
Chapter 2

Comparing Approaches to Generic

Programming in Haskell

Ralf Hinze1, Johan Jeuring2, and Andres Löh1

1 Institut für Informatik III, Universität Bonn
Römerstraße 164, 53117 Bonn, Germany
{ralf,loeh}@informatik.uni-bonn.de

2 Department of Information and Computing Sciences, Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

johanj@cs.uu.nl

Abstract. The last decade has seen a number of approaches to data-
type-generic programming: PolyP, Functorial ML, ‘Scrap Your Boiler-
plate’, Generic Haskell, ‘Generics for the Masses’, and so on. The ap-
proaches vary in sophistication and target audience: some propose full-
blown programming languages, some suggest libraries, some can be seen
as categorical programming methods. In these lecture notes we compare
the various approaches to datatype-generic programming in Haskell. We
introduce each approach by means of example, and we evaluate it along
different dimensions (expressivity, ease of use, and so on).

1 Introduction

You just started implementing your third web shop in Haskell, and realize that a
lot of the code you have to write is similar to the code for the previous web shops.
Only the data types have changed. Unfortunately, this implies that all reporting,
editing, storing and loading in the database functionality, and probably a lot
more, has to be changed. You’ve heard about generic programming, a technique
which can be used to automatically generate programs depending on types. But
searching on the web gives you at least eight approaches to solve your problem:
DrIFT, PolyP, Generic Haskell, Derivable Type Classes, Template Haskell, Scrap
Your Boilerplate, Generics for the Masses, Strafunski, and so on. How do you
choose?

In these lecture notes we give arguments as to why you would choose a par-
ticular approach to generic programming in Haskell to solve your generic pro-
gramming problem. We compare different approaches to generic programming
along different lines, such as for example:

– Can you use generic programs on all types definable in the programming
language?

– Are generic programs compiled or interpreted?

76 R. Hinze, J. Jeuring and A. Löh

– Can you extend a generic program in a special way for a particular data
type?

Before we compare the various approaches to generic programming we first dis-
cuss in detail the criteria on which the comparison is based.

‘Generic’ is an over-used adjective in computing science in general, and in
programming languages in particular. Ada has generic packages, Java has gener-
ics, Eiffel has generic classes, and so on. Usually, the adjective ‘generic’ is used
to indicate that a concept allows abstractions over a larger class of entities than
was previously possible. However, broadly speaking most uses of ‘generic’ refer
to some form of parametric polymorphism, ad-hoc polymorphism, and/or inher-
itance. For a nice comparison of the different incarnations of generic concepts
in different programming languages, see Garcia et al. [23]. Already in the 1970s
this was an active area of research [89, 66, 20].

In the context of these lecture notes, ‘generic programming’ means a form of
programming in which a function takes a type as argument, and its behavior de-
pends upon the structure of this type. The type argument is the type of values to
which the function is applied, or the type of the values returned by the function,
or the type of values that are used internally in the function. Backhouse and
Gibbons [24, 10, 25] call this kind of generic programming datatype-generic pro-
gramming. A typical example is the equality function, where a type argument t
dictates the form of the code that performs the equality test on two values of
type t. In the past we have used the term polytypic [48] instead of ‘generic’,
which is less confusing and describes the concept a bit more accurately. How-
ever, the term hasn’t been picked up by other people working on conceptually
the same topic, and maybe it sounds a bit off-putting.

The first programming languages with facilities for datatype-generic pro-
gramming, beyond generating the definition of equality on user-defined data
types, were Charity [18], and the lazy, higher-order, functional programming
language Haskell [86]. Since then Haskell has been the most popular testbed for
generic programming language extensions or libraries. Here is an incomplete list
of approaches to generic programming in Haskell or based upon Haskell:

– Generic Haskell [31, 34, 71, 73].
– DrIFT [99].
– PolyP [48, 81].
– Derivable Type Classes [41].
– Lightweight Generics and Dynamics [15].
– Scrap Your Boilerplate [61, 64, 62, 44, 43].
– Generics for the Masses [35, 84].
– Clean [3, 2]. (Clean is not Haskell, but it is sufficiently close to be listed

here.)
– Using Template Haskell for generic programming [82].
– Strafunski [65].
– Generic Programming, Now! [42]

2. Comparing Approaches to Generic Programming in Haskell 77

Although Haskell has been the most popular testbed for generic programming
extensions, many non-Haskell approaches to generic programming have been
designed:

– Charity [18].
– ML [14, 22].
– Intensional type analysis [30, 19, 96].
– Extensional type analysis [21].
– Functorial ML [56, 78], the Constructor Calculus [53], the Pattern Calcu-

lus [54, 55], FISh [52].
– Dependently-typed generic programming [6, 11].
– Type-directed programming in Java [98].
– Adaptive Object-Oriented Programming [69].
– Maude [17].

We have tried to be as complete as possible, but certainly this list is not exhaus-
tive.

In these lecture notes we compare most of the approaches to generic pro-
gramming in Haskell or based upon Haskell. We do not include Strafunski and
Generic Programming, Now! in our comparison. Strafunski is rather similar to
Scrap Your Boilerplate, and Generic Programming, Now! is an advanced variant
of the lightweight approaches we will discuss. Besides that, a paper [42] about
the Generic Programming, Now! approach is included in these lecture notes, and
itself contains a comparison to other approaches to generic programming. In fu-
ture work we hope to also compare approaches to generic programming in other
programming languages.

Types play a fundamental rôle in generic programming. In an untyped or
dynamically typed language, it is possible to define functions that adapt to
many data structures, and one could therefore argue that it is much easier to do
generic programming in these languages. We strongly disagree: since generic pro-
gramming is fundamentally about programming with types, simulating generic
programming in an untyped language is difficult, since the concept of types and
the accompanying checks and guidance are missing. Generic programs are often
complex, and feedback from the type system is invaluable in their construction.
This difficulty can also be observed in our treatment of DrIFT and Template
Haskell, both approaches with only limited support from the type system.

We introduce each approach to generic programming by means of a number
of, more or less, canonical examples. This set of examples has been obtained by
collecting the generic functions defined in almost twenty papers introducing the
various approaches to generic programming. Almost all of these papers contain
at least one function from the following list:

– encode, a function that encodes a value of any type as a list of bits. The
function encode is a simple recursive function which ‘destructs’ a value of a
data type into a list of bits.

– decode , the inverse of encode, is a function which builds a value of a data
type from a list of bits.

78 R. Hinze, J. Jeuring and A. Löh

– eq , a function that takes two values, and compares them for equality.
– map, a generalization of the standard map function on lists. On a parame-

trized data type, such as lists, function map takes a function argument and a
value of the data type, and applies the function argument to all parametric
values inside the value argument. The function map is only useful when
applied to type constructors, i.e., parametrized data types such as lists or
trees. In particular, on types of kind ! it is the identity function.

– show , a function that shows or pretty-prints a value of a data type.
– update, a function that takes a value of a data type representing the struc-

ture of a company, and updates the salaries that appear in this value. The
characteristic feature of this example is that update is only interested in val-
ues of a very small part of a possibly very large type. It is generic in the
sense that it can be applied to a value of any data type, but it only updates
salaries, and ignores all other information in a value of a data type.

The above functions all exhibit different characteristics, which we use to show
differences between approaches to generic programming. We do not define all of
these functions for each approach, in particular not for approaches that are very
similar, but we use these examples to highlight salient points. We then investigate
a number of properties for each approach. Examples of these properties are:
whether it is possible to define a generic function on any data type that can be
defined in the programming language (full reflexivity), whether the programming
language is type safe, whether generic functions satisfy desirable properties, and
so on. Sometimes we use examples beyond the above functions to better highlight
specifics and peculiarities of a certain approach.

These notes are organized as follows. In Section 2 we discuss why generic pro-
gramming matters by means of a couple of representative examples. We use these
examples in Section 4 to compare the various approaches to generic program-
ming by means of the criteria introduced and discussed in Section 3. Section 5
concludes.

2 Why generic programming matters

Software development often consists of designing a data type, to which func-
tionality is added. Some functionality is data type specific, other functionality is
defined on almost all data types, and only depends on the type structure of the
data type. Examples of generic functionality defined on almost all data types are
storing a value in a database, editing a value, comparing two values for equality,
and pretty-printing a value. A function that works on many data types is called
a generic function. Applications of generic programming can be found not just
in the rather small programming examples mentioned, but also in:

– XML tools such as XML compressors [37], and type-safe XML data binding
tools [7, 63];

– automatic testing [60];

2. Comparing Approaches to Generic Programming in Haskell 79

– constructing ‘boilerplate’ code that traverses a value of a rich set of mutually-
recursive data types, applying real functionality at a small portion of the data
type [61, 71, 62];

– structure editors such as XML editors [29], and generic graphical user inter-
faces [1];

– typed middleware for distributed systems, such as CORBA [85];
– data-conversion tools [50] which for example store a data type value in a

database [29], or output it as XML, or in a binary format [94].

Change is endemic to any large software system. Business, technology, and
organization frequently change during the life cycle of a software system. How-
ever, changing a large software system is difficult: localizing the code that is
responsible for a particular part of the functionality of a system, changing it,
and ensuring that the change does not lead to inconsistencies in other parts of
the system or in the architecture or documentation is usually a challenging task.
Software evolution is a fact of life in the software-development industry [67, 68,
87].

If a data type changes, or a new data type is added to a piece of software,
a generic program automatically adapts to the changed or new data type. An
example is a generic program for calculating the total amount of salaries paid
by an organization. If the structure of the organization changes, for example by
removing or adding an organizational layer, the generic program still calculates
the total amount of salaries paid. Since a generic program automatically adapts
to changes of data types, a programmer only has to program ‘the exception’.
Generic programming has the potential to solve at least an important part of
the software-evolution problem [58].

In the rest of this section we show a number of examples of generic programs.
We write the generic programs in Generic Haskell [31, 38, 70]. Generic Haskell
is an extension of Haskell that supports generic programming. Any of the other
approaches to generic programming could have been chosen for the following ex-
position. We choose Generic Haskell simply because we have to start somewhere,
and because we are responsible for the development of Generic Haskell. We use
the most recent version of Generic Haskell, known as Dependency-style Generic
Haskell [71, 70]. Dependencies both simplify and increase the expressiveness of
generic programming. In Section 4 we show how these programs are written in
other approaches to generic programming.

2.1 Data types in Haskell

The functional programming language Haskell 98 provides an elegant and com-
pact notation for declaring data types. In general, a data type introduces a
number of constructors, where each constructor takes a number of arguments.
Here are two example data types:

data CharList = Nil | Cons Char CharList
data Tree = Empty | Leaf Int | Bin Tree Char Tree.

80 R. Hinze, J. Jeuring and A. Löh

A character list, a value of type CharList, is often called a string. It is either empty,
denoted by the constructor Nil , or it is a character c followed by the remainder
of the character list cs , denoted Cons c cs, where Cons is the constructor. A
tree, a value of type Tree, is empty, a leaf containing an integer, or a binary node
containing two subtrees and a character.

These example types are of kind !, meaning that they do not take any type
arguments. We will say a bit more about kinds in Section 3.1. A kind can be
seen as the ‘type of a type’. The following type takes an argument; it is obtained
by abstracting Char out of the CharList data type above:

data List a = Nil | Cons a (List a).

Here List is a type constructor, which, when given a type a, constructs the type
List a. The type constructor List has the functional kind ! → !. The list data
type is predefined in Haskell: the type List a is written [a], the expressions Nil
and Cons x xs are written [] and x : xs , respectively. A type can take more than
one argument. If we abstract from the types Char and Int in the type Tree, we
obtain the type GTree defined by:

data GTree a b = GEmpty | GLeaf a | GBin (GTree a b) b (GTree a b).

The type constructor GTree takes two type arguments, both of kind !, and hence
has kind ! → ! → !.

Arguments of type constructors need not be of kind !. Consider the data
type of Rose trees, defined by:

data Rose a = Node a [Rose a].

A Rose tree is a Node containing an element of type a, and a list of child trees.
Just like List, Rose has kind ! → !. If we abstract from the list type in Rose, we
obtain the data type GRose defined by:

data GRose f a = GNode a (f (GRose f a)).

Here the type argument f has kind ! → !, just like the List type constructor,
and it follows that GRose has kind (! → !) → ! → !. We call such a kind that
takes a kind constructor as argument a higher-order kind. The other kinds are
called first-order kinds.

All the examples of data types we have given until now are examples of
so-called regular data types: a recursive, parametrized type whose recursive def-
inition does not involve a change of the type parameter(s). Non-regular or nested
types [12] are practically important since they can capture data-structural in-
variants in a way that regular data types cannot. For instance, the following
data-type declaration defines a nested data type: the type of perfectly-balanced,
binary leaf trees [32] – perfect trees for short.

data Perfect a = ZeroP a | SuccP (Perfect (Fork a))
data Fork a = Fork a a

2. Comparing Approaches to Generic Programming in Haskell 81

This equation can be seen as a bottom-up definition of perfect trees: a perfect
tree is either a singleton tree or a perfect tree that contains pairs of elements.
Here is a perfect tree of type Perfect Int:

SuccP (SuccP (SuccP (ZeroP (Fork (Fork (Fork 2 3)
(Fork 5 7))

(Fork (Fork 11 13)
(Fork 17 19)))))).

Note that the height of the perfect tree is encoded in the prefix of SuccP and
ZeroP constructors.

2.2 Structure-representation types

To apply functions generically to all data types, we view data types in a uniform
manner: except for basic predefined types such as Float, IO, and →, every Haskell
data type can be viewed as a labeled sum of possibly labeled products. This
encoding is based on the following data types:

data a :+: b = Inl a | Inr b
data a :*: b = a :*: b
data Unit = Unit

data Con a = Con a
data Label a = Label a.

The choice between Nil and Cons , for example, is encoded as a sum using the
type :+: (nested to the right if there are more than two constructors). The con-
structors of a data type are encoded as sum labels, marked by the type Con.
While the representation types are generated, the compiler tags each occurrence
of Con with an abstract value of type ConDescr describing the original construc-
tor. The exact details of how constructors are represented are omitted [38, 70].
Record names are encoded as product labels, represented by a value of the type
Label, which contains a value of type LabelDescr. Arguments such as the a and
List a of the Cons are encoded as products using the type :*: (nested to the right
if there are more than two arguments). In the case of Nil , an empty product,
denoted by Unit, is used. The arguments of the constructors are not translated.
Finally, abstract types and primitive types such as Char are not encoded, but
left as they are.

Now we can encode CharList, Tree, and List as

type CharList◦ = Con Unit :+: Con (Char :*: CharList)
type Tree◦ = Con Unit :+: Con Int :+: Con (Tree :*: (Char :*: Tree))
type List◦ a = Con Unit :+: Con (a :*: (List a)).

These representations are called structure-representation types. A structure-
representation type represents the top-level structure of a data type. A type
t and its structure-representation type t◦ are isomorphic. (Strictly speaking this

82 R. Hinze, J. Jeuring and A. Löh

is not true, because the two types may be distinguished using (partially) unde-
fined values.) Here and in the rest of the paper ‘isomorphism’ should be read as
isomorphic modulo undefined values. The isomorphism between a type and its
structure-representation type is witnessed by a so-called embedding-projection
pair: a value conv t :: t ↔ t◦ of the data type

data a ↔ b = EP{from :: a → b, to :: b → a}.

For example, for the List data type we have that convList = EP fromList toList,
where fromList and toList are defined by

fromList :: List a → List◦ a
fromList Nil = Inl (Con Unit)
fromList (Cons a as) = Inr (Con (a :*: as))

toList :: List◦ a → List a
toList (Inl (Con Unit)) = Nil
toList (Inr (Con (a :*: as))) = Cons a as .

The Generic Haskell compiler generates the translation of a type to its structure-
representation type, together with the corresponding embedding-projection pair.
More details about the correspondence between these and Haskell types can be
found elsewhere [34].

A generic program is defined by induction on the structure of structure-
representation types. Whenever a generic program is applied to a user-defined
data type, the Generic Haskell compiler takes care of the mapping between
the user-defined data type and its corresponding structure-representation type.
Furthermore, a generic program may also be defined directly on a user-defined
data type, in which case this definition takes precedence over the automatically
generated definitions. A definition of a generic function on a user-defined data
type is called a default case. To develop a generic function, it is best to consider
first a number of its instances for specific data types.

2.3 Encoding and decoding

A classic application area of generic programming is parsing and unparsing, i.e.,
reading values of different types from some universal representation, or writ-
ing values to that universal representation. The universal representation can be
aimed at being human-readable (such as the result of Haskell’s show function);
or it can be intended for data exchange, such as XML. Other applications include
encryption, transformation, or storage.

In this section we treat a very simple case of compression, by defining func-
tions that can write to and read from a sequence of bits. A bit is defined by the
following data-type declaration:

data Bit = O | I .

Here, the names O and I are used as constructors.

2. Comparing Approaches to Generic Programming in Haskell 83

Function encode on CharList. To define encode on the data type CharList, we
assume that there exists a function encodeChar :: Char → [Bit], which takes a
character and returns a list of bits representing that character. We assume that
encodeChar returns a list of 8 bits, corresponding to the ASCII code of the
character. A value of type CharList is now encoded as follows:

encodeCharList :: CharList → [Bit]
encodeCharList Nil = [O]
encodeCharList (Cons c cs) = I : encodeChar c ++ encodeCharList cs .

For example, applying encodeCharList to the string "Bonn" defined as a CharList
by bonn = Cons ’B’ (Cons ’o’ (Cons ’n’ (Cons ’n’ Nil))) gives

ComparingGP〉 encodeCharList bonn
[I ,O , I ,O ,O ,O ,O , I ,O , I ,O , I , I ,O , I , I , I , I , I
,O , I , I ,O , I , I , I ,O , I ,O , I , I ,O , I , I , I ,O ,O].

Note that the type of the value that is encoded is not stored. This implies that
when decoding, we have to know the type of the value being decoded.

Function encode on Tree. To define encode on the data type Tree, we assume
there exists, besides a function encodeChar , a function encodeInt :: Int → [Bit],
which takes an integer and returns a list of bits representing that integer. Func-
tion encodeInt should be defined such that the resulting list of bits can be un-
ambiguously decoded back to an integer again. A value of type Tree can then be
encoded as follows:

encodeTree :: Tree → [Bit]
encodeTree Empty = [O]
encodeTree (Leaf i) = [I ,O] ++ encodeInt i
encodeTree (Bin l c r) = [I , I]

++ encodeTree l
++ encodeChar c
++ encodeTree r .

The Empty constructor of the Tree data type is encoded with a single bit, and
the other two constructors are encoded using a sequence of two bits.

Function encode on List a. The data type CharList is an instance of the data type
List a, where a is Char. How do we define an encoding function on the data type
List a? For character lists, we assumed the existence of an encoding function for
characters. Here we take the same approach: to encode a value of type List a, we
assume that we have a function for encoding values of type a. Abstracting from
encodeChar in the definition of encodeCharList we obtain:

encodeList :: (a → [Bit]) → List a → [Bit]
encodeList encodeA Nil = [O]
encodeList encodeA (Cons x xs) = I : encodeA x

++ encodeList encodeA xs.

84 R. Hinze, J. Jeuring and A. Löh

Generic encode. The encoding functions on CharList, Tree and List a follow
the same pattern: encode the choice made for the top level constructors, and
concatenate the encoding of the children of the constructor. We can capture this
common pattern in a single generic definition by defining the encoding function
by induction on the structure of data types. This means that we define encode
on sums (:+:), on products (:*:), and on base types such as Unit, Int and Char,
as well as on the sum labels (Con) and the product labels (Label).

The only place where there is a choice between different constructors is in
the :+: type. Here, the value can be either an Inl or an Inr . If we have to
encode a value of type Unit, it can only be Unit , so we need no bits to encode
that knowledge. Similarly, for a product we know that the value is the first
component followed by the second – we need no extra bits except the encodings
of the components.

In Generic Haskell, the generic encode function is rendered as follows:

encode{|a :: !|} :: (encode{|a|}) ⇒ a → [Bit]

encode{|Unit|} Unit = []
encode{|Int|} i = encodeInt i
encode{|Char|} c = encodeChar c
encode{|α :+: β|} (Inl x) = O : encode{|α|} x
encode{|α :+: β|} (Inr y) = I : encode{|β|} y
encode{|α :*: β|} (x1 :*: x2) = encode{|α|} x1 ++ encode{|β|} x2

encode{|Label l α|} (Label a) = encode{|α|} a
encode{|Con c α|} (Con a) = encode{|α|} a.

There are a couple of things to note about generic function definitions:

– The function encode{|a|} is a type-indexed function. The type argument ap-
pears in between special parentheses {|, |}. An instance of encode is obtained
by applying encode to a type. For example, encode{|CharList|} is the instance
of the generic function encode on the data type CharList. This instance is
semantically the same as the definition of encodeCharList .

– The constraint encode{|a|} that appears in the type of encode says that encode
depends on itself. A generic function f depends on a generic function g if
there is an ‘arm’ (or branch) in the definition of f , for example the arm
for f {|α :+: β|} that uses g on a variable in the type argument, for example
g{|α|}. If a generic function depends on itself it is defined by induction over
the type structure.

– The type of encode is given for a type a of kind !. This does not mean
that encode can only be applied to types of kind !; it only gives the type
information for types of kind !. The type of function encode on types with
kinds other than ! is derived automatically from this base type. In partic-
ular, encode{|List|} is translated to a value that has the type (a → [Bit]) →
(List a → [Bit]).

– The Generic Haskell code as given above is a bit prettier than the actual
Generic Haskell code. In the actual Generic Haskell code we use the pre-

2. Comparing Approaches to Generic Programming in Haskell 85

fix type constructor Sum instead of the infix type constructor · :+: ·, and
similarly Prod instead of · :*: ·.

– The constructor case Con has an extra argument c, which contains the con-
structor description of the current constructor. Similarly, the label case Label
has an extra argument l that contains a description of the current label. This
is a special type pattern also containing a value, namely a constructor (label)
description. The constructor (label) description can only be accessed in the
Con (Label) case.

The Con and the Label case are useful for generic functions that use the names
of constructors and labels in some way, such as a generic show function. Most
generic functions, however, essentially ignore these arms. In this case, Generic
Haskell allows to omit these arms from the generic function definition.

Generic decode. The inverse of encode recovers a value from a list of bits. This
inverse function is called decode, and is defined in terms of a function decodes ,
which takes a list of bits, and returns a list of values that are recovered from an
initial segment of the list of bits. We introduce a type Parser that is used as the
type of function decodes . Furthermore, we assume we have a map function on
this type. The reason we define this example as well, is that we want to show
how to generically build or construct a value of a data type.

type Parser a = [Bit] → [(a, [Bit])]
mapP :: (a → b) → Parser a → Parser b

decodes{|a :: !|} :: (decodes{|a|}) ⇒ Parser a

decodes{|Unit|} xs = [(Unit , xs)]
decodes{|Int|} xs = decodesInt xs
decodes{|Char|} xs = decodesChar xs
decodes{|α :+: β|} xs = bitCase (mapP Inl (decodes{|α|}))

(mapP Inr (decodes{|β|}))
xs

decodes{|α :*: β|} xs = [(y1 :*: y2, r2) | (y1, r1) ← decodes{|α|} xs
, (y2, r2) ← decodes{|β|} r1]

bitCase :: Parser a → Parser a → Parser a
bitCase p q = λbits → case bits of

O : bs → p bs
I : bs → q bs
[] → []

The function is a bit more involved than encode, because it has to deal with
incorrect input, and it has to return the unconsumed part of the input. We
therefore use the standard list-of-successes technique [93], where the input list is
transformed into a list of pairs, containing all possible parses with the associated
unconsumed part of the input. Assuming that the decoding of primitive types
such as Int and Char is unambiguous, the decoding process is not ambiguous,
so only lists of zero (indicating failure) and one (indicating success) elements

86 R. Hinze, J. Jeuring and A. Löh

occur. As with encodeChar , we assume a function decodesChar is obtained from
somewhere.

A value of type Unit is represented using no bits at all, hence it is decoded
without consuming any input. Except for the primitive types such as Char and
Int, the case for :+: is the only place where input is consumed (as it is the only
case where output is produced in encode), and depending on the first bit of the
input, we produce an Inl or an Inr . Decoding fails if we run out of input while
decoding a sum. The product case first decodes the left component, and then
runs decodes for the right component on the rest of the input.

The inverse of encode is now defined by:

decode{|a :: !|} :: (decodes{|a|}) ⇒ [Bit] → a

decode{|a|} bits = case decodes{|a|} bits of

[(y, [])] → y
→ error "decode: no parse".

Note that although this is a generic function, it is not defined by induction
on the structure of types. Instead, it is defined in terms of another generic
function, decodes . A generic function f that is defined in terms of another generic
function g is called a generic abstraction. Such a generic function does not depend
on itself, but on g instead. Using a generic abstraction, we can thus define a
function that depends on a type argument, but is not defined using cases on
types. A generic abstraction only works on types that have the specified kind
(! in the case of function decode).

For each type t in the domain of both decode and encode, we have that for
any finite and total value x of type t,

(decode{|t|} . encode{|t|}) x x .

2.4 Equality

The generic equality function takes two arguments instead of a single argument
as encode does. We define the equality function on two of the example data types
given in Section 2.1. Two character lists are equal if both are empty, or if both
are non-empty, the first elements are equal, and the tails of the lists are equal.

eqCharList :: CharList → CharList → Bool
eqCharList Nil Nil = True
eqCharList (Cons x xs) (Cons y ys) = eqChar x y ∧ eqCharList xs ys
eqCharList = False,

where eqChar is the equality function on characters.
Two trees are equal if both are empty, both are a leaf containing the same

integer, determined by means of function eqInt , or if both are nodes containing
the same subtrees, in the same order, and the same characters.

2. Comparing Approaches to Generic Programming in Haskell 87

eqTree :: Tree → Tree → Bool
eqTree Empty Empty = True
eqTree (Leaf i) (Leaf j) = eqInt i j
eqTree (Bin l c r) (Bin v d w) = eqTree l v ∧ eqChar c d ∧ eqTree r w
eqTree = False

The equality functions on CharList and Tree follow the same pattern: compare the
top level constructors, and, if they are equal, pairwise compare their arguments.
We can capture this common pattern in a single generic definition by defining
the equality function by induction on the structure of data types.

eq{|a :: !|} :: (eq{|a|}) ⇒ a → a → Bool

eq{|Unit|} = True
eq{|Int|} i j = eqInt i j
eq{|Char|} c d = eqChar c d
eq{|α :+: β|} (Inl x) (Inl y) = eq{|α|} x y
eq{|α :+: β|} (Inl x) (Inr y) = False
eq{|α :+: β|} (Inr x) (Inl y) = False
eq{|α :+: β|} (Inr x) (Inr y) = eq{|β|} x y
eq{|α :*: β|} (x :*: y) (v :*: w) = eq{|α|} x v ∧ eq{|β|} y w

2.5 Map

In category theory, the functorial map is defined as the action of a functor on an
arrow. There is no way to describe functors in Generic Haskell, and neither is
it possible to distinguish argument types in structure-representation types. The
approach we take to defining map in Generic Haskell illustrates the importance
of kinds in generic programming. To understand the definition of the generic
map function, it helps to first study the generic copy function:

copy{|a :: !|} :: (copy{|a|}) ⇒ a → a

copy{|Unit|} x = x
copy{|Int|} x = x
copy{|Char|} x = x
copy{|α :+: β|} (Inl x) = Inl (copy{|α|} x)
copy{|α :+: β|} (Inr x) = Inr (copy{|β|} x)
copy{|α :*: β|} (x :*: y) = copy{|α|} x :*: copy{|β|} y.

Given a value, the copy function produces a copy of that value and is thus a
generic version of the identity function. Note that we have made a choice in the
code above: the definition is written recursively, applying the generic copy deeply
to all parts of a value. We could have simplified the last three lines, removing
the dependency of copy on itself:

copy{|α :+: β|} x = x
copy{|α :*: β|} x = x .

88 R. Hinze, J. Jeuring and A. Löh

But retaining the dependency and applying the function recursively has an ad-
vantage: using a so-called local redefinition we can change the behavior of the
function. Function copy has a dependency on itself. This implies that whenever
copy is used on a type of a kind different from !, extra components are needed.
For example, applying copy to the type [a], where the type list has kind ! → !,
requires a component of copy on the type a. The copy function on [a] takes a
copy function on the type a as argument, and applies this copy function when-
ever it encounters an a-value. The standard behavior of generic functions with
dependencies is that argument functions are constructed in exactly the same
way as the instance of the generic function itself. So the copy function on [Char]
would be the instance of the generic copy function on lists, taking the instance
of the generic copy function on Char as argument. Local redefinition allows us
to adapt the standard behavior. As an example, we can increase all elements of
a list by one, using the function

incBy1 x = let copy{|α|} = (+1) in copy{|[α]|} x .

Here we locally redefine copy to behave as the function (+1) on values of type α
that appear in a list of type [α]. Obviously, this is only type correct if α equals
Int (or, more generally, is an instance of the Num class). Note that incBy1 is
something that would normally be written as an application of map:

incBy1 x = map (+1) x .

If we compare map with the locally redefined version of copy , then two differences
spring to mind. First, the function map can only be used on lists, whereas copy
can be used on other data types as well. Second, map has a more liberal type.
If we define

map′ f = let copy{|α|} = f in copy{|[α]|},

then we can observe that map′, compared to map has a more restricted type:

map′ :: (a → a) → [a] → [a]
map :: (a → b) → [a] → [b].

The function passed to map may change the type of its argument; the function
passed to map′ preserves the argument type.

Inspired by this deficiency, we can ask ourselves if it is possible to also pass
a function of type a → b while locally redefining copy . The function copy{|[a]|}
has the qualified type

copy{|[a]|} :: (copy{|a|} :: a → a) ⇒ [a] → [a],

but we are now going to generalize this type to something like

map{|[a]|} :: (map{|a|} :: a → b) ⇒ [a] → [b],

2. Comparing Approaches to Generic Programming in Haskell 89

thereby renaming function copy to map (but using exactly the same definition).
For this to work, map needs a different type signature, in which the b is also
bound:

map{|a :: !, b :: !|} :: (map{|a, b|}) ⇒ a → b.

The type of the map function is now parametrized over two type variables, and
so is the dependency. The arms in the definition of map are still parametrized by
a single type (Generic Haskell does not allow more than one type argument in
definitions of generic functions). Function map is always called with a single type
argument, which is the type argument that is used to induct over. When map is
used at a constant type, both variables a and b are instantiated to the same con-
stant type. Only when locally redefining the function for a dependency variable,
the additional flexibility is available. Figure 1 shows some types (with explicit
kind annotations for the type variables) for applications of map to specific type
arguments.

map{|Tree :: !|} :: Tree → Tree
map{|List (a :: !) :: !|} ::

∀(a1 :: !) (a2 :: !) . (map{|a|} :: a1 → a2) ⇒ List a1 → List a2

map{|GTree (a :: !) (b :: !) :: !|} ::
∀(a1 :: !) (a2 :: !) (b1 :: !) (b2 :: !) . (map{|a|} :: a1 → a2,map{|b|} :: b1 → b2) ⇒

GTree a1 a2 → GTree b1 b2

map{|GRose (f :: ! → !) (a :: !) :: !|} ::
∀(f1 :: ! → !) (f2 :: ! → !) (a1 :: !) (a2 :: !) .

(map{|f (c :: !)|} :: ∀(c1 :: !) (c2 :: !) . (map{|c|} :: c1 → c2) ⇒ f1 c1 → f2 c2

,map{|a|} :: a1 → a2

) ⇒ GRose f1 a1 → GRose f2 a2.

Fig. 1. Example types for generic applications of map to type arguments of different
forms.

For example, assume the (data) types Pair and Either are defined by:

type Pair a b = (a, b)
data Either a b = Left a | Right b.

Then the expressions

map{|[]|} (+1) [1, 2, 3, 4, 5]
map{|Pair|} (∗2) ("y"++) (21, "es")
map{|Either|} not id (Left True)

evaluate to [2, 3, 4, 5, 6], (42, "yes"), and Left False, respectively.

90 R. Hinze, J. Jeuring and A. Löh

2.6 Show

The function show shows a value of an arbitrary data type. In Haskell, the
definition of show can be derived for most data types. In this subsection we
explain how to define show as a generic function in Generic Haskell. We do not
treat field labels, so our implementation is a simplification of Haskell’s show ;
the complete definition of show can be found in Generic Haskell’s library. The
function show is an example of a function that uses the constructor descriptor
in the Con case. We define show in terms of the function showP , a slightly
generalized variant of Haskell’s show that takes an additional argument of type
String → String. This parameter is used internally to place parentheses around
a fragment of the result when needed.

showP{|a :: !|} :: (showP{|a|}) ⇒ (String → String) → a → String

showP{|Unit|} p Unit = ""
showP{|α :+: β|} p (Inl x) = showP{|α|} p x
showP{|α :+: β|} p (Inr x) = showP{|β|} p x
showP{|α :*: β|} p (x1 :*: x2) = showP{|α|} p x1 ++ " " ++ showP{|β|} p x2

showP{|Con c α|} p (Con x) = let parens x = "("++ x ++ ")"
body = showP{|α|} parens x

in if null body
then conName c
else p (conName c ++ " " ++ body)

showP{|[α]|} p xs = let body = (concat
. intersperse ", "
.map (showP{|α|} id)
) xs

in "["++ body ++ "]"

The type Unit represents a constructor with no fields. In such a situation, the
constructor name alone is the representation, and it is generated from the Con
case, so we do not need to produce any output here. We just descend through the
sum structure; again, no output is produced because the constructor names are
produced in the Con case. A product concatenates fields of a single constructor;
we therefore show both components, and separate them from each other by a
space.

Most of the work is done in the arm for Con. We show the body of the
constructor, using parentheses where necessary. The body is empty if and only if
there are no fields for this constructor. In this case, we only return the name of
the constructor. Here we make use of the function conName on the constructor
descriptor c to obtain that name. Otherwise, we connect the constructor name
and the output of the body with a space, and possibly surround the result with
parentheses.

The last case is for lists and implements Haskell’s list syntax, with brackets
and commas, using the function intersperse from Haskell’s List module.

In addition to the cases above, we need cases for abstract primitive types
such as Char, Int, or Float that implement the operation in some primitive way.

2. Comparing Approaches to Generic Programming in Haskell 91

The function show is defined in terms of showP via generic abstraction, in-
stantiating the first parameter to the identity function, because outer parentheses
are not required.

show{|a :: !|} :: (showP{|a|}) ⇒ a → String
show{|a|} = showP{|a|} id

The definition of a generic read function that parses the generic string repre-
sentation of a value is also possible using the Con case, and only slightly more
involved because we have to consider partial consumption of the input string
and possible failure.

2.7 Update salaries

Adapting from Lämmel and Peyton Jones [61], we use the following data types
to represent the organizational structure of a company.

data Company = C [Dept]
data Dept = D Name Manager [SubUnit]
data SubUnit = PU Employee | DU Dept
data Employee = E Person Salary
data Person = P Name Address
data Salary = S Float
type Manager = Employee
type Name = String
type Address = String

We wish to update a Company value, which involves giving every Person a 15%
pay rise. To do so requires visiting the entire tree and modifying every occurrence
of Salary. The implementation requires pretty standard “boilerplate” code which
traverses the data type, until it finds Salary, where it performs the appropriate
update – itself one line of code – before reconstructing the result.

In Generic Haskell writing this function requires but a few lines. The code is
based on the generic map function. The code to perform the updating is given
by the following three lines, the first of which is the mandatory type signature,
the second states that the function is based on map, and the third performs the
update of the salary. The extends construct denotes that the cases of map are
copied into update. These are the default cases described by Clarke and Löh [16].

update{|a :: !|} :: (update{|a|}) ⇒ a → a
update extends map
update{|Salary|} (S s) = S (s ∗ (1 + 0.15))

Semantically, this is the same function as

update{|Unit|} x = x
update{|Int|} x = x

92 R. Hinze, J. Jeuring and A. Löh

update{|Char|} x = x
update{|α :+: β|} (Inl x) = Inl (update{|α|} x)
update{|α :+: β|} (Inr x) = Inr (update{|β|} x)
update{|α :*: β|} (x :*: y) = update{|α|} x :*: update{|β|} y
update{|Salary|} (S s) = S (s ∗ (1 + 0.15)).

The extends construct allows us to abbreviate such small variations of generic
functions.

3 Criteria for comparison

This section discusses the criteria we use for comparing approaches to generic
programming in Haskell. This is a subset of the criteria we would use for com-
paring approaches to generic programming in any programming language. To-
gether, these criteria can be viewed as a characterization of generic program-
ming. Adding generic programming capabilities to a programming language is a
programming-language design problem. Many of the criteria we give are related
to or derived from programming-language design concepts. We don’t think that
all criteria are equally important: some criteria discuss whether or not some
functions can be defined or used on particular data types, whereas other criteria
discuss more cosmetic aspects. We illustrate the criteria with an evaluation of
Generic Haskell.

3.1 Structure in programming languages

Ignoring modules, many modern programming languages have a two-level struc-
ture. The bottom level, where the computations take place, consists of values.
The top level imposes structure on the value level, and is inhabited by types.
On top of this, Haskell adds a level that imposes structure on the type level,
namely kinds. Finally, in some dependently-typed programming languages there
is a possibly infinite hierarchy of levels, where level n + 1 imposes structure on
elements of level n [90].

In ordinary programming we routinely define values that depend on values,
that is, functions, and types that depend on types, that is, type constructors.
However, we can also imagine having dependencies between adjacent levels. For
instance, a type might depend on a value or a type might depend on a kind. The
following table lists the possible combinations:

kinds depending on kinds parametric and kind-indexed kinds
kinds depending on types dependent kinds

types depending on kinds polymorphic and kind-indexed types
types depending on types parametric and type-indexed types
types depending on values dependent types

values depending on types polymorphic and type-indexed functions
values depending on values ordinary functions

2. Comparing Approaches to Generic Programming in Haskell 93

There even exist dependencies between non-adjacent levels: properties of generic
functions are values that depend on kinds [33, 51]. However, we will not further
discuss these non-adjacent dependencies in these notes.

If a higher level depends on a lower level we have so-called dependent types or
dependent kinds. Programming languages with dependent types are the subject
of current research [76, 9, 90, 100]. Generic programming is concerned with the
opposite direction, where a lower level depends on the same or a higher level. For
instance, if a value depends on a type we either have a polymorphic or a type-
indexed function. In both cases the function takes a type as an argument. What
is the difference between the two? A polymorphic function is a function that
happens to be insensitive to what type the values in a data type are. Take, for
example, the length function that calculates the length of a list. Since it does not
have to inspect the elements of an argument list, it has type ∀a . List a → Int. By
contrast, in a type-indexed function the type argument guides the computation
which is performed on the value arguments.

Not only values may depend on types, but also types. For example, the type
constructor List depends on a type argument. We can make a similar distinction
as on the value level. A parametric type, such as List, does not inspect its type
argument. A type-indexed type [39], on the other hand, is defined by induction
on the structure of its type argument. An example of a type-indexed data type
is the zipper data type introduced by Huet [46]. Given a data type t, the zipper
data type corresponding to t can be defined by induction on the data type t.
Finally, we can play the same game on the level of kinds. The following table
summarizes the interesting cases.

kinds defined by induction on the structure of kinds kind-indexed kinds
kinds defined by induction on the structure of types –

types defined by induction on the structure of kinds kind-indexed types
types defined by induction on the structure of types type-indexed types
types defined by induction on the structure of values –

values defined by induction on the structure of types type-indexed values
values defined by induction on the structure of values –

For each of the approaches to generic programming we discuss what can depend
on what.

Structural dependencies. Which concepts may depend on which concepts?
Generic Haskell supports the definition of type-indexed values, as all the

examples in the previous section show. Type arguments appear between special
parentheses {|, |}. A type-indexed value has a kind-indexed type, of which the base
case, the case for kind !, has to be supplied by the programmer. The inductive
case, the case for kind κ → κ′, cannot be specified, but is automatically generated
by the compiler (as it is determined by the way Generic Haskell specializes
generic functions). Generic abstractions only generate code for functions on types
of the kind specified in the type of the generic abstraction.

94 R. Hinze, J. Jeuring and A. Löh

Generic Haskell also supports the definition of type-indexed types. A type-
indexed type is defined in the same way as a type-indexed function, apart from
the facts that every line in its definition starts with type, and its name starts
with a capital. A type-indexed type has a kind-indexed kind [39].

3.2 The Type Completeness Principle

The Type Completeness Principle [95] says that no programming-language op-
eration should be arbitrarily restricted in the types of its operands, or, equiva-
lently, all programming-language operations should be applicable to all operands
for which they make sense. For example, in Haskell, a function can take an argu-
ment of any type, including a function type, and a tuple may contain a function.
To a large extent, Haskell satisfies the type completeness principle on the value
level. There are exceptions, however. For example, it is not possible to pass a
polymorphic function as argument (some Haskell compilers, such as GHC, do
allow passing polymorphic arguments). Pascal does not satisfy the type com-
pleteness principle, since, for example, procedures cannot be part of composite
values.

The type completeness principle leads to the following criteria.

Full reflexivity. A generic programming language is fully reflexive if a generic
function can be used on any type that is definable in the language.

Generic Haskell is fully reflexive with respect to the types that are definable
in Haskell 98, except for constraints in data-type definitions. So a data type of
the form

data Eq a ⇒ Set a = NilSet | ConsSet a (Set a)

is not dealt with correctly. However, constrained data types are a corner case
in Haskell and can easily be simulated using other means. Furthermore, Noguei-
ra [80] shows how to make Generic Haskell work for data types with constraints.

Generic functions cannot be used on existential data types, such as for ex-
ample

data Foo = ∀a .MkFoo a (a → Bool).

Although such types are not part of Haskell 98, they are supported by most
compilers and interpreters for Haskell. Furthermore, generic functions cannot be
applied to generalized algebraic data types (GADTs), a recent extension in the
Glasgow Haskell Compiler (GHC), of which the following type Term, representing
typed terms, is an example:

data Term :: ! → ! where

Lit :: Int → Term Int
Succ :: Term Int → Term Int
IsZero :: Term Int → Term Bool

2. Comparing Approaches to Generic Programming in Haskell 95

If :: Term Bool → Term a → Term a → Term a
Pair :: Term a → Term b → Term (a, b).

Note that the result types of the constructors are restricted for Terms, so that if
we pattern match on a Term Bool, for example, we already know that it cannot be
constructed by means of Lit , Succ or Pair . The structural representation using
sums of products that Generic Haskell uses to process data types uniformly
is not directly applicable to data types containing existential components or
to GADTs. Generic Haskell is thus not fully reflexive with respect to modern
extensions of Haskell.

Type universes. Some generic functions only make sense on a particular set of
data types, or on a subset of all data types. For example, Malcolm [75] defines the
catamorphism only for regular data types of kind ! → !. Bird and Paterson [13]
have shown how to define catamorphisms on nested data types, and using tupling
it is possible to define catamorphisms on mutually recursive types, but we are not
aware of a single definition of a catamorphism that combines these definitions.
Many generic functions, such as show and equality, cannot sensibly be defined on
the type of functions. Is it possible to define generic functions on a particular set
of data types, or on a subset of data types? Can we describe type universes [11]?

Generic Haskell has some facilities to support defining generic functions on
a particular set of data types. If we only want to use a generic function on a
particular set of data types, we can define it for just those data types. This is
roughly equivalent to defining a class and providing instances of the class for the
given data types.

Furthermore, by not giving a case for the function space (or other basic types
for which we do not want to define the generic function), a generic function is
not defined for data types containing function spaces, and it is a static error for
a generic function to be used on a data type containing function spaces.

Finally, Generic Haskell supports so-called generic views [45] on data types,
by means of which we can view the structure of data types in different ways.
Using generic views, we can for example view (a subset of) data types as fixed
points of regular functors, which enables the definition of the catamorphism.

First-class generic functions. Can a generic function take a generic function as
argument? We will also use the term higher-order generic functions for first-class
generic functions. An example where a higher-order generic function might be
useful is in a generic show function that only prints part of its input, depending
on whether or not some property holds of the input.

Generic Haskell does not have first-class generic functions. To a certain ex-
tent first-class generic functions can be mimicked by means of dependencies and
extending existing generic functions, but it is impossible to pass a generic func-
tion as an argument to another (generic) function. The reason for this is that
generic functions in Generic Haskell are translated by means of specialization.
Specialization eliminates the type arguments from the code, and specialized in-
stances are used on the different types. Specialization has the advantage that

96 R. Hinze, J. Jeuring and A. Löh

types do not appear in the generated code, but the disadvantage that special-
izing higher-order generic programs becomes difficult: it is hard to determine
which translated components are used where.

Multiple type arguments. Can a function be generic in more than one type ar-
gument? Induction over multiple types is for example useful when generically
transforming values from one type structure into another type structure [8].

Generic functions in Generic Haskell can be defined by induction on a single
type. It is impossible to induct over multiple types. Note that the type of a
generic function may take multiple type arguments (such as the type of map).

Transforming values from one type structure into another type structure is
the only example we have encountered for which multiple type arguments would
be useful. Usually, transforming one type structure into another can be achieved
by combining two generic functions – one that maps a value into a universal
structure, and another that recovers a value from the universal structure. In-
stances of these functions on for example the data type lists can be implemented
by means of a fold (mapping into a universal structure) and an unfold (pars-
ing from a universal structure). Compositions of unfolds with folds are so-called
metamorphisms [26]. Since we are not aware of generic metamorphisms, we do
not weigh this aspect heavily in our comparison.

3.3 Well-typed expressions do not go wrong

Well-typed expressions in the Hindley-Milner type system [77] do not go wrong.
Does the same hold for generic functions?

Type system. Do generic functions have types?
In Generic Haskell, generic functions have explicit types. Type-correctness is

only partially checked by the Generic Haskell compiler. Haskell type-checks the
generated code. A type system for Generic Haskell has been given by Hinze [33]
and Löh [70] (an extension of Hinze’s system with several extra features).

Type safety. Is the generic programming language type safe? By this we mean:
is a type-correct generic function translated to a type-correct instance? And is
a compiled program prevented from crashing because a non-existing instance of
a generic function is called?

Generic Haskell is type safe in both aspects.

3.4 Information in types

What does the type of a generic function reveal about the function? Can we
infer a property of a generic function from its type? Since generic programming
is about programming with types, questions about the type language are par-
ticularly interesting.

2. Comparing Approaches to Generic Programming in Haskell 97

The type of a generic function. Do types of generic functions in some way corre-
spond to intuition? A generic function f {|a|} that has type a → a → Bool is prob-
ably a comparison function. But what does a function of type (∀a b .Data a ⇒
f (a → b) → a → f b) → (∀a . a → f a) → a → f a do (this is a rather powerful
combinator, which we will encounter again in one of the approaches)? This ques-
tion is related to the possibility to infer useful properties, like free theorems [92],
for a generic function from its type [57, 28].

Generic Haskell’s types of generic functions are relatively straightforward: a
type like

eq{|a :: !|} :: (eq{|a|}) ⇒ a → a → Bool

is close to the type you would expect for the equality function, maybe apart
from the dependency. The type for map:

map{|a :: !, b :: !|} :: (map{|a, b|}) ⇒ a → b

is perhaps a little bit harder to understand, but playing with instances of the
type of map for particular types, in particular for type constructors, probably
helps understanding why this type is the one required by map.

Properties of generic functions. Is the approach based on a theory for generic
functions? Do generic functions satisfy algebraic properties? How easy is it to
reason about generic functions?

In his habilitation thesis [33], Hinze discusses generic programming and
generic proofs in the context of (a ‘core’ version of) Generic Haskell. He shows a
number of properties satisfied by generic functions, and he shows how to reason
about generic functions.

3.5 Integration with the underlying programming language

How well does the generic programming language extension integrate with the
underlying programming language, in our case Haskell?

A type system can be nominal (based on the names of the types), structural
(based on the structure of the types), or a mixture of the two. If a type system
is nominal, it can distinguish types with exactly the same structure, but with
different names. Generic functions are usually defined on a structural represen-
tation of types. Can such a generic function be extended in a non-generic way,
for example for a particular, named, data type? Or even for a particular con-
structor? The general question here is: how does generic programming interact
with the typing system?

A generic program can be used on many data types. But how much work
needs to be done to use a generic function on a new data type? Is it simply a
matter of writing deriving . . . in a data-type declaration, or do we also have to
implement the embedding-projection pair for the data type, for example?

Using default cases, a generic function can be extended in a non-generic
way in Generic Haskell. The update function defined in Section 2.7 provides an

98 R. Hinze, J. Jeuring and A. Löh

example. Generic functions can even be specialized for particular constructors.
Generic functions can be used on data types with no extra work. Generic Haskell
generates the necessary machinery such as structure-representation types and
embedding-projection pairs behind the scenes.

3.6 Tools

Of course, a generic programming language extension is only useful if there exists
an interpreter or compiler that understands the extension. Some ‘lightweight’
approaches to generic programming require no additional language support: the
compiler for the underlying programming language is sufficient. However, most
approaches require tools to be able to use them, and we can ask the following
questions.

Specialization versus interpretation. Is a generic function interpreted at run-time
on data types to which it is applied, or is it specialized at compile-time? The
latter approach allows the optimization of generated code.

Generic Haskell specializes applications of generic functions at compile-time.

Code optimization. How efficient is the code generated for instances of generic
functions? What is the speed of the generated code? Ideally generic programming
does not lead to a performance penalty. For example, in the STL community,
this is a requirement for a generic function [79] (not to be confused with a
datatype-generic function).

Generic Haskell does not optimize away the extra marshaling that is in-
troduced by the compiler for instances of generic functions. This might be an
impediment for some applications. There exists a prototype implementation of
Generic Haskell in which the extra marshaling is fused away [91], but the tech-
niques have not been added to the Generic Haskell compiler releases. The fusion
optimization techniques in the underlying programming language Haskell are
not strong enough to optimize generated Generic Haskell code.

Separate compilation. Can a generic function that is defined in one module be
used on a data type defined in another module without having to recompile the
module in which the generic function is defined?

Generic Haskell provides separate compilation.

Practical aspects. Does there exist an implementation? Is it maintained? On
multiple platforms? Is it documented? What is the quality of the error messages
given by the tool?

Generic Haskell is available on several platforms: Windows, Linux and Mac-
OSX, and it should be possible to build Generic Haskell anywhere where GHC
is installed. The latest release is from October, 2006. The distribution comes
with a User Guide, which explains how to install Generic Haskell, how to use
it, and introduces the functions that are in the library of Generic Haskell. The
Generic Haskell compiler reports syntax errors. Type errors, however, are only

2. Comparing Approaches to Generic Programming in Haskell 99

reported when the file generated by Generic Haskell is compiled by a Haskell
compiler. Type systems for Generic Haskell have been published [33, 71, 70], but
only partially implemented.

3.7 Other criteria

This section lists some of the criteria that do not fall in the categories discussed
in the previous subsections, or that are irrelevant for comparing the generic
programming approaches in Haskell, but might be relevant for comparing ap-
proaches to generic programming in different programming languages.

Type-language expressiveness of the underlying programming language. If all
values in a programming language have the same type, it is impossible to define
a function the behavior of which depends on a type, and hence it is impossible
to define generic functions. But then, of course, there is no need for defining
generic functions either.

The type languages of programming languages with type systems vary widely.
Flexible and powerful type languages are desirable, but the more expressive a
type language, the harder it becomes to write generic programs. What kind of
data types can be expressed in the type language?

Haskell has a very powerful, flexible, and expressive type language. This make
generic programming in Haskell particularly challenging.

Size matters. The size of a program matters – some people are even paid per
line of code –, and the same holds for a generic program. It is usually easier
to read and maintain a single page of code than many pages of code, although
sometimes extra information, such as type information, properties satisfied by a
program, or test cases for a program, are useful to have. So code size matters,
but not always. Except for some obvious cases, we will not say much about code
size in our comparisons.

Ease of learning. Some programming approaches are easier to learn than oth-
ers. Since there are so many factors to the question how easy it is to learn a
programming language, and since it is hard to quantify, we refrain from mak-
ing statements about this question, other than whether or not the approach to
generic programming is documented. However, it is an important question.

4 Comparing approaches to generic programming

In this section we describe eight different approaches to generic programming in
Haskell. We give a brief introduction to each approach, and evaluate it using the
criteria introduced in the previous section.

We can distinguish three groups of approaches with similar characteristics
among the approaches to generic programming in Haskell.

100 R. Hinze, J. Jeuring and A. Löh

– Generic Haskell and Clean are programming-language extensions based on
Hinze’s theory of type-indexed functions with kind-indexed types [34].

– DrIFT and implementations of generic programming using Template Haskell
are based on a kind of reflection mechanism.

– Derivable Type Classes, Lightweight Generics and Dynamics, Generics for
the Masses, and PolyP2 ([81], the latest version of PolyP [48]) are lightweight
approaches that do not require reflection or programming-language exten-
sions.

PolyP (in its original version) and Scrap Your Boilerplate are sufficiently different
to not be placed in one of these groups. We evaluate the approaches in the
groups together, since most aspects of the evaluation are the same. Of course, we
already evaluated Generic Haskell in the previous section, so Clean is evaluated
separately.

4.1 Clean

Clean’s generic programming extension [3, 2] is based on Hinze’s work on type-
indexed functions with kind-indexed types [34], just like Generic Haskell.

The language of data types in Clean is very similar to that of Haskell, and
the description from Section 2.1 on how to convert between data types and
their structure-representation types in terms of binary sums of binary products
applies to Clean as well, only that the unit type is called UNIT, the sum type
EITHER, and the product type PAIR. There are special structural markers for
constructors and record field names called CONS and FIELD, and one for objects
called OBJECT.

Clean’s generic functions are integrated with its type-class system. Each
generic function defines a kind-indexed family of type classes, the generic func-
tion itself being the sole method of these classes. Let us look at an example.

Function encode. Here is the code for the generic function encode.

generic encode a :: a → [Bit]

encode{|UNIT|} UNIT = []
encode{|Int|} i = encodeInt i
encode{|Char|} c = encodeChar c
encode{|EITHER|} enca encb (LEFT x) = [O : enca x]
encode{|EITHER|} enca encb (RIGHT y) = [I : encb y]
encode{|PAIR|} enca encb (PAIR x y) = enca x ++ encb y
encode{|CONS|} enca (CONS x) = enca x
encode{|FIELD|} enca (FIELD x) = enca x
encode{|OBJECT|} enca (OBJECT x) = enca x

derive encode Tree

The keyword generic introduces the type signature of a generic function, which
takes the same form as a type signature in Generic Haskell, but without depen-
dencies. Each generic function automatically depends on itself in Clean, and in

2. Comparing Approaches to Generic Programming in Haskell 101

the cases for types of higher kinds such as EITHER ::! → ! → ! or CONS ::! → !,
additional arguments are passed to the generic function representing the recur-
sive calls. This is very close to Hinze’s theory [34] which states that the type of
encode is based on the kind of the type argument as follows:

encode{|a :: κ|} :: Encode{[κ]} a

Encode{[!]} a = a → [Bit]
Encode{[κ → κ′]} f = ∀a :: κ .Encode{[κ]} a → Encode{[κ′]} (f a).

In particular, if we instantiate this type to the kinds !, ! → !, and ! → ! → !,
we get the types of the UNIT, EITHER, CONS cases of the definition of encode,
respectively:

encode{|a :: !|} :: a → [Bit]
encode{|f :: ! → !|} :: (a → [Bit]) → (f a → [Bit])
encode{|f :: ! → ! → !|} :: (a → [Bit]) → (b → [Bit]) → (f a b → [Bit]).

The derive statement is an example of how generic behavior must be explicitly
derived for additional data types. If Tree is a type that we want to encode, we
have to request this using a derive statement.

Because generic functions automatically define type classes in Clean, the type
arguments (but not the kind arguments) can usually be inferred automatically.
The function encode can thus be invoked on a tree t ::Tree by calling encode{|!|} t .

If encode{|!|} x is used in another function on a value x :: a, then a class
constraint of the form encode{|!|} a arises and is propagated as usual. Other
first-order kinds can be passed to encode, but Clean does not currently support
generic functions on higher-order kinds, maybe because uniqueness annotations
for higher-order kinded (higher-kinded) types are not supported.

Functions decode, eq, map and show. Apart from the already mentioned differ-
ences and a few syntactic differences between Clean and Haskell, many of the
other example functions can be implemented exactly as in Generic Haskell. We
therefore present only map as another example.

generic map a b :: a → b

map{|UNIT|} x = x
map{|Int|} i = i
map{|Char|} c = c
map{|EITHER|} mapa mapb (LEFT x) = LEFT (mapa x)
map{|EITHER|} mapa mapb (RIGHT y) = RIGHT (mapb y)
map{|PAIR|} mapa mapb (PAIR x1 x2) = PAIR (mapa x1) (mapb x2)
map{|CONS|} mapa (CONS x) = CONS (mapa x)
map{|FIELD|} mapa (FIELD x) = FIELD (mapa x)
map{|OBJECT|} mapa (OBJECT x) = OBJECT (mapa x)

The type of map makes use of two type variables and is equivalent to the Generic
Haskell type (map{|a, b|}) ⇒ a → b or the kind-indexed type signature

102 R. Hinze, J. Jeuring and A. Löh

map{|a :: κ|} :: Map{[κ]} a a

Map{[!]} a b = a → b
Map{[κ → κ′]} f g = ∀a :: κ (b :: κ) .Map{[κ]} a b → Map{[κ′]} (f a) (g b).

As before, Clean leaves the dependency of map on itself implicit, but otherwise
uses type signatures similar to Generic Haskell.

Function update. Reusing the definition of map to define update is not possible
in Clean, as it supports neither default cases nor higher-order generic functions.
To define update, we have to reimplement the map function plus the special case
for Salary.

Evaluation

Structural dependencies. Clean supports the definition of generic functions in
the style of Generic Haskell. It does not support type-indexed data types.

Full reflexivity. Generic functions in Clean do not work for types with higher-
order kinds, so the generic programming extension of Clean is not fully reflexive.

Type universes. Clean can define generic functions on subsets of data types in
the same way as Generic Haskell, but it does not support default cases or generic
views.

First-class generic functions. Generic functions are treated as kind-indexed fam-
ilies of type classes. Type classes are not first-class, so generic functions are not
first-class either.

Multiple type arguments. Clean allows the definition of classes with multiple
type arguments. All type arguments, however, must be instantiated to the same
type at the call site. Therefore, true multi-argument generic functions are not
supported.

Type system. Generic functions are fully integrated into Clean’s type system, by
mapping each generic function to a family of type classes. The compiler ensures
type-correctness.

Type safety. Clean’s generic programming extension is fully type safe.

The type of a generic function. The type of a generic function is declared using
the generic construct. The types are very similar in nature to those of Generic
Haskell. They lack dependencies, which makes them a bit less expressive, but in
turn a bit easier to understand.

Properties of generic functions. Again, Hinze’s theory is the basis of Clean’s
generic programming extension. Therefore it is possible to state and prove the-
orems following his formalism.

2. Comparing Approaches to Generic Programming in Haskell 103

Integration with the underlying programming language. Generic programming is
fully integrated with the Clean language. Only the module StdGeneric must be
imported in order to define new generic functions. To use a generic function g
on a data type t we write derive g t; no type-specific code is needed.

Specialization versus interpretation. Clean uses specialization to compile generic
functions. Specialization is explicit, using the derive construct.

Code optimization. Because Clean uses essentially the same implementation
technique as Generic Haskell, there is a risk that specialized code is inefficient.
There is extensive work on optimizing specialized code for generic functions
generated by Clean [4, 5], and the resulting code is almost as efficient as hand-
written specialized code. Not all optimization algorithms have been included in
the compiler yet.

Separate compilation. Generic programming is integrated into Clean, and Clean
supports separate compilation.

Practical aspects. Clean is maintained and runs on several platforms. However,
the documentation of generic programming in Clean is lacking. The chapter
in the Clean documentation is missing, and there’s a gap between the syntax
used in papers and the implementation. Furthermore, the error messages of the
Clean compiler with respect to generic functions are not very good. Nevertheless,
generic programming in Clean seems very usable and has been used, for example,
to implement a library for generating test data [60] as well as a GUI library [1].

4.2 PolyP

PolyP [48] is an extension of Haskell with a construct for defining so-called
polytypic programs. There are two versions of PolyP: the original version [48],
called PolyP1 from now on, is an extension of Haskell that requires a compiler
to compile the special constructs for generic programming. The second version,
PolyP2 [81], is a lightweight approach, with an optional compiler for generating
the necessary code for a data type. In this section we will mainly describe PolyP1,
but we will sometimes use PolyP2 to explain special constructs. If the distinction
is not important, we will use PolyP.

PolyP allows the definition of generic functions on regular data types of kind
! → !. A data type is regular if it does not contain function spaces, and if
the arguments of the data type constructor on the left- and right-hand sides in
its definition are the same. Examples of regular data types are List a, Rose a,
and Fork a. The data types CharList, Tree, and GRose are regular, but have
kind !, !, and (! → !) → ! → !, respectively. The data type Perfect a is not
regular: in the right-hand side Perfect is applied to Fork a instead of a. Another
example of a data type that is not regular is the data type Flip defined by
data Flip a b = MkFlip a (Flip b a).

104 R. Hinze, J. Jeuring and A. Löh

PolyP1 is rather similar to Generic Haskell in that it translates data types to
structure-representation types. The structure-representation types are then used
together with polytypic definitions to generate Haskell code for (applications of)
generic functions. The structure-representation type of a data type d a is given
by

Mu (FunctorOf d) a,

where FunctorOf d is a type constructor of kind ! → ! → ! representing the
recursive structure of the data type d, and the data type Mu takes a type con-
structor and a type variable of kind !, and returns the fixed point of the type
constructor:

data Mu f a = Inn (f a (Mu f a)).

FunctorOf d is sometimes also called the bifunctor of d. The isomorphism between
a data type and its structure-representation type is witnessed by the functions
inn and out .

inn :: FunctorOf d a (d a) → d a
inn = Inn

out :: d a → FunctorOf d a (d a)
out (Inn x) = x

The restriction to regular data types imposed by PolyP is caused by the way the
structure-representation types are built up.

Structure-representation types are expressed in terms of bifunctors. In Po-
lyP2, bifunctors are defined by:

data (g + h) a b = InL (g a b) | InR (h a b)
data (g ∗ h) a b = g a b :*: h a b
newtype Par a b = ParF {unParF :: a}
newtype Rec a b = RecF {unRecF :: b}
newtype (d@g) a b = CompF{unCompF :: d (g a b)}
newtype Const t = ConstF {unConstF :: t}
data Empty = EmptyF .

Binary functors are sums (+, with constructors InL and InR) of products (∗,
with constructor :*:) of either the parameter type of kind ! (represented by Par,
with constructor ParF and destructor unParF), the data type itself (represented
by Rec, with constructor RecF and destructor unRecF), compositions of data
types and bifunctors (represented by @, with constructor CompF and destructor
unCompF), or constant types (represented by Const t where t may be any of
Float, Int, and so on, with constructor ConstF and destructor unConstF). An
empty product is represented by the unit type (represented by Empty). For
example, for the data types List a, Rose a, and Fork a, PolyP uses the following
internal representations:

2. Comparing Approaches to Generic Programming in Haskell 105

FunctorOf List Empty + Par ∗ Rec
FunctorOf Rose Par ∗ List@Rec
FunctorOf Fork Par ∗ Par.

There is an important difference between this encoding of data types and the
encoding of data types in Generic Haskell. In Generic Haskell the structure types
only represent the top-level structure of a value, whereas in PolyP the encoding
of values is deep: the original data type has disappeared in the encoded structure.

In PolyP1, bifunctors are only used internally to construct structure-repre-
sentation types. Furthermore, Empty is called (), and Const is called Con. Bifunc-
tors can only appear in the type cases of a generic (called polytypic in PolyP)
function. Furthermore, the constructors and destructors are added automati-
cally.

An important recursion combinator in PolyP is the catamorphism [75], which
is defined in PolyLib, the library of PolyP [49]. The catamorphism is a gener-
alization of Haskell’s foldr to an arbitrary data type. It takes an algebra as
argument, and is defined in terms of a polytypic function fmap2 , representing
the action of the bifunctor of the data type on functions. The catamorphism is
intimately tied to the representation of data types as fixed points of bifunctors;
it is impossible to define the catamorphism if this fixed point is not explicitly
available (as in Generic Haskell).

cata :: Regular d ⇒ (FunctorOf d a b → b) → (d a → b)
cata alg = alg . fmap2 id (cata alg) . out

Function fmap2 is a polytypic function, the two-argument variant of map. It is
defined by induction over the structure of bifunctors. It takes two functions p
and r as arguments, and applies p to occurrences of the parameter, and r to
occurrences of the recursive data type.

polytypic fmap2 :: (a → c) → (b → d) → f a b → f c d
= λp r →

case f of
g + h → (fmap2 p r) -+- (fmap2 p r)
g ∗ h → (fmap2 p r) -*- (fmap2 p r)
Empty → id
Par → p
Rec → r
d@g → pmap (fmap2 p r)
Const t → id

Here -+- and -*- have the following types:

(-+-) :: (g a b → g c d) → (h a b → h c d) → ((g + h) a b → (g + h) c d)
(-*-) :: (g a b → g c d) → (h a b → h c d) → ((g ∗ h) a b → (g ∗ h) c d),

where + and ∗ are the internal sum and product types used by PolyP.

106 R. Hinze, J. Jeuring and A. Löh

Function encode. Function encode takes an encoder for parameter values as
argument, and recurses over its argument by means of a catamorphism. The
algebra of the catamorphism is given by the polytypic function fencode. The
choice between an O and an I is made, again, in the sum case. The encoder for
parameter values is applied in the Par case. The other cases are standard.

encode :: Regular d ⇒ (a → [Bit]) → d a → [Bit]
encode enca = cata (fencode enca)

polytypic fencode :: (a → [Bit]) → f a [Bit] → [Bit] =
λenca →

case f of

g + h → (λx → O : fencode enca x) ‘foldSum ‘
(λy → I : fencode enca y)

g ∗ h → λ(x , y) → fencode enca x ++ fencode enca y
Empty → const []
Par → enca
Rec → id
d@g → encode (fencode enca)
Const Int → encodeInt
Const Char → encodeChar

foldSum :: (g a b → c) → (h a b → c) → ((g + h) a b → c)

Function decode. Function decode is the inverse of function encode. It is defined
in terms of function decodes :

decodes :: Regular d ⇒ Parser a → Parser (d a)
decodes deca = mapP inn (fdecodes deca (decodes deca))

polytypic fdecodes :: Parser a → Parser b → Parser (f a b) =
λdeca decb →

case f of

g + h → bitCase (mapP Left (fdecodes deca decb))
(mapP Right (fdecodes deca decb))

g ∗ h → λbits → [((x , y), r2)
| (x , r1) ← fdecodes deca decb bits
, (y, r2) ← fdecodes deca decb r1]

Empty → λbits → [((), bits)]
Par → deca
Rec → decb
d@g → decodes (fdecodes deca decb)
Const Int → decodesInt
Const Char → decodesChar .

Given the definition of function encode, the definition of functions decode (omit-
ted) and decodes is rather standard. We have used a list comprehension in the
product case of function fdecodes to stay as close as possible to the implemen-
tation of decodes in Generic Haskell. List comprehensions are not supported by

2. Comparing Approaches to Generic Programming in Haskell 107

PolyP, so to compile the program, this piece of code should be replaced by its
equivalent not using list comprehensions.

The definition of the polytypic functions eq and map contain no surprises:
both are similar to the definitions of function fmap2 and encode, and can be
found in PolyLib [49].

Function update. It is impossible to define a generic function in PolyP that can
be used to update the salaries in a Company value. First, the data type Company
does not have kind ! → !. But even if we add a superfluous type variable to the
data type Company, PolyP does not ‘look into’ the constituent Dept values, and
hence never changes a Salary. The only way to update a salary in a company
structure is by defining Company as one big recursive data type, ‘inlining’ the
definitions of most of the constituent data types, and by adding a superfluous
type variable.

Evaluation

Structural dependencies. PolyP adds polytypic functions, which depend on ty-
pes, to Haskell.

Full reflexivity. PolyP is not fully reflexive: polytypic functions can only be
used on regular data types of kind ! → !. Important classes of data types for
which polytypic functions do not work are mutually-recursive data types and
data types of kind !.

Type universes. PolyP only works on regular data types of kind ! → !. Besides
the obvious disadvantages, this has an advantage as well: since the structure of
regular data types of kind ! → ! can be described by a bifunctor, we can define
functions like the catamorphism on arbitrary data types in PolyP. The cata-
morphism cannot be defined in Generic Haskell without the concept of generic
views [45]. PolyP supports defining generic functions on particular data types
using the Const case.

First-class generic functions. Polytypic functions are not first class in PolyP1.
In the lightweight approach PolyP2 polytypic functions are first class.

Multiple type arguments. Polytypic functions are defined by induction over a
single bifunctor.

Type system. Polytypic functions are explicitly typed. The compiler checks type-
correctness of polytypic functions.

Type safety. Type-correct polytypic functions are translated to type-correct
Haskell functions. Forgetting an arm in the case expression of a polytypic func-
tion leads to an error when the generated Haskell is compiled or interpreted.

108 R. Hinze, J. Jeuring and A. Löh

The type of a generic function. Types of polytypic functions are direct abstrac-
tions of types on normal data types, and closely correspond to intuition.

Properties of generic functions. Jansson and Jeuring [57, 50] show how to reason
about polytypic functions, and how to derive a property of a polytypic function
from its type.

Integration with the underlying programming language. The integration of poly-
typic programming and Haskell is not completely seamless. PolyP1 and the op-
tional compiler of PolyP2 do not know about classes, or types of kind other than
! → !, and lack several syntactic constructions that are common in Haskell,
such as where clauses and operator sections. It is wise to separate the polytypic
functions from other functions in a separate file, and only compile this file with
PolyP1 or PolyP2. The Haskell library part of PolyP2 integrates seamlessly with
Haskell.

Polytypic functions can be used on values of data types without any extra
work. It is not necessary to specify a type argument: PolyP1 infers the data types
on which a polytypic function is called, and uses this information to specialize
a polytypic function for a particular data type.

Specialization versus interpretation. PolyP1 and the optional PolyP2 compiler
specialize applications of polytypic functions at compile-time. The PolyP2 Has-
kell library interprets bifunctors at run time.

Code optimization. Like Generic Haskell, PolyP1 does not optimize away the
extra marshaling that is introduced by the compiler for instances of polytypic
functions. This might be an impediment for some applications.

Separate compilation. PolyP provides separate compilation.

Practical aspects. A compiler for PolyP can be downloaded. It is usable on the
platforms on which GHC is available. It is not very actively maintained anymore:
the latest release is from 2004. It is reasonably well documented, although not all
limitations are mentioned in the documentation. PolyP’s error messages could
be improved.

4.3 Scrap Your Boilerplate

Scrap Your Boilerplate (SYB) [61, 64] is a library that provides combinators
to build traversals and queries in Haskell. A traversal processes and selectively
modifies a possibly complex data structure, whereas a query collects specific
information from a data structure. Using SYB one can extend basic traversals
and queries with type-specific information, thereby writing generic functions.

Generic functions in SYB are applicable to all data types of the type class
Data. This class provides fundamental operations to consume or build values of

2. Comparing Approaches to Generic Programming in Haskell 109

class (Typeable a) ⇒ Data a where

toConstr :: a → Constr
dataTypeOf :: a → DataType

gfoldl :: ∀f .
(∀a b .Data a ⇒ f (a → b) → a → f b)

→ (∀a . a → f a)
→ a → f a

Fig. 2. Partial definition of the type class Data

a data type, as well as general information about the structure of a data type.
All other functions are built on top of methods of the class Data.

A partial definition of the class Data is shown in Figure 2.
The function toConstr yields information about the data constructor that

has constructed the given value. The data type Constr is abstract and can be
queried for information such as the name of the constructor, or the data type it
belongs to.

Similarly, dataTypeOf returns information about the data type of a value,
again encapsulated in an abstract data type DataType.

The function gfoldl is a very general function that allows the destruction of
a single input value – the third argument – of type a into a result of type f a.
Almost any Haskell value is an application of a data constructor to other values.
This is the structure that gfoldl works on. If a value v is of the form

C v1 v2 . . . vn

then gfoldl ()) c v is

(· · · ((c C) v1)) v2)) · · ·) vn).

The second argument c is applied to the data constructor C , and each application
is replaced by the first argument ()). In particular,

unId . gfoldl (λx y → Id (unId x y)) Id

is the identity on types of class Data. Here, the auxiliary type

newtype Id a = Id{unId :: a}

is used, because the result type of f a of gfoldl can be instantiated to Id a, but
not directly to a in Haskell. If we could, then

gfoldl ($) id

would be the identity, making the role of gfoldl more obvious.
With the help of gfoldl , a basic query combinator can be defined, which also

forms part of the SYB library:

110 R. Hinze, J. Jeuring and A. Löh

gmapQ :: ∀a .Data a ⇒ (∀b .Data b ⇒ b → c) → a → [c].

A call gmapQ q x takes a query q (of type ∀b .Data b ⇒ b → c) and applies it
to the immediate subterms of x , collecting the results in a list.

Function encode. A good example of a function using gmapQ is the function
encode, which can be written using the SYB library as follows:

encode :: Data a ⇒ a → [Bit]
encode x = concat (encodeConstr (toConstr x) : gmapQ encode x).

The function encodeConstr takes the current constructor and encodes it as a list
of bits:

encodeConstr :: Constr → [Bit]
encodeConstr c = intinrange2bits (maxConstrIndex (constrType c))

(constrIndex c − 1).

The function intinrange2bits , which encodes a natural number in a given range
as a list of bits, comes from a separate Haskell module for manipulating bits. In
encode, the constructor for the current value x is encoded, and we use gmapQ
to recursively encode the subterms of x .

With encode, we can for instance encode booleans, lists, and trees: we have a
generic function. However, the default behavior is unsuitable for handling base
types such as Int and Char. If we want to use type-specific behavior such as
encodeInt and encodeChar , the SYB library allows us to extend a query with a
type-specific case, using extQ:

extQ :: ∀a b c . (Typeable a,Typeable b) ⇒ (a → c) → (b → c) → (a → c).

This function makes use of run-time type information which is encapsulated in
the type class Typeable and available for all types in Data, as Typeable is a
superclass of Data. It is essentially a one-arm type-case [83]. Using extQ , we can
write encode with type-specific behavior for Ints and Chars:

encode :: Data a ⇒ a → [Bit]
encode = (λx → concat (encodeConstr (toConstr x) : gmapQ encode x))

‘extQ‘ encodeInt
‘extQ‘ encodeChar .

Note that we cannot reuse the previously defined version of encode in this new
definition, because the recursive call to encode that appears as an argument
to gmapQ must point to the extended function (this is solved by the modified
approach discussed in the section on “SYB with Class”).

Function decode. The gfoldl combinator is only suitable for processing values.
In order to write a generic producer such as decode , a different combinator is
required. The Data class provides one, called gunfold :

2. Comparing Approaches to Generic Programming in Haskell 111

gunfold :: ∀a f .
(∀a b .Data a ⇒ f (a → b) → f b)

→ (∀a . a → f a)
→ Constr → f a.

If d :: Constr is the constructor information for the data constructor C , which
takes n arguments, then gunfold app c d is

app (· · · (app (c C)) · · ·),

thus app applied n times to c C . As with gfoldl , SYB provides several com-
binators built on top of gunfold , the most useful being fromConstrM , which
monadically constructs a value of a certain constructor:

fromConstrM :: ∀a f . (Data a,Monad f) ⇒ (∀b .Data b ⇒ f b) →
Constr → f a

fromConstrM p = gunfold (‘ap‘p) return.

Here, ap ::∀a b f .Monad f ⇒ f (a → b) → f a → f b is lifted function application.
Using fromConstrM , we can define decodes , but since fromConstrM requires

a monad, we have to turn our parser type into a monad. Recall that

type Parser a = [Bit] → [(a, [Bit])].

We turn Parser into a state monad by wrapping it into a newtype construct
and defining appropriate class instances:

newtype ParserM a = M {runM :: Parser a}

instance Monad ParserM where

return x = M (λs → [(x , s)])
f >>= g = M (λs → [r | (x , s ′) ← runM f s , r ← runM (g x) s ′])

instance MonadState [Bit] ParserM where

get = M (λs → [(s , s)])
put s = M (λ → [((), s)]).

The code for decodes is then defined as follows:

decodes :: Data a ⇒ Parser a
decodes = decodes ′ ⊥

‘extR‘ decodesInt
‘extR‘ decodesChar

where

decodes ′ :: Data a ⇒ a → Parser a
decodes ′ dummy = runM $

do let d = dataTypeOf dummy
l = length (int2bits (length (dataTypeConstrs d) − 1))

c ← consume l

112 R. Hinze, J. Jeuring and A. Löh

let con = decodeConstr c d
fromConstrM (M decodes) con.

A few remarks are in order. The function decodes calls decodes ′ with ⊥. This
is a convenient way to obtain a value of the result type a, so that we can ap-
ply dataTypeOf to it. The function decodes ′ reads in l bits from the input via
consume, interprets these bits as a constructor con using decodeConstr , and
finally employs fromConstrM to decode the children of the constructor recur-
sively. In addition, decodes ′ performs the necessary conversions between Parser
and ParserM .

The functions consume and decodeConstr are both easy to define. Type-
specific behavior for integers and characters is added to decodes using the SYB
extension operator extR, which plays a role analogous to extQ, in the context of
monadic generic producers:

extR :: ∀a b f . (Monad f,Typeable a,Typeable b) ⇒ f a → f b → f a.

From decodes , we get decode in the obvious way:

decode :: Data a ⇒ [Bit] → a
decode bs = case decodes bs of

(r , []) → r
→ error "decode: no parse".

Function eq. The definition of generic equality in SYB is simple, but requires
yet another combinator:

eq :: Data a ⇒ a → a → Bool
eq = eq ′

eq ′ :: (Data a,Data b) ⇒ a → b → Bool
eq ′ x y = toConstr x toConstr y ∧ and (gzipWithQ eq ′ x y).

The function eq is a type-restricted variant of eq ′, which accepts two arguments
of potentially different types. The constructors of the two values are compared,
and gzipWithQ is used to pairwise compare the subterms of the two values
recursively.

The combinator gzipWithQ is a two-argument variant of mapQ . It is a bit
tricky to define, but it can be defined in terms of gfoldl .

Note that eq ′ requires the relaxed type, because the subterms of x and y
only have compatible types if they really are of the same data constructor. If we
compare unequal values, we are likely to get incompatible types sooner or later.

The trick to relax the type of a generic function is not always applicable. For
example, if we also want to extend equality on an abstract type for which we
only have a normal equality function (one that expects two arguments of the
same type), we have to make sure that both arguments are indeed of the same
type. In this case, we can use the dynamically available type information from
class Typeable to define a unification function

2. Comparing Approaches to Generic Programming in Haskell 113

unify :: (Typeable a,Typeable b) ⇒ Maybe (a → b)

and then call unify to coerce the types where necessary.

Function map. A generic function such as map that abstracts over a type con-
structor cannot be defined using SYB, because the Data class contains only
types of kind !. It is possible to define variants of map, such as traversals that
increase all integers in a complex data structure, but it isn’t possible to define a
function of type

∀a b f . (a → b) → f a → f b,

where the arguments of the container type f are modified, and the function is
parametrically polymorphic in a and b (see also the section on “SYB Revolu-
tions” below).

Function show. We define show in two steps, as we have done in the Generic
Haskell case. The function showP takes an additional string transformer that
encodes whether to place surrounding parentheses on non-atomic expressions or
not.

We have already seen how constructor information can be accessed in the
definition of encode. Therefore, the definition of showP does not come as a
surprise:

showP :: Data a ⇒ (String → String) → a → String
showP p = (λx → showApp (showConstr (toConstr x))

(gmapQ ((++) " " . showP parens) x))
‘ext1Q ‘ showList
‘extQ ‘ (Prelude.show :: String → String)

where
parens x = "("++ x ++ ")"

showApp :: String → [String] → String
showApp x [] = x
showApp x xs = p (concat (x : xs))

showList :: Data a ⇒ [a] → String
showList xs =
"["++ concat (intersperse "," (map (showP id) xs)) ++ "]".

We feed each constructor application to showApp. On atomic subexpressions,
showApp never produces parentheses, otherwise it consults p.

The most interesting part is how to define type-specific behavior for lists
and strings. Placing strings between double quotes is achieved by the standard
Haskell show function using the extQ extension operator. However, the more
general syntactic sugar for lists (placed between square brackets, elements sep-
arated by commas) is not achieved so easily, because showList is a polymorphic
function, and extQ only works if the second argument is of monomorphic type.
SYB therefore provides a special, polymorphic, extension operator

114 R. Hinze, J. Jeuring and A. Löh

ext1Q :: ∀a c . (Typeable1 f,Data a) ⇒
(a → c) → (∀b .Data b ⇒ f b → c) → (a → c).

Note that polymorphic extension requires a separate operator for each kind, and
also a separate variant of the cast operation: the run-time type information of
the type constructor f of kind ! → ! is made available using the type class
Typeable1 rather than Typeable .

Function update. Traversals that update a large heterogeneous data structure in
selective places were one of the main motivations for designing SYB. Therefore,
it isn’t surprising that defining such a traversal is extremely simple:

update :: Data a ⇒ a → a
update = everywhere (id ‘extT ‘ (λ(S s) → S (s ∗ (1 + 0.15)))).

The argument to everywhere is the identity function, extended with a type-
specific case for the type Salary. The function everywhere is a SYB combinator
that applies a function at any point (constructor) in a data structure. It is defined
in terms of

gmapT :: ∀a .Data a ⇒ (∀b .Data b ⇒ b → b) → (a → a),

a variant of gmapQ that applies a given generic function to the immediate sub-
terms of a value. The gmapT can again be defined using gfoldl . Note that all
these functions similar to, but different from the generic map function, which
applies an argument function to all occurrences of values of a parameter type in
a data type of a higher kind.

Derived work: SYB with Class. Lämmel and Peyton Jones have shown [62]
that using type classes rather than run-time type casts can make generic pro-
gramming using SYB more flexible. Their work aims at replacing SYB extension
operators such as extQ and extR: each generic function is then defined as a class
with a default behavior, and type-specific behavior can be added by defining
specific instances of the class.

To achieve this added flexibility, some alterations to the class Data are re-
quired. The class must be parametrized over a context parameter:

class (Typeable a,Sat c a) ⇒ Data c a where

toConstr :: Proxy c → a → Constr
dataTypeOf :: a → DataType
gfoldl :: ∀f . Proxy c

→ (∀a b .Data c a ⇒ f (a → b) → a → f b)
→ (∀a . a → f a)
→ a → f a.

The context parameter c together with the class constraint on Sat c a simulates
abstracting over a superclass: recursive generic functions are defined as a class.

2. Comparing Approaches to Generic Programming in Haskell 115

Because the class methods make use of the generic combinators such as gfoldl
or derived combinators such as gmapQ , Data must be a superclass of the class
of the function. But because the Data constraint occurs inside the type of the
generic combinators such as gfoldl , the class of the function must also be a
superclass of Data. This is not directly possible, hence the encoding via the
context parameter.

The presence of this encoding leads to a number of encumbrances and sub-
tleties in the “SYB with Class” approach. Sometimes, Haskell is not clever
enough to figure out the correct instantiation of the context parameter itself.
Therefore, the class methods of Data all take an additional parameter of type
Proxy c, with the sole purpose to make the instantiation of c explicit. Further-
more, the possible instantiations of c are dictionary types that have to be defined
for each generic function (or group of mutually recursive generic functions).

As an example, let us look at encode again. In the class-based approach, we
define encode simply as follows:

class Encode a where

encode :: a → [Bit].

However, to turn it into a generic definition, we must now define a suitable
context to use in the argument of Data. This requires the following definitions:

data Encode a = Encode{encodeD :: a → [Bit]}

encodeProxy :: Proxy Encode
encodeProxy = ⊥

instance Encode a ⇒ Sat Encode a where

dict = Encode{encodeD = encode }.

The class Sat need only be defined once and is given simply as

class Sat c a where

dict :: c a.

We are now in a position to give the generic definition of encode:

instance (Data Encode a) ⇒ Encode a where
encode x = concat (encodeConstr (toConstr encodeProxy x) :

gmapQ encodeProxy (encodeD dict) x).

If we compare this definition with the definition of encode in original SYB style
on page 110, then there are only few differences: first, the type-specific cases
are missing (they can be added later using specific class instances); second,
the proxy arguments are passed (also gmapQ takes a proxy argument now) to
help the type checker along; third, the recursive call of encode is replaced by
encodeD dict . The latter is because the argument to gmapQ must actually have
type ∀a .Data Encode a ⇒ a → [Bit] in this case, and the direct use of encode
would introduce an illegal constraint on Encode a.

116 R. Hinze, J. Jeuring and A. Löh

Type-specific cases can now be defined separately (and later) as additional
instances of Encode:

instance Encode Int where
encode = encodeInt

instance Encode Char where
encode = encodeChar .

As we can see from this example, there is a significant advantage to using SYB
with classes, but there are disadvantages as well: the user has additional work,
because for each generic function, an additional context type, a proxy, and an
embedding instance for Sat must be defined. The use of dict rather than direct
recursive calls, and the passing of proxy arguments is quite subtle. Furthermore,
the class structure used here requires the GHC extensions of overlapping and
undecidable instances.

Derived work: SYB Reloaded and Revolutions. In their SYB Reloaded
and Revolutions papers, Hinze, Löh and Oliveira [44, 43] demonstrate that SYB’s
gfoldl function is in essence a catamorphism on the Spine data type, which can
be defined as follows:

data Spine a where
Constr :: Constr → a → Spine a
()) :: Data a ⇒ Spine (a → b) → a → Spine b.

Furthermore, a “type spine” type is given as a replacement for gunfold , and a
“lifted spine” type for generic functions that are parametrized over type con-
structors. For example, using the lifted spine type, map can be defined.

Evaluation

Structural dependencies. SYB allows the definition of generic functions. There
is no support for defining type-indexed data types.

Full reflexivity. The SYB approach is not fully reflexive. Generic functions are
only applicable to data types for which a Typeable instance can be specified. This
implies, amongst others, that higher-kinded data types such as GRose cannot be
turned into instance declarations as this requires so-called higher-order contexts.
The original proposal for Derivable Type Classes (discussed in Section 4.5) rec-
ognizes this shortcoming and proposes a solution in the form of higher-order
contexts, but this extension has never been implemented.

Type-specific behavior is only possible for types of kind !.

Type universes. There is no support for type universes in SYB. All generic
functions are supposed to work on all types in the Typeable class.

2. Comparing Approaches to Generic Programming in Haskell 117

First-class generic functions. In SYB, generic functions are normal polymorphic
Haskell functions, and as such are first-class. However, so-called rank-n types
are required (a function has rank 2 if it takes a polymorphic function as an
argument). Most Haskell implementations support rank-n types.

Multiple type arguments. There is no restriction on the number of type argu-
ments that a generic function can have in SYB, although the basic combinators
are tailored for functions of the form

Data a ⇒ a → . . .

that consume a single value.

Type system. SYB is completely integrated in Haskell’s type system.

Type safety. SYB is type-safe, but type-specific extensions of generic functions
rely on run-time type casting via the Typeable class. It is possible for a user
to break type safety by defining bogus instances for the Typeable class. The
implementation could be made more robust if user-defined instances of class
Typeable would not be allowed, and all Typeable instances would be derived
automatically by the compiler.

The type of a generic function. Types of generic functions have one or more
constraints for the Data class. The types are intuitive, maybe except for the
generic combinators such as ext1Q and gunfold .

Properties of generic functions. The use of type classes Data and Typeable at
the basis of SYB makes proving properties relatively difficult. Instances for these
classes can be generated automatically, but automatic generation is only de-
scribed informally. User-defined instances of these classes can cause unintended
behavior. There is no small set of fundamental data types (such as Generic
Haskell’s unit, binary sum, and binary pair types) to which Haskell data types
are reduced. Lämmel and Peyton Jones state a few properties of basic SYB com-
binators in the original paper, but provide no proof. The only work we are aware
of trying to prove properties about SYB is of Reig [88], but he translates SYB
combinators into Generic Haskell to do so.

Integration with the underlying programming language. SYB is fully integrated
into GHC. Making SYB available for Hugs or another Haskell compiler would
be a major effort. The module Data.Generics contains all SYB combinators.
The options -fglasgow-exts is required for GHC to support the higher-ranked
types of some of the SYB combinators. No extra work is needed to use a generic
function on a data type other than writing deriving (Data,Typeable) after the
data-type declaration.

118 R. Hinze, J. Jeuring and A. Löh

Specialization versus interpretation. The SYB approach makes use of run-time
type information. Generic functions have Data class constraints. Most Haskell
compilers implement type classes using dictionary passing : for each Data con-
straint, a record containing the appropriate class methods is passed along at
run-time. The Data is a subclass of Typeable , which provides the actual struc-
ture of the type at run-time. This information is used to provide run-time type
casts to enable type-specific behavior.

Code optimization. As SYB is a Haskell library, the code is not optimized in any
special way. The implementation of generic functions is relatively direct. The
passing of class dictionaries, the type casts, and the use of many higher-order
functions might sometimes lead to a considerable overhead.

Separate compilation. Generic functions are normal Haskell functions, and can
be placed in different modules and compiled separately. Generic functions them-
selves are not extensible, however. If new specific cases must be added to a
generic function, the whole definition has to be repeated. This restriction is
lifted by “SYB with Class”.

Practical aspects. SYB is shipped as a library with current releases of GHC and
supported. It is planned to provide the functionality of “SYB with Class” in
future releases of GHC. The Spine data type from “SYB Reloaded” is not yet
used in the official release, but might be integrated in the future.

4.4 Approaches based on reflection

Both DrIFT [99] and generic programming approaches using Template Has-
kell [82] use a kind of reflection mechanism to generate instances of generic
functions for a data type. Generic functions are defined on an abstract syntax
for data types. This section introduces and evaluates these two approaches.

DrIFT

DrIFT is a type sensitive preprocessor for Haskell. It extracts type declarations
and directives from Haskell modules. The directives cause rules to be fired on
the parsed type declarations, generating new code which is then appended to
the bottom of the input file. An example of a directive is:

{- ! for Foo derive : update,Show -} .

Given such a directive in a module that defines the data type Foo, and rules for
generating instances of the function update and the class Show , DrIFT generates
a definition of the function update on the data type Foo, and an instance of Show
for Foo. The rules are expressed as Haskell code, and a user can add new rules
as required.

2. Comparing Approaches to Generic Programming in Haskell 119

DrIFT comes with a number of predefined rules, for example for the classes
derivable in Haskell and for several marshaling functions between Haskell data
and, for example, XML, ATerm, and a binary data format.

A type is represented within DrIFT using the following data definition.

data Statement = DataStmt | NewTypeStmt

data Data = D{name :: Name -- type name
, constraints :: [(Class, Var)] -- constraints on type vars
, vars :: [Var] -- parameters
, body :: [Body] -- the constructors
, derives :: [Class] -- derived classes
, statement :: Statement -- data or newtype
}

type Name = String
type Var = String
type Class = String

A value of type Data represents one parsed data or newtype statement. These
are held in a D constructor record. The body of a data type is represented by a
value of type Body. It holds information about a single constructor.

data Body = Body{constructor :: Constructor -- constructor name
, labels :: [Name] -- label names
, types :: [Type] -- type representations
}

type Constructor = String

The definition of Type is as follows.

data Type = Arrow Type Type -- function type
| Apply Type Type -- application
| Var String -- variable
| Con String -- constant
| Tuple [Type] -- tuple
| List Type -- list

deriving (Eq ,Show)

For example, the data type CharList is represented internally by:

reprCharList = D{name = "CharList"
, constraints = []
, vars = []
, body = [bodyNil , bodyCons]
, derives = []
, statement = DataStmt
}

bodyNil = Body{constructor = "Nil"

120 R. Hinze, J. Jeuring and A. Löh

, labels = []
, types = []
}

bodyCons = Body{constructor = "Cons"
, labels = []
, types = [Con "Char"

,Con "CharList"]
}.

A rule consists of a name and a function that takes a Data and returns a docu-
ment, a value of type Doc, containing the textual code of the rule for the Data
value. The type Doc is defined in a module for pretty printing, and has sev-
eral operators defined on it, for example for putting two documents beside each
other (<+>) (list version hsep), above each other $$ (list version vcat), and for
printing texts (text and texts) [47]. Constructing output using pretty-printing
combinators is easier and more structured than manipulating strings.

Function encode. We now explain the rules necessary for obtaining a definition
of function encode on an arbitrary data type. For that purpose, we define the
following class in our test file.

class Encode a where
encode :: a → [Bit]

and ask DrIFT to generate instances of this class for all data types by means
of the directive {- ! global : encode -} . For example, for the type CharList it
generates:

instance Encode CharList where
encode Nil = [O]
encode (Cons aa ab) = [I] ++ encode aa ++ encode ab.

Rules for generating such instances have to be added to the file UserRules.hs.

encodefn :: Data → Doc
encodefn d =

instanceSkeleton "Encode"
[(makeEncodefn (mkBits (body d)), empty)]
d

mkBits :: [Body] → Constructor → String
mkBits bodies c = (show

. intinrange2bits (length bodies)

. fromJust

. elemIndex c

. map constructor
) bodies

2. Comparing Approaches to Generic Programming in Haskell 121

The function encodefn generates an instance of the class Encode using the utility
function instanceSkeleton. It applies makeEncodefn to each Body of a data type,
and adds the empty document at the end of the definition. The function mkBits
takes a list of bodies, and returns a function that when given a constructor
returns the list of bits for the constructor in its data type. For example, the list
of bits for a data type with three constructors are [[O ,O], [O , I], [I ,O]]. As
before, we use the utility function intinrange2bits to encode a natural number
in a given range.

The function makeEncodefn takes an encoding function and a body, and re-
turns a document containing the definition of function encode on the constructor
represented by the body. If the constructor has no arguments, encode returns
the list of bits for the constructor, obtained by means of the encoding function
that is passed as an argument. If the constructor does have arguments, encode
returns the list of bits for the constructor, followed by the encodings of the ar-
guments of the constructor. For the argument of encode on the left-hand side of
the definition we have to generate as many variables as there are arguments to
the constructor. These variables are returned by the utility function varNames .
Function varNames takes a list, and returns a list of variable names, the length
of which is equal to the length of the argument list. The constructor pattern is
now obtained by prefixing the list generated by varNames with the constructor.
This is conPat in the definition below. The encodings of the arguments of the
constructor are obtained by prefixing the generated variables with the function
encode, and separating the elements in the list with the list-concatenation opera-
tor ++. Finally, equals is a utility function that returns the document containing
an equality sign, ‘=’.

makeEncodefn :: (Constructor → String) → (Body → Doc)
makeEncodefn enc (Body{constructor = constructor , types = types }) =

let bits = text (enc constructor)
encodeText = text "encode"
constrText = text constructor

in let newVars = varNames types
conPat = parens . hsep $ constrText : newVars
lhs = encodeText <+> conPat
rhs = (fsep

. sepWith (text "++")

. (bits :)

. map (λn → encodeText <+> n)
) newVars

in lhs <+> equals <+> rhs

Function decode. Decoding is a bit more complicated. First, we define the fol-
lowing class in our test file.

class Decode a where
decodes :: Parser a

122 R. Hinze, J. Jeuring and A. Löh

decode :: [Bit] → a
decode bits = case decodes bits of

[(y, [])] → y
→ error "decode: no parse"

Then we ask DrIFT to generate instances of this class for all data types by means
of the directive {- ! global : decode -} . For example, for the type CharList it
should generate:

instance Decode CharList where

decodes (O : xs) = [(Nil , xs)]
decodes (I : xs) = [(Cons res1 res2, xs2) | (res1, xs1) ← decodes xs

, (res2, xs2) ← decodes xs1]
decodes [] = error "decodes".

The decode function generates an instance of the class Decode. It adds the dec-
laration of decodes on the empty list as the last line in each class instance.

decodefn :: Data → Doc
decodefn d =

instanceSkeleton "Decode"
[(mkDecodefn (mkBitsPattern (body d))
, text "decodes [] = error \"decodes\"")
]
d

Here, function mkBitsPattern is almost the same as function mkBits , except for
the way in which the list of bits is shown. We omit its definition.

The function mkDecodefn produces the cases for the different constructors.
The left-hand side of these cases are obtained by constructing the appropri-
ate bits pattern. The right-hand side is obtained by means of the function
decodechildren , and returns a constructor (applied to its arguments). If a con-
structor has no arguments this is easy: return the constructor. If a construc-
tor does have arguments, we first decode the arguments, and use the results of
these decodings as arguments to the constructor. The implementation of func-
tion mkDecodefn is almost a page of Haskell code, and can be found in the
accompanying technical report [40].

Instances of class Eq. The rules necessary for generating an instance of the
class Eq for a data type are very similar to the rules for generating an in-
stance of the class Encode. These rules are omitted, and can be found in the file
StandardRules.hs in the distribution of DrIFT.

Function map. The rules for generating instances of the map function on dif-
ferent data types differ from the rules given until now. The biggest difference is
that we do not generate instances of a class. Any class definition is of the form

2. Comparing Approaches to Generic Programming in Haskell 123

class C t where . . ., in which the kind of the type t is fixed. So suppose we
define the following class for map:

class Map{[t]} where
map :: (a → b) → t a → t b.

Then we can only instantiate this class with types of kind ! → !. Since the data
type of generalized trees GTree has kind ! → ! → !, we cannot represent the
‘standard’ map function on GTree by means of an instance of this class. Instead,
we generate a separate map function on each data type. For example, on the
type GTree we obtain:

mapGTree fa fb GEmpty = GEmpty
mapGTree fa fb (GLeaf a) = GLeaf (fa a)
mapGTree fa fb (GBin l v r) = GBin (mapGTree fa fb l)

(fb v)
(mapGTRee fa fb r).

It is impossible to define a generic map that works on types of different kinds for
many of the other approaches to generic programming. DrIFT allows us to do
anything we want, which we illustrate by defining map in an alternative fashion.

The function mapfn generates a definition of map for each constructor using
mkMapfn . The function mkMapfn takes as arguments the name of the data type
(for generating the name of the map function on the data type) and the variables
of the data type (for generating the names of the function arguments of map).

mapfn :: Data → Doc
mapfn (D{name = name, vars = vars , body = body }) =

vcat (map (mkMapfn name vars) body)

Function mkMapfn creates the individual arms of the map function. For gen-
erating the right-hand side, it recurses over the type of the constructor in the
declaration rhsfn .

mkMapfn name vars (Body{constr = constructor , types = types }) =
let mt name = text ("map"++ name)

mapArgs = hsep (texts (map (λv → ’f’ : v) vars))
newVars = varNames types
conPat = parens . hsep $ text constr : newVars
lhs = mt name <+> mapArgs <+> conPat
rhs = hsep (text constr

: map (parens . rhsfn) (zip newVars types)
)

rhsfn = λ(newVar , rhstype) →
case rhstype of

LApply t ts → hsep
(mt (getName t)

124 R. Hinze, J. Jeuring and A. Löh

: hsep (map mkMapName ts)
++ [newVar]
)

Var v → text (’f’ : v) <+> newVar
Con s → mt s <+> newVar
List t → text "map"

<+> parens (mt (getName t)
<+> mapArgs
)

<+> newVar
x → newVar

in lhs <+> equals <+> rhs

The utility functions mkMapName and getName return the name of the func-
tion to be applied to the arguments of a constructor, and the name of a type,
respectively.

mkMapName (LApply s t) = parens (mkMapName s
<+> hsep (map mkMapName t)
)

mkMapName (Var s) = text (’f’ : s)
mkMapName (Con s) = text ("map"++ s)
mkMapName (List t) = text "map" <+> mkMapName t
mkMapName = error "mkMapName"

getName (LApply s t) = getName s
getName (Var s) = s
getName (Con s) = s
getName (List t) = getName t
getName = error "getName"

Template Haskell

Template Haskell is a language extension that allows meta-programming within
the Haskell language. Template Haskell consists of multiple components.

A library (exported by Language.Haskell .TH) provides access the the ab-
stract syntax of the Haskell language. This makes it possible to analyze and
construct Haskell programs within Haskell. A monad Q is provided to generate
fresh names on demand.

Haskell expressions can be quoted to easily construct terms in the abstract
syntax. For example,

!2 + 2" :: Q Exp.

Template Haskell supports reflection (reification), so that it is possible to analyze
the structure of an already defined value or data type:

2. Comparing Approaches to Generic Programming in Haskell 125

reify :: Name → Q Info.

The Info data type has multiple constructors corresponding to different kinds of
declarations, but in particular, there is a constructor for data types:

data Info = . . .
| TyConI Dec

data Dec = . . .
| DataD Cxt Name [Name] [Con] [Name]

data Con = NormalC Name [StrictType]
| RecC Name [VarStrictType]
| InfixC StrictType Name StrictType
| ForallC [Name] Cxt Con.

Each data type comprises a context (possible class constraints), a name, a list of
parameters, a list of constructors, and a list of classes it automatically derives.
Constructors can either be normal constructors, records, infix constructors, or
constructors with quantification. A StrictType is a type with a possible strictness
annotation, a VarStrictType additionally contains a record label.

Finally, in Template Haskell we can splice values constructed in the abstract
syntax into Haskell programs, making it possible to run programs that are gen-
erated by meta-programs. Splicing is dual to quoting, so that

$(!2 + 2") :: Int

results in 4.
By its very nature, Template Haskell can be used to write programs that

cannot be expressed, or are at least difficult to express, in the Haskell language,
such as generic programs. With Template Haskell, we can analyze data-type
definitions, and depending on their structure, generate specialized code.

It is important to realize that Template Haskell itself is not an approach
to generic programming, but more like an implementation technique. Template
Haskell gives the programmer a lot of power and freedom, but does not provide
any guidance or even a framework for generic programming.

While DrIFT’s main focus is to generate type-class instances, we can use
Template Haskell much more flexibly:

– we can generate the structure-representation type (like in Generic Haskell)
for a given data type, plus the embedding-projection pairs;

– for a generic function, we can construct a recipe that uses the abstract syntax
of a data type to construct the abstract syntax of a specialized instance of
the generic function;

– we can generate instances of a type class, both for a generic function directly
(like in DrIFT, Derivable Type Classes, or Generics for the Masses), or for
a powerful combinator like gfold in Scrap Your Boilerplate.

In principle, Template Haskell can be used to simulate or support any approach
to generic programming in Haskell. However, we also run into many of the prob-
lems that we encountered in DrIFT:

126 R. Hinze, J. Jeuring and A. Löh

– everything happens at the syntactic level, not the semantic level. While
constructing generic functions, we have to pay attention to low-level concepts
such as free and bound variables;

– the analysis of data types is also purely syntactic. We do not have access
to kind information, or recursion on the type level, directly, but have to
infer that from the definitions; writing generic functions for mutually recur-
sive data types or higher-kinded data types is difficult, because we have to
implement parts of a compiler;

– there is no guarantee that the meta-programs produce correct code under
all circumstances. The generated code is type-checked, so we are safe from
errors in the end, but this is a much weaker guarantee than we get from other
approaches such as Generic Haskell, where we know that the type-correctness
of a generic definition implies the type-correctness of all instances.

Because of the above-mentioned freedom, it is difficult to implement the
canonical examples for generic programming using Template Haskell: there is
no single idiomatic version of a generic function, but there are many different
possibilities. We therefore don’t include specific examples in this document.

We are aware of one attempt to provide a serious framework for generic pro-
gramming within Template Haskell: Norell and Jansson [82] present a very so-
phisticated embedding of both PolyP and Generic Haskell into Template Haskell.
Among other things, they describe how to define generic map in the two different
encodings.

Evaluation

Structural dependencies. DrIFT and Template Haskell support the definition
of functions that take the abstract syntax of a data type as an argument, and
return executable Haskell code. In principle, both DrIFT and Template Haskell
can generate any document, even type-indexed data types. Especially for DrIFT,
generating anything other than class instances amounts to writing part of a
compiler for generic programming. In Template Haskell, it is feasible to design
at least a reusable framework for such advanced tasks. Both systems provide no
way to access type or kind information of the analyzed code. In particular, the
lack of kind inference for data types makes the creation of generic programs on
complex data types tedious.

Full reflexivity. DrIFT is not fully reflexive with respect to the set of data
types definable in Haskell 98: it cannot handle data types with higher-kinded
type variables, such as GRose. Just like Generic Haskell, DrIFT cannot generate
instances of functions on existential types or on GADTs.

We see, however, no reason in principle why DrIFT cannot be fully reflexive
with respect to the data types definable in Haskell 98.

Template Haskell’s abstract syntax handles all of Haskell 98 and beyond.
It does not yet support GADTs, but there is no reason why it could not be
extended in that way. Full reflexivity therefore depends on the generic program-
ming approach one tries to simulate within Template Haskell.

2. Comparing Approaches to Generic Programming in Haskell 127

Type universes. There is no support for type universes in DrIFT. Neither does
Template Haskell have any direct support for this concept.

First-class generic functions. DrIFT rules are plain Haskell functions, they can
take rules as arguments. First-class rules are inherited from Haskell. But it needs
a lot of imagination to see rules as generic programs. And an instance of a class
cannot be explicitly passed as an argument to a function or a class instance, so a
rule that generates an instance of a class (the only supported kind of definition
in DrIFT) cannot be passed as argument to a rule that generates a function or
a class instance.

Similarly, we have all the abstraction possibilities of Haskell for generic pro-
grams within Template Haskell. We can write generic meta-programs that are
parametrized over other generic meta-programs.

However, both DrIFT and Template Haskell are two-level approaches. DrIFT
always needs to be invoked before compilation of a Haskell module to fill in the
missing code. Template Haskell requires splicing of the generated code. Splicing
is a syntactic construct which is foreign to the Haskell language and further-
more underlies certain restrictions (sometimes, code that contributes to Tem-
plate Haskell programs must reside in several modules). Therefore, DrIFT and
Template Haskell cannot provide generic functions that are truly first-class.

Multiple type arguments. Rules cannot take multiple type arguments in DrIFT.
In Template Haskell, there are no theoretical limits.

Type system. Rules for generic functions all have the same type in DrIFT:
Data → Doc. There is no separate type system for rules; rules are ordinary
Haskell functions. In Template Haskell, the situation is similar. All Haskell ex-
pressions, for instance, are of type Exp in the abstract syntax of expressions, but
no further type information about the actual constructed expression is main-
tained. In particular, it is possible to construct type-incorrect expressions, caus-
ing type errors only when spliced.

Note that in addition to type errors, it is easy to generate lexer and parser
errors in DrIFT.

Type safety. A type-correct rule does not guarantee that the generated code is
type correct, as well. It is easy to define a type-correct rule that generates code
that does not type-check in Haskell. DrIFT is not type safe. The same holds for
Template Haskell, where the type correctness of a meta-program does not imply
that the use of that meta-program produces type-correct code.

The type of a generic function. In DrIFT, every rule has type Data → Doc.
Thus it is impossible to distinguish generic functions by type. For Template
Haskell, the type of generic functions depends completely on the approach that is
simulated. Generally, however, not much of a generic function’s type is reflected
in the type of the meta-program: as in DrIFT, generic functions in Template
Haskell typically map the abstract syntax of one or more data types to a number

128 R. Hinze, J. Jeuring and A. Löh

of Haskell declarations. Lynagh [74] shows how to give more informative types
to Template Haskell programs.

Properties of generic functions. Since rules generate pretty-printed documents
(syntax), it is virtually impossible to specify properties of rules. For Template
Haskell, it is similarly impossible to specify properties. However, libraries for
generic programming defined in Template Haskell may allow to state and prove
properties.

Integration with the underlying programming language. If a user wants to im-
plement and use a new rule, DrIFT has to be recompiled. If a user wants to use
a rule, adding a directive to a Haskell file suffices. Template Haskell is superior
here, because Template Haskell code can almost freely be mixed with normal
Haskell code. Sometimes, code has to be divided in separate modules.

Specialization versus interpretation. DrIFT specializes rules on data types fol-
lowing directives. Template Haskell also generates the programs in advance, but
a hybrid approach is conceivable: in the simulation of a lightweight approach,
some code would be generated for each data type, but a generic function would
be interpreted.

Code optimization. Code can be optimized by hand by specifying a more sophis-
ticated rule or meta-program. There need not be a run-time efficiency penalty
when using DrIFT or Template Haskell.

Separate compilation. It is easy to use rules on data types that appear in a
new module. Rules are separately compiled in DrIFT, and can then be used in
any module. Separate compilation in Template Haskell is possible because of its
integration with Haskell.

Practical aspects. DrIFT is actively maintained. The last release is from April
2006. It runs on many platforms. The user guide explains how to use DrIFT.
Template Haskell is actively maintained as part of GHC; the flag -fth must
be passed to GHC to be able to use it. Template Haskell is, however, still in
development, with new GHC releases regularly changing the interface in an in-
compatible way. Documentation for the current state of affairs is difficult to
come by, but this situation is likely to improve when the speed of development
slows down.

No error messages are given for data types for which DrIFT cannot generate
code. Error messages provided by Template Haskell are often in terms of the
generated code and difficult to interpret for the user of a generic programming
library.

4.5 Lightweight approaches to generic programming

Due to Haskell’s advanced type language and type classes it is possible to write
generic programs in Haskell itself, without extending the language. An approach

2. Comparing Approaches to Generic Programming in Haskell 129

in which generic programs are plain Haskell programs is called a lightweight ap-
proach. Lightweight approaches to generic programming in Haskell have become
popular in the last couple of years. In this section we discuss three relatively
lightweight approaches to generic programming: “A Lightweight Implementa-
tion of Generics and Dynamics”, “Generics for the Masses”, and “Derivable
Type Classes”. The last approach is actually a language extension, but since it
shares many characteristics with the other two approaches, it is listed here.

We do not include a comparison of some very recent lightweight approaches
to generic programming such as Replib [97], Smash your boiler-plate without
class and Typeable [59], and TypeCase [83]. Neither do we discuss PolyP2 here:
the subsection on PolyP discusses the main ideas behind PolyP.

Lightweight Implementation of Generics and Dynamics

Lightweight Implementation of Generics and Dynamics [15] (LIGD) is an ap-
proach to embedding generic functions and dynamic values into Haskell 98 aug-
mented with existential types. For the purposes of these lecture notes we concen-
trate on the generics (which slightly simplifies the presentation). For the treat-
ment of dynamics the interested reader is referred to the original paper [15] or
to the companion lecture notes on Generic Programming, Now!, which elaborate
on a closely related approach to generic programming.

A generic function in Generic Haskell is parametrized by types, essentially
performing a dispatch on the type argument. The basic idea of the lightweight
approach is to reflect the type argument onto the value level so that the type-
case can be implemented by ordinary pattern matching. As a first try, we could,
for instance, assign the generic encode function the type Rep → t → [Bit], where
Rep is the type of type representations. A moment’s reflection, however, reveals
that this won’t work. The parametricity theorem [92] implies that a function of
this type necessarily ignores its second argument. The trick is to use a parametric
type for type representations: encode :: Rep t → t → [Bit]. Here Rep t is the type
representation of t. In this section we will show a number of ways in which such
a type can be defined.

Using a recent extension to Haskell, so-called generalized algebraic data
types, Rep can be defined directly in Haskell; see also Generic Programming,
Now! (Section 3.1 in [42], where Rep is called Type).

data Rep :: ! → ! where

Unit :: Rep Unit
Int :: Rep Int
Sum :: Rep a → Rep b → Rep (a :+: b)
Pair :: Rep a → Rep b → Rep (a :*: b)

A type t is represented by a term of type Rep t. Note that the above declaration
cannot be introduced by a Haskell 98 data declaration since none of the data
constructors has result type Rep a.

130 R. Hinze, J. Jeuring and A. Löh

If one wants to stick to Haskell 98 (or modest extensions thereof), one has
to encode the representation type somehow. We discuss a direct encoding in the
sequel and a more elaborate one in Section 4.5. The idea is to assign, for instance,
Int , the representation of Int, the type Rep t with the additional constraint
that t = Int. The type equality is then encoded using the equivalence type
a ↔ b introduced in Section 2.2. An element of t ↔ t′ can be seen as a ‘proof’
that the two types are equal. Of course, in Haskell, an equivalence pair only
guarantees that t can be cast to t′ and vice versa. This, however, turns out to
be enough for our purposes. Figure 3 displays the fully-fledged version of Rep
that uses equivalence types. The constructors Unit , Int , Char , Sum, Pair and

data Rep t = Unit (t ↔ Unit)
| Int (t ↔ Int)
| Char (t ↔ Char)
| ∀a b .Sum (Rep a) (Rep b) (t ↔ (a :+: b))
| ∀a b .Pair (Rep a) (Rep b) (t ↔ (a :*: b))
| ∀a . Type (Rep a) (t ↔ a)
| Con String (Rep t)

Fig. 3. A type-representation type.

Con correspond to the type patterns Unit, Int, Char, :+:, :*: and Con in Generic
Haskell. The constructor Type is used for representing user-defined data types;
see below.

In general, approaches to generics contain three components: code for generic
values, per data type code, and shared library code. In Generic Haskell and other
approaches the per data type code is not a burden upon the programmer but
is generated automatically. Here the programmer is responsible for supplying
the required definitions. (Of course, she or he may use tools such as DrIFT or
Template Haskell to generate the code automatically.) To see what is involved,
re-consider the List data type

data List a = Nil | Cons a (List a),

and recall that the structure type of List a is Unit :+: (a :*: (List a)). To turn
List a into a representable type, a type on which a generic function can be used,
we define

list :: Rep a → Rep (List a)
list a = Type ((Con "Nil" unit) + (Con "Cons" (a ∗ (list a))))

(EP fromList toList),

where unit , + and ∗ are smart versions of the respective constructors (defined
in the LIGD library) and fromList and toList convert between the type List and
its structure type.

2. Comparing Approaches to Generic Programming in Haskell 131

fromList :: List a → Unit :+: (a :*: (List a))
fromList Nil = Inl Unit
fromList (Cons a as) = Inr (a :*: as)

toList :: Unit :+: (a :*: (List a)) → List a
toList (Inl Unit) = Nil
toList (Inr (a :*: as)) = Cons a as

Note that the representation of the structure type records the name of the con-
structors.

So, whenever we define a new data type and we intend to use a generic
function on that type, we have to do a little bit of extra work. However, this has
to be done only once per data type.

Function encode. The definition of encode is very similar to the Generic Haskell
definition.

encode :: Rep t → t → [Bit]
encode (Unit ep) t = case from ep t of

Unit → []
encode (Char ep) t = encodeChar (from ep t)
encode (Int ep) t = encodeInt (from ep t)
encode (Sum a b ep) t = case from ep t of

Inl x → O : encode a x
Inr y → I : encode b y

encode (Pair a b ep) t = case from ep t of
x :*: y → encode a x ++ encode b y

encode (Type a ep) t = encode a (from ep t)
encode (Con s a) t = encode a t

The main difference is that we have to use an explicit cast, from ep, to turn the
second argument of type t into a character, an integer, and so forth. In Generic
Haskell this cast is automatically inserted by the compiler.

Function decode. For decode we have to cast an integer and values of other types
into an element of the result type t using to ep.

decodes :: Rep t → Parser t
decodes (Unit ep) bs = [(to ep Unit , bs)]
decodes (Char ep) bs = mapP (to ep) decodesChar bs
decodes (Int ep) bs = mapP (to ep) decodesInt bs
decodes (Sum a b ep) bs = bitCase (mapP (to ep . Inl) (decodes a))

(mapP (to ep . Inr) (decodes b))
bs

decodes (Pair a b ep) bs = [(to ep (x :*: y), ds)
| (x , cs) ← decodes a bs
, (y, ds) ← decodes b cs]

132 R. Hinze, J. Jeuring and A. Löh

decodes (Type a ep) bs = mapP (to ep) (decodes a) bs
decodes (Con s a) bs = decodes a bs

A big plus of the lightweight approach is that encode and decode are ordinary
Haskell functions. We can, for instance, pass them to other functions or we can
define other functions in terms of them.

decode :: Rep a → [Bit] → a
decode a bs = case decodes a bs of

[(x , [])] → x
→ error "decode: no parse"

Function eq. The equality function is again very similar to the version in Generic
Haskell.

eq :: Rep t → t → t → Bool
eq (Int ep) t1 t2 = from ep t1 from ep t2
eq (Char ep) t1 t2 = from ep t1 from ep t2
eq (Unit ep) t1 t2 = case (from ep t1, from ep t2) of

(Unit ,Unit) → True
eq (Sum a b ep) t1 t2 = case (from ep t1, from ep t2) of

(Inl a1, Inl a2) → eq a a1 a2

(Inr b1, Inr b2) → eq b b1 b2

→ False
eq (Pair a b ep) t1 t2 = case (from ep t1, from ep t2) of

(a1 :*: b1, a2 :*: b2) → eq a a1 a2 ∧ eq b b1 b2

eq (Type a ep) t1 t2 = eq a (from ep t1) (from ep t2)
eq (Con s a) t1 t2 = eq a t1 t2

Function map. The function map abstracts over a type constructor of kind
! → !, or is indexed by kind as in Generic Haskell. Defining such a version of
map requires a different type representation. A discussion of the design space
can be found in the companion lecture notes on Generic Programming, Now!.

Function show. The implementation of show is again straightforward. The con-
structor names can be accessed using the Con pattern (an analogous approach
can be used for record labels).

shows :: Rep t → t → ShowS
shows (Int ep) t = showsInt (from ep t)
shows (Char ep) t = showsChar (from ep t)
shows (Unit ep) t = showString ""
shows (Sum a b ep) t = case from ep t of

Inl a1 → shows a a1

Inr b1 → shows b b1

2. Comparing Approaches to Generic Programming in Haskell 133

shows (Pair a b ep) t = case from ep t of

(a1 :*: b1) → shows a a1

· showString " "
· shows b b1

shows (Type a ep) t = shows a (from ep t)
shows (Con s (Unit ep)) t = showString s
shows (Con s a) t = showChar ’(’

· showString s
· showChar ’ ’
· shows a t
· showChar ’)’

Since types are reflected onto the value level, we can use the full convenience
of Haskell pattern matching. For instance, in the definition of shows we treat
nullary constructors in a special way (omitting parentheses) through the use of
the pattern Con s (Unit ep).

Function update. An implementation of update requires an extension of the
Rep data type, which means that one has to modify the source of the library.
Alternatively, one could turn Rep into a so-called open data type [72]. The code
for update is then entirely straightforward and omitted for reasons of space.

Derivable Type Classes

Haskell’s major innovation is its support for overloading, based on type classes.
For example, the Haskell Prelude defines the class Eq (slightly simplified):

class Eq a where

eq :: a → a → Bool.

This class declaration defines an overloaded top-level function, called method,
whose type is

eq :: (Eq a) ⇒ a → a → Bool.

Before we can use eq on values of, say Int, we explain how to take equality over
Int values:

instance Eq Int where
eq = eqInt .

This instance declaration makes Int an element of the type class Eq and says
‘the eq function at type Int is implemented by eqInt ’. As a second example
consider equality of lists. Two lists are equal if they have the same length and
corresponding elements are equal. Hence, we require equality over the element
type:

134 R. Hinze, J. Jeuring and A. Löh

instance (Eq a) ⇒ Eq (List a) where

eq Nil Nil = True
eq Nil (Cons a2 as2) = False
eq (Cons a1 as1) Nil = False
eq (Cons a1 as1) (Cons a2 as2) = eq a1 a2 ∧ eq as1 as2.

This instance declaration says ‘if a is an instance of Eq , then List a is an instance
of Eq, as well’.

Though type classes bear a strong resemblance to generic definitions, they do
not support generic programming. A type-class declaration corresponds roughly
to the type signature of a generic definition – or rather, to a collection of type
signatures. Instance declarations are related to the type cases of a generic def-
inition. The crucial difference is that a generic definition works for all types,
whereas instance declarations must be provided explicitly by the programmer
for each newly defined data type. There is, however, one exception to this rule.
For a handful of built-in classes Haskell provides special support, the so-called
‘deriving’ mechanism. For instance, if you define

data List a = Nil | Cons a (List a) deriving (Eq),

then Haskell generates the ‘obvious’ code for equality. What ‘obvious’ means is
specified informally in an Appendix of the language definition [86]. Derivable
type classes (DTCs) [41] generalize this feature to arbitrary user-defined classes:
generic definitions are used to specify default methods so that the programmer
can define her own derivable classes.

Functions encode and decode. A type class usually gathers a couple of related
methods. For that reason, we put encode and decode into a single class, called
Binary .

class Binary a where

encode :: a → [Bit]
decodes :: Parser a

Using two generic definitions we provide default methods for both encode and
decode.

encode{|Unit|} Unit = []

encode{|b :+: c|} (Inl x) = O : encode x
encode{|b :+: c|} (Inr y) = I : encode y
encode{|b :*: c|} (x :*: y) = encode x ++ encode y

decodes{|Unit|} bs = [(Unit , bs)]
decodes{|b :+: c|} bs = bitCase (mapP Inl decodes)

(mapP Inr decodes)
bs

decodes{|b :*: c|} bs = [(x :*: y, ds) | (x , cs) ← decodes bs
, (y, ds) ← decodes cs]

2. Comparing Approaches to Generic Programming in Haskell 135

Incidentally, DTCs use the same structure-representation types as Generic Has-
kell, so the corresponding definitions can be copied almost verbatim. There is
one small difference though: explicit type arguments, written in curly braces,
are only specified on the left-hand side of default method definitions. Elsewhere,
Haskell’s overloading resolution automatically determines the instance types, as
for every other class method.

The function decode is defined in terms of decodes . We decided to turn the
latter function into an overloaded function rather than a class method since its
code is the same for all instances.

decode :: (Binary a) ⇒ [Bit] → a
decode bs = case decodes bs of

[(x , [])] → x
→ error "decode: no parse"

Now, if we intend to use encode or decode on a particular type, we must first
provide an instance declaration. However, by virtue of the default methods the
instance declaration may be empty.

instance Binary CharList
instance Binary Tree
instance (Binary a) ⇒ Binary [a]

The compiler then automatically fills in the missing method definitions. However,
if we say

instance (Binary a) ⇒ Binary [a] where

encode xs = encode (length xs) ++ concatMap encode xs
decodes bs = [(xs, ds) | (n, cs) ← decodes bs

, (xs , ds) ← times n decodes cs]

times :: Int → Parser a → Parser [a]
times 0 p bs = [([], bs)]
times (n + 1) p bs = [(x : xs , ds) | (x , cs) ← p bs , (xs, ds) ← times n p cs]

then this programmer-supplied code is used. Thus, the programmer can override
the generic definition on a type-by-type basis. This ability is crucial to support
abstract types. We can also — indeed, we must — use ordinary instance decla-
rations to specify what a generic definition should do on primitive types such as
Char or Int.

instance Binary Char where
encode = encodeChar
decodes = decodesChar

instance Binary Int where
encode = encodeInt
decodes = decodesInt

136 R. Hinze, J. Jeuring and A. Löh

Function eq. The predefined Eq class can be thought of as a derivable type class.

class Eq a where

eq,neq :: a → a → Bool

eq{|Unit|} Unit Unit = True

eq{|b :+: c|} (Inl x) (Inl v) = eq x v
eq{|b :+: c|} (Inl x) (Inr w) = False
eq{|b :+: c|} (Inr y) (Inl v) = False
eq{|b :+: c|} (Inr y) (Inr w) = eq y w

eq{|b :*: c|} (x :*: y) (v :*: w) = eq x v ∧ eq y w

neq x y = not (eq x y)

The class definition contains an ordinary default definition for inequality and a
generic one for equality. Equality on characters and integers is specified using
ordinary instance declarations.

instance Eq Char where

eq = eqChar
instance Eq Int where

eq = eqInt

Function map. Generic definitions for default methods may only be given for
type classes whose type parameter ranges over types of kind !. For that reason,
we cannot specify a generic mapping function, There is, however, no principle
hindrance in adding this feature.

Function show. A missing feature of DTCs is a cof a construct, with which one
can access the names of constructors and labels. So, currently, one cannot define
a generic version of show or read .

Function update. We can define update as a variant of the generic identity, or
copy function.

class Update a where
update :: a → a

update{|Unit|} Unit = Unit

update{|b :+: c|} (Inl x) = Inl (update x)
update{|b :+: c|} (Inr y) = Inr (update y)

update{|b :*: c|} (x :*: y) = update x :*: update y

Again, we have to provide instance declarations for all the types, on which we
wish to use update.

instance Update Char where
update = id

2. Comparing Approaches to Generic Programming in Haskell 137

instance (Update a) ⇒ Update [a]

instance Update Company
instance Update Dept
instance Update SubUnit
instance Update Employee
instance Update Person
instance Update Salary where

update (S s) = S (s ∗ (1 + 0.15))

All the instance declarations are trivial except the one for salary which specifies
the salary increase.

Generics for the Masses

Generics for the Masses [35, 36] (GM) is similar in spirit to LIGD. The approach
shows that one can program generically within Haskell 98 obviating to some
extent the need for fancy type systems or separate tools. Like LIGD, Generics
for the Masses builds upon an encoding of the type-representation type Rep,
this time a class-based one. The details of the encoding are not relevant here;
the interested reader is referred to the journal paper [36].

Function encode. To define a generic function the generic programmer has to
provide a signature and an implementation. Rather unusually, the type of a
generic function is specified using a newtype declaration.

newtype Encode a = Encode{applyEncode :: a → [Bit]}

We already know that the generic function encode cannot be a genuine polymor-
phic function of type a → [Bit]. Data compression does not work for arbitrary
types, but only for types that are representable, that is, where the type can be
represented by a certain value. Here a type representation is simply an over-
loaded value called rep. The first part of the generic compression function is
then given by the following definition.

encode :: (Rep a) ⇒ a → [Bit]
encode = applyEncode rep

Loosely speaking, we apply the generic function to the type representation rep.
Of course, this is not the whole story. The code above defines only a convenient
shortcut. The actual definition of encode is provided by an instance declaration,
but one should read it instead as just a generic definition.

instance Generic Encode where

unit = Encode (λx → [])
plus = Encode (λx → case x of Inl l → O : encode l

Inr r → I : encode r)

138 R. Hinze, J. Jeuring and A. Löh

pair = Encode (λx → encode (outl x) ++ encode (outr x))
datatype descr iso

= Encode (λx → encode (from iso x))
char = Encode (λx → encodeChar x)
int = Encode (λx → encodeInt x)

Most of the cases are familiar – just read the method definitions as type cases.
To encode an element of an arbitrary data type, we first convert the element
into a sum of products, which is then encoded. That said it becomes clear that
GM uses the same structure types as Generic Haskell. The function from is the
record selector from of the data type · ↔ · introduced in Section 2.2.

That’s it, at least, as far as the generic function is concerned. Before we can
actually compress data to strings of bits, we first have to turn the types of the
to-be-compressed values into representable types. Consider as an example the
type of binary leaf trees.

data BinTree a = BTLeaf a | BTBin (BinTree a) (BinTree a)

We have to show that this type is representable. To this end we exhibit an
isomorphic type built from representable type constructors. This is the familiar
structure type of BinTree, denoted BinTree◦.

type BinTree◦ a = (Constr a) :+: (Constr ((BinTree a) :*: (BinTree a)))

The main work goes into defining two mappings, fromBinTree and toBinTree,
which certify that BinTree a and its structure type BinTree◦ a are indeed isomor-
phic.

fromBinTree :: BinTree a → BinTree◦ a
fromBinTree (BTLeaf x) = Inl (Con x)
fromBinTree (BTBin l r) = Inr (Con (l :*: r))

toBinTree :: BinTree◦ a → BinTree a
toBinTree (Inl (Con x)) = BTLeaf x
toBinTree (Inr (Con (l :*: r))) = BTBin l r

The Con constructor just marks the position of the original data constructors
BTLeaf and BTBin . The isomorphism is then used to turn BinTree into a rep-
resentable type.

instance (Rep a) ⇒ Rep (BinTree a) where
rep = datatype ("BTLeaf" ./ 1 .| "BTBin" ./ 2) -- syntax

(EP fromBinTree toBinTree) -- semantics

The operator ./ turns a constructor name and an arity into a constructor de-
scription, and the operator .| combines two alternatives into a data description,
see Figure 4. The declaration rep specifies the syntax – name and arity of the
constructors – and the semantics – the structure – of the tree data type. Such a

2. Comparing Approaches to Generic Programming in Haskell 139

declaration has to be provided once per data type and is used for all instances
of generic functions on that data type.

For reference, Figure 4 lists the definition of the class Generic (g is the type
of a generic function).

class Generic g where

unit :: g Unit
plus :: (Rep a,Rep b) ⇒ g (a :+: b)
pair :: (Rep a,Rep b) ⇒ g (a :*: b)
datatype :: (Rep a) ⇒ DataDescr → a ↔ b → g b
char :: g Char

int :: g Int
list :: (Rep a) ⇒ g [a]
constr :: (Rep a) ⇒ g (Constr a)

list = datatype ("[]" ./ 0 .| ":" ./ 2) (EP fromList toList)
constr = datatype ("Con" ./ 1) (EP arg Con)

data DataDescr = NoData

| ConDescr{name :: String, arity :: Int}
| Alt {getl :: DataDescr, getr :: DataDescr}

infix 2 ./
infixr 1 .|
f ./ n = ConDescr{name = f , arity = n }
d1 .| d2 = Alt {getl = d1, getr = d2}

newtype Constr a = Con{arg :: a}

Fig. 4. The class Generic.

Function decode. The definition of decodes follows exactly the same scheme.

newtype Decodes a = Decodes{applyDecodes :: Parser a}

decodes :: (Rep a) ⇒ Parser a
decodes = applyDecodes rep

instance Generic Decodes where

unit = Decodes (λbs → [(Unit , bs)])
plus = Decodes (λbs → bitCase (mapP Inl decodes)

(mapP Inr decodes)
bs)

pair = Decodes (λbs → [(x :*: y, ds) | (x , cs) ← decodes bs
, (y, ds) ← decodes cs])

datatype descr iso
= Decodes (λbs → mapP (to iso) decodes bs)

char = Decodes (λbs → decodesChar bs)
int = Decodes (λbs → decodesInt bs)

140 R. Hinze, J. Jeuring and A. Löh

It is worth noting that Haskell’s overloading resolution automatically determines
the instance types: we just call decodes rather than decodes{|t|}.

The function decode can easily be defined in terms of decodes .

decode :: (Rep a) ⇒ [Bit] → a
decode a bs = case decodes a bs of

[(x , [])] → x
→ error "decode: no parse"

Note that the class context only records that decode depends on some generic
function. This is in sharp contrast to DTC where the context precisely records,
on which overloaded function(s) decode depends: (Binary a) ⇒ [Bit] → a.

Function eq. The definition of eq is straightforward.

newtype Equal a = Equal{applyEqual :: a → a → Bool}

eq :: (Rep a) ⇒ a → a → Bool
eq = applyEqual rep

instance Generic Equal where
unit = Equal (λx1 x2 → True)
plus = Equal (λx1 x2 → case (x1, x2) of

(Inl a1, Inl a2) → eq a1 a2

(Inr b1, Inr b2) → eq b1 b2

→ False)
pair = Equal (λx1 x2 → eq (outl x1) (outl x2) ∧ eq (outr x1) (outr x2))
datatype descr iso

= Equal (λx1 x2 → eq (from iso x1) (from iso x2))
char = Equal (λx1 x2 → x1 x2)
int = Equal (λx1 x2 → x1 x2)

Function map. The function map cannot be defined using the Generic class
that we have employed for encode and decode . Rather, we need a new tailor-
made class Generic2 that allows us to define generic functions whose type is
parametrized by two type arguments (see Section 2.5). The definition is then
very similar to what we have seen before.

newtype Map a1 a2 = Map{applyMap :: a1 → a2}

instance Generic2 Map where

unit = Map (λx → x)
plus a b = Map (λx → case x of Inl l → Inl (applyMap a l)

Inr r → Inr (applyMap b r))
pair a b = Map (λx → applyMap a (outl x) :*: applyMap b (outr x))
datatype iso1 iso2 a

= Map (λx → to iso2 (applyMap a (from iso1 x)))
char = Map (λx → x)
int = Map (λx → x)

2. Comparing Approaches to Generic Programming in Haskell 141

Using frep, the representation of types of kind ! → !, we can define a generic
version of Haskell’s fmap.

fmap :: (FRep f) ⇒ (a1 → a2) → (f a1 → f a2)
fmap f = applyMap (frep (Map f))

Function show. To implement show we have to access the syntax of data con-
structors. To this end, we extend shows ′ by an additional argument of type
DataDescr that provides information about the syntax of the to-be-printed value.
This argument is initialized to NoData, because initially we have no information.

shows :: (Rep a) ⇒ a → ShowS
shows = shows ′ NoData

In the datatype case, which signals that the current argument is an element
of some data type, we use the first argument of datatype as the new syntax
description.

newtype Shows′ a = Shows ′{applyShows ′ :: DataDescr → a → ShowS}

shows ′ :: (Rep a) ⇒ DataDescr → a → ShowS
shows ′ = applyShows ′ rep

instance Generic Shows′ where

unit = Shows ′ (λd x → showString "")
plus = Shows ′ (λd x → case x of Inl l → shows ′ (getl d) l

Inr r → shows ′ (getr d) r)
pair = Shows ′ (λd x → shows (outl x)

· showChar ’ ’
· shows (outr x))

char = Shows ′ (λd x → showsChar x)
int = Shows ′ (λd x → showsInt x)
list = Shows ′ (λd x → showsl shows x)
datatype descr iso

= Shows ′ (λd x → shows ′ descr (from iso x))
constr = Shows ′ (λd x → if arity d 0 then

showString (name d)
else

showChar ’(’ · showString (name d)
· showChar ’ ’ · shows (arg x)
· showChar ’)’)

The implementation of shows ′ has a special case for lists which are converted to
Haskell list syntax, with brackets and commas. The helper function showsl does
the main work.

showsl :: (a → ShowS) → ([a] → ShowS)
showsl p [] = showString "[]"

142 R. Hinze, J. Jeuring and A. Löh

showsl p (a : as) = showChar ’[’ · p a · rest as
where rest [] = showChar ’]’

rest (x : xs) = showChar ’,’ · p x · rest xs

Function update. An implementation of update requires an extension of the
class Generic, which means that one has to modify the source of the library. An
alternative approach based on subclasses is described in a recent paper [84].

Evaluation

Structural dependencies. All lightweight approaches support the definition of
functions in the style of Generic Haskell. Type-indexed data types are out of
reach.

Using a different representation type in LIGD we can also define generic
functions that are indexed by first- or higher-order kinds (this is not detailed in
the original paper).

GM supports the definition of generic functions on types and type construc-
tors. For each brand of generic functions a tailor-made Generic class must be
used. Because of the class-based encoding the code looks somewhat different to
that of Generic Haskell. The difference is, however, only superficial.

Full reflexivity. LIGD is in principle fully reflexive. However, to support types
of arbitrary ranks, rank-n types are required.

GM is not fully reflexive: for different kinds we need different type represen-
tations. But it is possible to construct a family of incompatible GM implemen-
tations. Rank-n types are required in order to support types of higher kinds.
Furthermore, if one wants to use the convenience of the Rep class, one addition-
ally needs higher-order contexts; see the evaluation of SYB.

DTCs also share the limitations of class-based systems: higher-order contexts
are needed to apply generic functions to higher-kinded data types such as GRose.

Type universes. By changing the classes for type representations used in LIGD
and GM other type universes can be introduced and used. Since type represen-
tations are given by the user, they are very flexible.

DTCs support default cases, but otherwise the type universe is fixed.

First-class generic functions. In LIGD, a generic function is an ordinary poly-
morphic Haskell function of type Rep t → Poly t. As such it is first-class,
assuming that rank-n functions are supported.

Similarly, in GM a generic function is an ordinary polymorphic Haskell func-
tion of type (Rep t) ⇒ Poly t. Again, in a language with rank-n types, generic
functions are first-class citizens.

In DTCs, generic functions are tied to class methods. However, type classes
are not first-class citizens. Consequently, generic functions are not first class
either.

2. Comparing Approaches to Generic Programming in Haskell 143

Multiple type arguments. In both LIGD and GM a generic function may have
multiple type arguments. Derivable type classes may only abstract over a single
type argument.

Type system. All approaches are fully integrated into Haskell’s type system.

Type safety. All approaches are fully type-safe. A missing type-case in LIGD,
however, only generates a warning at compile-time. Depending on the complexity
of the ‘type’ patterns it may not be detected at all (in particular, if patterns
are used in conjunction with guards). In this case, we get a pattern-matching
failure at run-time. In GM a missing case branch issues a warning at compile-
time (about a missing method). Since instance declaration must be explicitly
provided, missing instances in DTCs are detected at compile-time.

The type of a generic function. The types are intuitive; we only have to prefix
a ‘Rep t →’ argument or a ‘(Rep t) ⇒’ context for LIGD and GM, respectively.
The types of member functions of DTCs are familiar to Haskell programmers.

Properties of generic functions. For all approaches, properties of a generic func-
tion can be stated and proven as in Generic Haskell.

Integration with the underlying programming language. All approaches are fully
integrated into Haskell. For DTCs, only the module Data.Generics need be
imported and the options -fglasgow-exts and -fgenerics must be passed to
the GHC.

In LIGD and GM the user has to specify the structure representation type
and the embedding-projection pair between the data type and the structure
representation type for every data type on which generic functions are used.

In DTCs, a generic function g, implemented in the class G, can be used on a
data type t by writing instance G t. No other data-type-specific code is needed.

Specialization versus interpretation. Representations of types are passed and
analyzed at run-time in LIGD. A generic function can be seen as an interpreter.
In GM, instances of generic functions are assembled at compile-time. In DTCs,
generic code is specialized for each instance.

Code optimization. In LIGD, the run-time passing of type representations incurs
a small overhead compared to Generic Haskell. For GM and DTCs the overhead
is similar to that of Generic Haskell. The code quality possibly depends a bit
more on GHC’s optimizer.

Separate compilation. All approaches support separate compilation.

144 R. Hinze, J. Jeuring and A. Löh

Practical aspects. The implementation of LIGD consists of a few dozen lines of
code (see Appendix A of the original paper), so it can be easily integrated into
one’s programs and also be adapted to one’s needs (for instance, if additional
type cases are required).

GM comprises three major implementations of generics and a few variations.
The approach is extremely light weight; each implementation consists of roughly
two dozen lines of Haskell code. It is less suited as a library (unless one makes
do with the predefined type cases), but it can easily be adapted to one’s needs.

The original DTCs proposal is partially implemented in GHC, the most pop-
ular compiler for Haskell. Names of constructors and labels cannot be accessed
in DTCs, so one cannot define a generic version of show or read . The docu-
mentation is integrated into GHC’s user guide (Section 7.11, “Generic classes”).
Error messages are usually good.

5 Conclusions and future work

In this section we draw conclusions from the evaluations in the previous sec-
tion. Using these conclusions, we try to answer the question we posed in the
introduction of these lecture notes: ‘How do you choose between the different
approaches to generic programming in Haskell?’ This question is a bit similar to
the question how you choose a programming language for solving a programming
problem. Answers to this question usually contain ‘religious’ aspects. We try to
avoid religion as much as possible, and answer the question in two ways. First,
we summarize the evaluations of the previous section, and draw conclusions
about the suitability of the different approaches for different generic program-
ming concepts. Second, to end on a positive note, for each approach we try to
give arguments why you would use it. Furthermore, we describe future work.

5.1 Suitability for generic programming concepts.

Figure 5 shows the results of our evaluations of the different approaches to
generic programming in Haskell. Such a presentation does not offer the possibil-
ity to make subtle distinctions, but it does give an overview of the evaluation
results. We use the following categories in this table:

++ : satisfies (almost) all requirements.
+ : satisfies the requirements except for some small details.
o : satisfies a number of requirements.
- : satisfies just a few of the requirements.
-- : does not satisfy the requirements.

The results are obtained by an informal translation of our evaluations into points
on this five-point scale.

2. Comparing Approaches to Generic Programming in Haskell 145

Structure Completeness Safe Info Integration Tools

GH ++ + ++ ++ ++ +
Clean o + ++ ++ ++ +

PolyP o - + + + -
SYB o + ++ + ++ +

DrIFT + o -- - + +

TH + + - - ++ o
LIGD o + ++ ++ ++ +
GM o + ++ ++ ++ +

DTCs o o ++ ++ ++ +

Fig. 5. Evaluation results for approaches to generic programming

Structure in programming languages. Generic Haskell allows the definition of
type-indexed functions with kind-indexed types, and type-indexed data type
with kind-indexed kinds. Since DrIFT and Template Haskell can generate any-
thing, they can also be used to generate type-indexed types. There is no support
(library, predefined constructs) for doing so, however. The other approaches only
allow the definition of type-indexed functions.

The type completeness principle. No approach truly satisfies the type complete-
ness principle.

SYB, GM, and DTCs suffer from the fact that higher-order contexts (not
implemented in Haskell) are needed to generate instances of generic functions on
higher-kinded data types. On the other hand, both SYB and GM allow higher-
order generic functions. Just as with classes, DTCs cannot represent higher-
order generic functions. Furthermore, DTCs cannot access constructor names,
which limits their usability a bit. LIGD allows higher-order generic functions
and generic functions on almost all data types definable in Haskell. However,
it is impossible to define the generic map function in LIGD and SYB. GM
allows higher-order generic functions, and the definition of generic map, but
needs different classes for different brands of generic functions.

Generic Haskell and Clean do not offer higher-order generic functions, but
generic functions work on almost any data type definable in the underlying
programming language, and defining the generic map function is no problem.
Higher orders do not really play a rôle in DrIFT and Template Haskell, and
DrIFT cannot handle higher-kinded data types. PolyP does not allow higher-
order generic functions either and only works for regular data types of kind
! → !.

Generic views in Generic Haskell allow defining generic functions for different
views on data types, which can be used to specify different type universes. LIGD
and GM allow very flexible sets of types on which generic functions can be
defined, and it is possible to define many type universes. Clean, PolyP, SYB,

146 R. Hinze, J. Jeuring and A. Löh

and DTCs have a fixed type universe. DrIFT and Template Haskell offer no
support for type universes.

Well-typed expressions do not go wrong. Generic Haskell, Clean, SYB, LIGD,
GM, and DTCs are type safe. PolyP does not complain about undefined arms,
but otherwise type checks generic functions. DrIFT offers no safety at all: a gen-
erated document can represent a completely bogus program. Template Haskell
offers very limited safety: splicing in code may lead to type errors.

Information in types. In Generic Haskell, Clean, PolyP, and LIGD types of
generic functions generally correspond to intuition, and there exists a theory
of generic functions by means of which properties for generic functions can be
proved. Proving properties of generic functions in SYB is hard because they
rely on properties of, possibly user-defined, instances of the classes Data and
Typeable .

In DrIFT all rules have the same type, namely Data → Doc, and it is virtually
impossible to prove anything about the functions represented by the documents.
The same holds for Template Haskell, although libraries for generic programming
defined in Template Haskell may allow to state and prove properties.

Integration with the underlying programming language. Generic Haskell, Clean,
SYB, Template Haskell, LIGD, GM, and DTCs are fully integrated with the
underlying programming language, where Clean, SYB, Template Haskell, LIGD,
GM, and DTCs don’t even need a separate compiler. PolyP can only deal with a
subset of Haskell. DrIFT has to be recompiled if a new generic function is added
to the rules.

To use a generic function on a new data type, almost no work is required in
Generic Haskell, Clean, PolyP, SYB, DrIFT, Template Haskell, and DTCs. In
the lightweight approaches LIGD and GM the structure representation type and
the embedding-projection pair between the structure representation type and
the original data type have to be supplied.

Tools. Generic Haskell, LIGD, GM, and DTCs do not do any optimization on the
generic code, but otherwise provide good error messages. Clean does optimize
the generated code, but provides no error messages. PolyP is not very actively
maintained anymore. SYB is shipped as a library of GHC, and is fully supported.
The latest versions of SYB have not been included yet in GHC, which means
that the current version still suffers from some of the limitations of previous
versions of SYB, in particular the limitation that generic functions cannot be
extended. DrIFT is maintained, but also provides no error messages. Template
Haskell is maintained, but the documentation is outdated, and error messages
are not always very helpful.

5.2 Why would I use this approach?

– Use Generic Haskell if you want to experiment with type-indexed functions
with kind-indexed types and/or type-indexed data types, in particular if you

2. Comparing Approaches to Generic Programming in Haskell 147

want to play with higher-kinded and/or nested data types. Generic Haskell
is probably the most expressive generic programming extension of Haskell.
A disadvantage of using Generic Haskell is that the generated code contains
quite a number of mappings from data types to structure types and back
again, and hence not as efficient as hand-written code might be.

– Use Clean if you want to use an approach to generic programming that is sim-
ilar to Generic Haskell, is fully integrated into its underlying programming
language, and generates nearly optimal code for generic functions. Clean does
not support the advanced features of Generic Haskell such as dependencies,
type-indexed data types, and default cases.

– Use PolyP if you want to define generic functions that use the recursive
structure of data types, such as a generalization of the foldr function on
lists, the catamorphism. Remember that PolyP only generates code for data
types of kind ! → !.

– Use Scrap Your Boilerplate if you want to manipulate a value of a large
abstract syntax at a particular place in the abstract syntax, and if you want
to have an approach to generic programming that is fully integrated in the
underlying programming language.

– Use DrIFT if you want a lot of flexibility in the way you generate code, or
if you want to format the code you generate in a particular way. Make sure
you don’t generate code on higher-kinded data types.

– Use Template Haskell if you want to experiment with different implementa-
tions of generic programming styles.

– Use the LIGD approach if you want to use a simple but expressive library
for generic programming, and your generic functions don’t have to work on
many different data types.

– Use Generics for the Masses if you want a fully Haskell 98 compatible library
that supports generic programming.

– Use Derivable Type Classes if you want (limited) Generic Haskell like generic
programming functionality fully integrated into the underlying programming
language. DTCs don’t support type-indexed data types, or higher-kinded
data types.

We distinguished three related groups between the nine approaches to generic
programming in Haskell described in these lecture notes:

– Generic Haskell and Clean.
– DrIFT and TH.
– Lightweight approaches: Lightweight Generics and Dynamics, Generics for

the Masses, and Derivable Type Classes.

PolyP and SYB form their own subcategories (but we might have placed PolyP2
in the lightweight approaches). The difference between Generic Haskell and Clean
is that Generic Haskell is more expressive and provides more features, whereas
Clean produces better code. The various lightweight approaches can be com-
pared as follows. GM and DTCs use classes for defining generic functions, so

148 R. Hinze, J. Jeuring and A. Löh

higher-kinded data types are out of reach for these approaches. DTCs auto-
matically generate the conversion functions for instances of generic functions,
something that has to be done by hand for LIGD and GM. Also, DTCs allow to
extend generic functions with new, type-specific cases without modifying already
existing code.

5.3 Future work

These lecture notes only compare approaches to generic programming in Haskell.
The only approaches to generic programming in Haskell we have not addressed
are Strafunski, Generic Programming, Now!, and several other new lightweight
approaches which have appeared only very recently (after the first drafts of these
lecture notes were written). Strafunski is rather similar to SYB, but has a more
combinator-like, point-free flavor. Generic Programming, Now! is described at
length, including a comparison to other approaches, in this volume.

We have yet to perform the same exercise for approaches to generic program-
ming in different programming languages.

Acknowledgements. We thank the participants of the 61st IFIP WG 2.1 meeting
for their comments on a presentation about this work. The participants of the
Spring School on Datatype-Generic Programming, Nottingham, April 2006 also
provided a number of useful suggestions. Jeremy Gibbons, Patrik Jansson, and
Ralf Lämmel carefully read a previous version of this paper, and suggested many
improvements.

References

1. Peter Achten, Marko van Eekelen, and Rinus Plasmeijer. Generic Graphical User
Interfaces. In The 15th International Workshop on the Implementation of Func-
tional Languages, IFL 2003, Selected Papers, volume 3145 of LNCS, pages 152–
167. Springer-Verlag, 2004.

2. Artem Alimarine. Generic Functional Programming - Conceptual Design, Imple-
mentation and Applications. PhD thesis, University of Nijmegen, The Nether-
lands, 2005.

3. Artem Alimarine and Rinus Plasmijer. A generic programming extension for
Clean. In Thomas Arts and Markus Mohnen, editors, The 13th International
Workshop on the Implementation of Functional Languages, IFL 2001, Selected
Papers, volume 2312 of LNCS, pages 168–186. Springer-Verlag, 2002.

4. Artem Alimarine and Sjaak Smetsers. Optimizing generic functions. In Dexter
Kozen, editor, Proceedings of the 7th International Conference on Mathematics
of Program Construction, MPC’04, volume 3125 of LNCS, pages 16–31. Springer-
Verlag, 2004.

5. Artem Alimarine and Sjaak Smetsers. Improved fusion for optimizing generics. In
Proceedings of 7th International Symposium on Practical Aspects of Declarative
Languages, PADL 2005, volume 3350 of LNCS, pages 203–218. Springer-Verlag,
2005.

2. Comparing Approaches to Generic Programming in Haskell 149

6. Thorsten Altenkirch and Conor McBride. Generic programming within depen-
dently typed programming. In Gibbons and Jeuring [27], pages 1–20.

7. Frank Atanassow, Dave Clarke, and Johan Jeuring. Scripting XML with Generic
Haskell. In Proceedings of the 7th Brazilian Symposium on Programming Lan-

guages, SBLP 2003, 2003. An extended version of this paper appears as ICS,
Utrecht University, technical report UU-CS-2003-023.

8. Frank Atanassow and Johan Jeuring. Customizing an XML-Haskell data bind-
ing with type isomorphism inference in Generic Haskell. Science of Computer
Programming, 65(2):72–107, 2007.

9. Lennart Augustsson. Cayenne — a language with dependent types. In Proceedings

of the ACM SIGPLAN International Conference on Functional Programming,
ICFP 1998, pages 239–250. ACM Press, 1998.

10. Roland Backhouse and Jeremy Gibbons. The EPSRC project on Datatype-
Generic Programming. http://web.comlab.ox.ac.uk/oucl/research/pdt/ap/
dgp/, 2003–2006.

11. Marcin Benke, Peter Dybjer, and Patrik Jansson. Universes for generic programs
and proofs in dependent type theory. Nordic Journal of Computing, 10(4):265–
289, 2003.

12. Richard Bird and Lambert Meertens. Nested datatypes. In Johan Jeuring, editor,
Proceedings of the 4th International Conference on Mathematics of Program Con-
struction, MPC’98, volume 1422 of LNCS, pages 52–67. Springer-Verlag, 1998.

13. Richard Bird and Ross Paterson. Generalised folds for nested datatypes. Formal
Aspects of Computing, 11(2):200–222, 1999.

14. Juan Chen and Andrew W. Appel. Dictionary passing for polytypic polymor-
phism. Technical Report TR-635-01, Princeton University, 2001.

15. James Cheney and Ralf Hinze. A lightweight implementation of generics and
dynamics. In Manuel Chakravarty, editor, Haskell ’02: Proceedings of the 2002

ACM SIGPLAN workshop on Haskell, pages 90–104. ACM Press, 2002.
16. Dave Clarke and Andres Löh. Generic Haskell, specifically. In Gibbons and

Jeuring [27], pages 21–48.
17. M. Clavel, F. Duran, and N. Marti-Oliet. Polytypic programming in Maude. In

Workshop on Rewriting Logic and its Applications 2000, 2000.
18. Robin Cockett and Tom Fukushima. About Charity. Yellow Series Report No.

92/480/18, Dep. of Computer Science, Univ. of Calgary, 1992.
19. Karl Crary, Stephanie Weirich, and J. Gregory Morrisett. Intensional polymor-

phism in type-erasure semantics. In Proceedings of the ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP 1998, pages 301–312. ACM
Press, 1998.

20. Alan Demers, James Donahue, and Glenn Skinner. Data types as values: polymor-
phism, type-checking, encapsulation. In Conference Record of POPL ’78: The 5th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 23–30. ACM Press, 1978.

21. C. Dubois, F. Rouaix, and P. Weis. Extensional polymorphism. In Conference
Record of POPL ’95: The 22nd ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, pages 118–129, 1995.
22. Jun Furuse. Generic polymorphism in ML. In Journées Francophones des Lan-

gages Applicatifs, January 2001.
23. Ronald Garcia, Jaakko Jarvi, Andrew Lumsdaine, Jeremy G. Siek, and Jeremiah

Willcock. A comparative study of language support for generic programming.
In OOPSLA ’03: Proceedings of the 18th annual ACM SIGPLAN conference on

150 R. Hinze, J. Jeuring and A. Löh

Object-oriented programing, systems, languages, and applications, pages 115–134.
ACM Press, 2003.

24. Jeremy Gibbons. Patterns in datatype-generic programming. In Jörg Striegnitz
and Kei Davis, editors, Multiparadigm Programming, volume 27, pages 277–289.
John von Neumann Institute for Computing (NIC), 2003. First International
Workshop on Declarative Programming in the Context of Object-Oriented Lan-
guages (DPCOOL).

25. Jeremy Gibbons. Datatype-generic programming. In Roland Backhouse, Jeremy
Gibbons, Ralf Hinze, and Johan Jeuring, editors, Generic Programming, Advanced

Lectures, LNCS. Springer-Verlag, 2006. This volume.
26. Jeremy Gibbons. Metamorphisms: Streaming representation-changers. Science

of Computer Programming, 65(2):108–139, 2007.
27. Jeremy Gibbons and Johan Jeuring, editors. Generic Programming, volume 243

of IFIP. Kluwer Academic Publishers, 2003.
28. Jeremy Gibbons and Ross Paterson. Parametric datatype-genericity. Unpublished

manuscript, 2006.
29. Paul Hagg. A framework for developing generic XML Tools. Master’s thesis,

Department of Information and Computing Sciences, Utrecht University, 2002.
30. Robert Harper and Greg Morrisett. Compiling polymorphism using intensional

type analysis. In Conference Record of POPL ’95: The 22nd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 130–141,
1995.

31. Ralf Hinze. A generic programming extension for Haskell. In Erik Meijer, editor,
Proceedings of the Third Haskell Workshop, Technical report of Utrecht Univer-
sity, UU-CS-1999-28, 1999.

32. Ralf Hinze. Functional pearl: Perfect trees and bit-reversal permutations. Journal
of Functional Programming, 10(3):305–317, 2000.

33. Ralf Hinze. Generic Programs and Proofs. 2000. Habilitationsschrift, Bonn
University.

34. Ralf Hinze. Polytypic values possess polykinded types. Science of Computer

Programming, 43(2-3):129–159, 2002.
35. Ralf Hinze. Generics for the masses. In Proceedings of the ACM SIGPLAN

International Conference on Functional Programming, ICFP 2004, pages 236–
243. ACM Press, 2004.

36. Ralf Hinze. Generics for the masses. Journal of Functional Programming, 16:451–
482, 2006.

37. Ralf Hinze and Johan Jeuring. Generic Haskell: applications. In Roland Back-
house and Jeremy Gibbons, editors, Generic Programming, Advanced Lectures,
volume 2793 of LNCS, pages 57–97. Springer-Verlag, 2003.

38. Ralf Hinze and Johan Jeuring. Generic Haskell: practice and theory. In Roland
Backhouse and Jeremy Gibbons, editors, Generic Programming, Advanced Lec-

tures, volume 2793 of LNCS, pages 1–56. Springer-Verlag, 2003.
39. Ralf Hinze, Johan Jeuring, and Andres Löh. Type-indexed data types. Science

of Computer Programming, 51(1–2):117–151, 2004.
40. Ralf Hinze, Johan Jeuring, and Andres Löh. Comparing Approaches to Generic

Programming in Haskell. Technical Report UU-CS-2006-022, Utrecht University,
2006.

41. Ralf Hinze and Simon Peyton Jones. Derivable type classes. In Graham Hutton,
editor, Proceedings of the 4th Haskell Workshop, 2000.

2. Comparing Approaches to Generic Programming in Haskell 151

42. Ralf Hinze and Andres Löh. Generic programming, now! In Roland Backhouse,
Jeremy Gibbons, Ralf Hinze, and Johan Jeuring, editors, Datatype-Generic Pro-
gramming, Advanced Lectures, LNCS. Springer-Verlag, 2006. This volume.

43. Ralf Hinze and Andres Löh. “Scrap Your Boilerplate” revolutions. In Tarmo
Uustalu, editor, Proceedings of the 8th International Conference on Mathemat-
ics of Program Construction, MPC’06, volume 4014 of LNCS, pages 180–208.
Springer-Verlag, 2006.

44. Ralf Hinze, Andres Löh, and Bruno C. d. S. Oliveira. “Scrap Your Boilerplate”
reloaded. In Philip Wadler and Masimi Hagiya, editors, Proceedings of the 8th
International Symposium on Functional and Logic Programming, FLOPS 2006,
volume 3945 of LNCS. Springer-Verlag, 2006.

45. Stefan Holdermans, Johan Jeuring, Andres Löh, and Alexey Rodriguez. Generic
views on data types. In Tarmo Uustalu, editor, Proceedings of the 8th Inter-

national Conference on Mathematics of Program Construction, MPC’06, volume
4014 of LNCS, pages 209–234. Springer-Verlag, 2006.

46. Gérard Huet. The zipper. Journal of Functional Programming, 7(5):549–554,
1997.

47. John Hughes. The design of a pretty-printing library. In Johan Jeuring and Erik
Meijer, editors, Advanced Functional Programming, volume 925 of LNCS, pages
53–96. Springer-Verlag, 1995.

48. Patrik Jansson and Johan Jeuring. PolyP — a polytypic programming lan-
guage extension. In Conference Record of POPL ’97: The 24th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 470–482.
ACM Press, 1997.

49. Patrik Jansson and Johan Jeuring. PolyLib – a polytypic function library. In
Workshop on Generic Programming, Marstrand, June 1998.

50. Patrik Jansson and Johan Jeuring. Polytypic data conversion programs. Science
of Computer Programming, 43(1):35–75, 2002.

51. Patrik Jansson, Johan Jeuring, and students of the Utrecht University Generic
Programming class. Testing properties of generic functions. In Zoltán Horváth,
editor, Proceedings 18th International Symposium on Implementation and Appli-

cation of Functional Languages, IFL’06, volume 4449 of LNCS. Springer-Verlag,
2007.

52. C. Barry Jay. Programming in FISh. International Journal on Software Tools for
Technology Transfer, 2:307–315, 1999.

53. C. Barry Jay. Distinguishing data structures and functions: the constructor cal-
culus and functorial types. In S. Abramsky, editor, Typed Lambda Calculi and
Applications: 5th International Conference TLCA 2001, Kraków, Poland, May

2001 Proceedings, volume 2044 of LNCS, pages 217–239. Springer-Verlag, 2001.
54. C. Barry Jay. The pattern calculus. ACM Trans. Program. Lang. Syst., 26(6):911–

937, 2004.
55. C. Barry Jay and Delia Kesner. Pure pattern calculus. In Peter Sestoft, editor,

Programming Languages and Systems. 15th European Symposium on Program-
ming, ESOP 2006, volume 3924 of LNCS. Springer-Verlag, 2006.

56. C.B. Jay, G. Bellè, and E. Moggi. Functorial ML. Journal of Functional Pro-
gramming, 8(6):573–619, 1998.

57. Johan Jeuring and Patrik Jansson. Polytypic programming. In John Launchbury,
Erik Meijer, and Tim Sheard, editors, Advanced Functional Programming ’96,
volume 1129 of LNCS, pages 68–114. Springer-Verlag, 1996.

58. Johan Jeuring and Rinus Plasmeijer. Generic programming for software evolution.
In Informal proceedings of the ERCIM workshop on Software Evolution, 2006.

152 R. Hinze, J. Jeuring and A. Löh

59. Oleg Kiselyov. Smash your boiler-plate without class and Typeable, 2006. Pub-
lished on the Haskell mailing list.

60. Pieter Koopman, Artem Alimarine, Jan Tretmans, and Rinus Plasmeijer. Gast:
Generic Automated Software Testing. In Ricardo Peña, editor, The 14th Inter-
national Workshop on the Implementation of Functional Languages, IFL 2002,
Selected Papers, volume 2670 of LNCS. Springer-Verlag, 2003.

61. Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical ap-
proach to generic programming. ACM SIGPLAN Notices, 38(3):26–37, 2003.
TLDI’03.

62. Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate with class: ex-
tensible generic functions. In Proceedings of the ACM SIGPLAN International
Conference on Functional Programming, ICFP 2005, pages 204–215. ACM Press,
2005.

63. Ralf Lämmel and Erik Meijer. Revealing the X/O impedance mismatch.
In Roland Backhouse, Jeremy Gibbons, Ralf Hinze, and Johan Jeuring, edi-
tors, Datatype-Generic Programming, Advanced Lectures, LNCS. Springer-Verlag,
2006. This volume.

64. Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate: reflection, zips,
and generalised casts. In Proceedings of the ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2004, pages 244–255. ACM Press,
2004.

65. Ralf Lämmel and Joost Visser. Typed Combinators for Generic Traversal. In
Proceedings of 4th International Symposium on Practical Aspects of Declarative
Languages, PADL 2002, volume 2257 of LNCS, pages 137–154. Springer-Verlag,
2002.

66. Bernard Lang. Threshold evaluation and the semantics of call by value, assign-
ment and generic procedures. In Conference Record of POPL ’77: The 4th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
227–237. ACM Press, 1977.

67. M.M. Lehman. Programs, life cycles and the laws of software evolution. Proc.
IEEE, 68(9):1060–1078, 1980.

68. M.M. Lehman and L.A. Belady. Program Evolution: Processes of Software
Change. Academic Press, London, 1985.

69. Karl J. Lieberherr. Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns. PWS Publishing Company, Boston, 1996.

70. Andres Löh. Exploring Generic Haskell. PhD thesis, Utrecht University, 2004.
71. Andres Löh, Dave Clarke, and Johan Jeuring. Dependency-style Generic Haskell.

In Olin Shivers, editor, Proceedings of the ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP 2003, pages 141–152. ACM Press, August
2003.

72. Andres Löh and Ralf Hinze. Open data types. In Michael Maher, editor, Pro-
ceedings of the 8th ACM-SIGPLAN International Symposium on Principles and

Practice of Declarative Programming, PPDP’06, 2006.
73. Andres Löh and Johan Jeuring (editors). The Generic Haskell user’s guide, Ver-

sion 1.42 - Coral release. Technical Report UU-CS-2005-004, Utrecht University,
2005.

74. Ian Lynagh. Typing Template Haskell: Soft Types. URL: http://web.
comlab.ox.ac.uk/oucl/work/ian.lynagh/papers/Typing_Template_Haskell:
_Soft_Types.ps, August 2004.

75. G. Malcolm. Data structures and program transformation. Science of Computer
Programming, 14:255–279, 1990.

2. Comparing Approaches to Generic Programming in Haskell 153

76. Conor McBride. Epigram: practical programming with dependent types. In
Varmo Vene and Tarmo Uustalu, editors, Advanced Functional Programming, vol-
ume 3622 of LNCS, pages 130–170. Springer-Verlag, 2005.

77. R. Milner. A theory of type polymorphism in programming. Journal of Computer

and Systems Sciences, 17:348–375, 1978.
78. E Moggi, Bellè, and C.B. Jay. Monads, shapely functors and traversals. In

M. Hoffman, Pavlović, and P. Rosolini, editors, Proceedings of the 8th Conference

on Category Theory and Computer Science, CTCS’99, volume 24 of Electronic
Lecture Notes in Computer Science, pages 265–286. Elsevier, 1999.

79. David R. Musser, Gillmer J. Derge, and Atul Saini. STL Tutorial and Reference

Guide, Second Edition: C++ Programming with the Standard Template Library.
Addison-Wesley, 2001.

80. Pablo Nogueira. Context-parametric polykinded types. In Ralf Hinze, editor,
Proceedings of the of the ACM SIGPLAN Workshop on Generic Programming

2006, pages 45–54. ACM Press, 2006.
81. Ulf Norell and Patrik Jansson. Polytypic programming in Haskell. In Implemen-

tation of Functional Languages, volume 3145 of LNCS, pages 168–184, 2004.
82. Ulf Norell and Patrik Jansson. Prototyping generic programming in Template

Haskell. In Dexter Kozen, editor, Proceedings of the 7th International Conference
on Mathematics of Program Construction, MPC’04, volume 3125 of LNCS, pages
314–333. Springer-Verlag, 2004.

83. Bruno C. d. S. Oliveira and Jeremy Gibbons. TypeCase: A design pattern for
type-indexed functions. In Andres Löh, editor, Proceedings Haskell Workshop.
ACM Press, 2005.

84. Bruno C. d. S. Oliveira, Ralf Hinze, and Andres Löh. Generics as a library. In
Henrik Nilsson, editor, Proceedings of the 7th Symposium on Trends in Functional

Programming, April 19–21, 2006, Nottingham, UK, 2006.
85. OMG. Corba. http://www.omg.org/corba/.
86. Simon Peyton Jones et al. Haskell 98, Language and Libraries. The Revised

Report. Cambridge University Press, 2003. A special issue of the Journal of
Functional Programming.

87. A.L. Powell. A literature review on the quantification of software change. Tech-
nical Report YCS 305, Computer Science, University of York, 1998.

88. Fermı́n Reig. Generic proofs for combinator-based generic programs. In Hans-
Wolfgang Loidl, editor, Trends in Functional Programming, volume 5. Intellect,
2006.

89. Stephen A. Schuman. On generic functions. In Stephen A. Schuman, editor, First
IFIP WG 2.1 Working Conference on New Directions in Algorithmic Languages

1975, pages 169–192. IRIA, 1975.
90. Tim Sheard. Generic programming in Ωmega. In Roland Backhouse, Jeremy

Gibbons, Ralf Hinze, and Johan Jeuring, editors, Datatype-Generic Programming,
Advanced Lectures, LNCS. Springer-Verlag, 2006. This volume.

91. Martijn de Vries. Specializing type-indexed values by partial evaluation. Master’s
thesis, Rijksuniversiteit Groningen, 2004.

92. P. Wadler. Theorems for free! In Functional Programming Languages and Com-

puter Architecture, FPCA ’89, pages 347–359. ACM Press, 1989.
93. Philip Wadler. How to replace failure by a list of successes. In Proceedings con-

ference on Functional programming languages and computer architecture, FPCA

’85, pages 113–128, New York, NY, USA, 1985. Springer-Verlag New York, Inc.
94. M. Wallace and C. Runciman. Heap compression and binary I/O in Haskell. In

2nd ACM Haskell Workshop, 1997.

154 R. Hinze, J. Jeuring and A. Löh

95. David A. Watt. Programming Language Design Concepts. John Wiley & Sons,
Ltd, 2004.

96. Stephanie Weirich. Higher-order intensional type analysis. In D. Le Métayer, ed-
itor, Proceedings of the 11th European Symposium on Programming, ESOP 2002,
volume 2305 of LNCS, pages 98–114. Springer-Verlag, 2002.

97. Stephanie Weirich. Replib: a library for derivable type classes. In Haskell ’06:
Proceedings of the 2006 ACM SIGPLAN workshop on Haskell, pages 1–12. ACM
Press, 2006.

98. Stephanie Weirich and Liang Huang. A design for type-directed programming in
Java. In Workshop on Object-Oriented Developments, WOOD 2004, 2004.

99. Noel Winstanley and John Meacham. The DrIFT manual. http://repetae.net/

~john/computer/haskell/DrIFT/, 1997–2005.
100. Hongwei Xi. Dependent types in practical programming. PhD thesis, Carnegie

Mellon University, 1998.

