} = \frac{6}{15} + \frac{10}{15} = \frac{16}{15} = 1\frac{1}{15}$

Tracing addFractions

[Enter ℓ_0 ,	Enter ℓ_1 ,	Step LCD,	Exit ℓ_1
,	Enter ℓ_2 ,	Step $down_{(0)}$,	Step <u>Rename</u> ,	Step up
,	Step $down_{(1)}$,	Step Rename	Step up,	Step not
,	Exit ℓ_2 ,	Enter ℓ_3 ,	Step Add,	Exit ℓ_3
,	Enter ℓ_4 ,	Step Simpl,	Exit ℓ_4 ,	Exit ℓ_0

We determine at each point in the derivation where we are in the strategy by enumerating the *Enter* steps without their corresponding *Exit* step.

0

Textual feedback

Desirable features for textual feedback:

- support for different levels (abstract, concrete, bottom-out)
- messages available in multiple languages
- can contain dynamic parts such as formulas that depend on the exercise at hand
- should be easy for teachers to adapt feedback

Our approach: feedback scripts

- Server has feedback scripts containing textual messages
- Scripts are used to transform an abstract diagnosis into a message, which is returned to the learning environment
- Possible to select a specific script in a request (e.g. for choosing the language)
- Syntax of the scripts might slightly deviate from syntax presented here.
 ICEFP: A strategy recognised

0

Translating rules

 $a \cdot (b + c) \Rightarrow a \cdot b + a \cdot c$ (algebra.equations.linear.distr-times) $a = b \Rightarrow b = a$ (algebra.equations.linear.flip)

namespace algebra.equations.linear

```
text distr-times = {distribute}
text flip = {flip equation around}
```

All rules are organized in a math taxonomy

- Script provides a translation for all rules of an exercise
- Declaring a namespace prevents long identifier names

Example: worked-out solution

text scale-to-one = {divide by @arg1} $4 \cdot (x-1) = 7$ \Rightarrow distribute $4 \cdot x - 4 = 7$ \Rightarrow bring constants to right $4 \cdot x = 11$ \Rightarrow divide by 4 $x = 2\frac{3}{4}$

- Rule translations are used in worked-out solutions
- Attributes (such as @arg1) are replaced by dynamic content

Hints at different levels

```
hint abstract = {Use the procedure for solving linear
    equations: If present, remove parentheses, and
    isolate variable x}
hint concrete = {@expected}
hint bottom-out = {@expected: this results in @after}
```

- Attribute @expected is replaced by the (translation of the) rule suggested by the strategy
- Attribute @after represents the term after application of the expected rule
- Feedback texts can be further tailored for a specific rule-level combination
- OpenMath is used for encoding mathematical objects

Feedback at different levels

feedback noteq = {This is incorrect.}
feedback buggy = {This is incorrect. @recognized}

feedback ok = {Well done! You used @recognized}
feedback same = {This is correct.}

Messages for buggy rules
text buggy.distr-times-plus = {Did you try to use
 distribution? One term was not multiplied.}
text buggy.negate-one-side = {It seems you have negated
 the terms on one side only.}

- The script contains messages for each type of diagnosis: buggy, noteq, ok, same, detour, and unknown
- Messages can again be specialized for the levels

More features

- String definitions and an include mechanism provide a way to reuse text fragments
- Conditionals make it possible to report tailor-made feedback messages for specific cases
- Many more attributes help to enrich the messages with dynamic content, including attributes for the number of steps remaining or the subexpression that is replaced
- Also strategy labels can be used to construct messages
- Feedback scripts can be analyzed for correctness:
 - Syntax errors are reported
 - Unknown attributes and non-existing rule identifiers result in warnings
 - Scripts can be tested for completeness, i.e., whether all cases are covered by the script

Conclusions

- We generate solutions to an exercise using the *run* function on a strategy
- The run function is defined in terms of empty and firsts: well-known functions on CFGs
- Smart constructors help in simplifying strategies
- Labels are used to trace (strategy) steps through an exercise
- Feedback scripts provide textual feedback to users solving exercises

