
Projects and technical details

Johan Jeuring
Joint work with Alex Gerdes and Bastiaan Heeren

Utrecht University and Open Universiteit Nederland
Computer Science

CEFP, Budapest, Hungary

June 2011

[CEFP: A strategy recogniser]

Introduction

I We have developed several exercises and projects related
to our programming tutor

I For some of these, you need to adapt the software
I This lecture gives an overview of the software, and a brief

introduction to the projects.

[CEFP: A strategy recogniser]

Feedback services

client server

ActiveMath

MathDox

DME

Ideas

request

reply

[CEFP: A strategy recogniser]

A hint request

<request service = "onefirst"
exerciseid = "math.lineq"
encoding = "string">

<state>
<expr>5*(x-1) == x/2</expr>
</state>

</request>

[CEFP: A strategy recogniser]

A response

<reply result="ok" version="0.7.4 (0)">
<elem ruleid="algebra.equations.linear.remove-div"

location="[]">
<argument description="factor">
2

</argument>
<state>
<prefix>

[4,1,0]
</prefix>
<expr>

10*(x-1) == x
</expr>

</state>
</elem>

</reply>

[CEFP: A strategy recogniser]

Services

allfirsts. all next steps that are allowed by a strategy

onefirst. a single possible next step that follows a strategy.
You can specify an order on steps, to select a
single step among multiple possible steps

derivation. a worked-out solution starting with the current
program

ready. is the program accepted as a final answer?

diagnose. diagnoses a program submitted by a student

[CEFP: A strategy recogniser]

An examples exercise package

dnfExercise :: Exercise SLogic
dnfExercise = makeExercise

{ parser = parseLogicPars
, prettyPrinter = ppLogicPars
, equivalence = withoutContext eqLogic
, similarity = withoutContext equalLogicA
, isReady = isDNF
, strategy = dnfStrategyDWA
, navigation = navigator
, extraRules = map liftToContext

(extraLogicRules ++ buggyRules)
, randomExercise = useGenerator (const True)

logicExercise
...

}

[CEFP: A strategy recogniser]

Exercise
data Exercise a = Exercise

{ parser :: String → Either String a
, prettyPrinter :: a → String

-- syntactic and semantic checks
, equivalence :: Context a → Context a → Bool
, similarity :: Context a → Context a → Bool
, ordering :: a → a → Ordering
, isReady :: a → Bool

-- strategies and rules
, strategy :: LabeledStrategy (Context a)
, navigation :: a → Navigator a
, extraRules :: [Rule (Context a)]

-- testing and exercise generation
, examples :: [(Difficulty, a)]
...

}

[CEFP: A strategy recogniser]

Structure of the software

The code for the programming tutor is built on top of our
Ideas framework.

I FPTutor/trunk/src/ describes the functional
programming domain

I Feedback/trunk/src describes the Ideas framework

[CEFP: A strategy recogniser]

The Ideas framework

The Ideas framework consists of a number of directories, of
which the following three are most interesting:

I Common: General machinery dealing with rewriting,
strategies, contexts, exercises, etc.

I Domain: Domain reasoner instances dealing with several
domaims such as linear algebra, logic, math, etc.

I Service: Implementing the various services we offer

[CEFP: A strategy recogniser]

The FPTutor framework

The FPTutor framework consists of a number of directories, of
which these are the most interesting:

I src/Domain/FP: Domain reasoner instance for the
programming domain

I src/Domain/FP/Transformations: Program
transformations for normalisation

I src/WebApp: Web application implementation (HTML
and JavaScript)

I models: directory containing model solutions
I scripts: directory with feedback scripts

[CEFP: A strategy recogniser]

Exercises, projects, slides, and notes

We have made all our (textual) material available on

http:
//people.cs.uu.nl/johanj/homepage/Publications/CEFP/

I Exercises: exercises.pdf
I Slides:

I slides1.pdf: Introduction, overview, tutors, strategies
I slides2.pdf: The strategy language
I slides3.pdf: A strategy recogniser
I slides4.pdf: Brief overview of the ideas framework.
Introduction to the exercises/project work

I Lecture notes: notes.pdf

http://people.cs.uu.nl/johanj/homepage/Publications/CEFP/
http://people.cs.uu.nl/johanj/homepage/Publications/CEFP/
exercises.pdf
slides1.pdf
slides2.pdf
slides3.pdf
slides4.pdf
notes.pdf

[CEFP: A strategy recogniser]

Software

Experiment on-line:

http://ideas.cs.uu.nl/ProgTutor/

Build the tutor on your own machine:

http://ideas.cs.uu.nl/trac/wiki/Download

http://ideas.cs.uu.nl/ProgTutor/
http://ideas.cs.uu.nl/trac/wiki/Download

[CEFP: A strategy recogniser]

Project 1: Adapting feedback I

A teacher should be able to add her own feedback to a model
solution.

reverse = foldl {-# FEEDBACK Note ... #-} (flip (:)) []

and it should be possible to disallow or enforce particular
solutions described by a strategy:

reverse = {-# USEDEF #-} foldl (flip (:)) []

Implement these ideas for adapting strategies.

[CEFP: A strategy recogniser]

Project 1: Adapting feedback II

We might want to add a property to a function, and use that
in a strategy:

reverse =

{-# PROP foldl op e == foldr (flip op) e . reverse #-}
foldl (flip (:)) []

Inspiration for desirable properties can be obtained from the
file data/Default.hs in the HLint distribution:

error = zipWith (,) ==> zip
error = foldr (&&) True ==> and
error = (\x -> x) ==> id

Implement these ideas for adapting strategies.

[CEFP: A strategy recogniser]

Project 2: Automatic contract checking

We want the student’s definition reverse = <?> to satisfy the
function contract:

(x : true) → {y | y ≡ reverse x}

for some model solution of reverse. If a student refines with
<?>⇒ foldl <?1> <?2>, this holds if both

assert ((x : true) → (y : true) → {z | z ≡ flip (:) x y} <?1>

assert (≡ []) <?2>

Strategies (and normalisation) help in constructing such
refinement (proof) steps.

Investigate if we can use contracts for blaming incorrect steps.

[CEFP: A strategy recogniser]

Conclusions

The Ideas framework is a sizable application, mainly written in
Haskell

We welcome contributors to the framework, test users, etc.

All feedback is welcome

I http://ideas.cs.uu.nl/
I johanj@cs.uu.nl
I alex.gerdes@ou.nl

http://ideas.cs.uu.nl/
mailto:johanj@cs.uu.nl
mailto:alex.gerdes@ou.nl

