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ABSTRACT

Producing high-quality code is essential for professionals working

on maintainable software. However, awareness of code quality is

also important for novices. In addition to writing programs meeting

functional requirements, teachers would like to see their students

write understandable, concise and efficient code. Unfortunately,

time to address these qualitative aspects is limited. We have devel-

oped a tutoring system for programming that teaches students to

refactor functionally correct code, focussing on the method-level.

The tutoring system provides automated feedback and layered hints.

This paper describes the results of a study of 133 students working

with the tutoring system. We analyse log data to see how they

approach the exercises, and how they use the hints and feedback to

refactor code. In addition, we analyse the results of a student survey.

We found that students with some background in programming

were generally able to identify issue in code and solve them (on

average 92%), that they used hints at various levels, and we noticed

occasional learning in recurring issues. They struggled most with

simplifying complex control flow. Students generally valued the

topic of code quality and working with the tutor. Finally, we de-

rive improvements for the tutoring system to strengthen students’

comprehension of refactoring.
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1 INTRODUCTION

Learning to program has been a major area of research for many

decades [22, 27]. Researchers have studied the mistakes that stu-

dents make [5], the misconceptions they have [25], and how we

could help them solve their mistakes and correct misconceptions

using various teaching approaches [33]. While a major goal is to

write code that is functionally correct, it is also important that the

code is understandable, concise and efficient. These aspects have

been receiving less attention, although we have noticed an increase

in studying the non-functional aspects of code.
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Studies have found numerous qualitative issues in student code [9,

10, 17]. If we assess students solely based on functional behaviour

through test cases, they might not see the importance of writing

high-quality code. However, at a certain point, students will have to

write larger programs together with other students, for which they

need to use and adjust existing code. The need to analyse and refac-

tor low-quality code will then become apparent. It is therefore vital

to introduce students to the concept of code quality, raise awareness

of its importance, and introduce them to code improvement in an

accessible way.

Unfortunately, it is well-known that universities and other learn-

ing institutes struggle to give each student the personal attention

and feedback they need, due to growth in enrolment figures and

limited staffingmeans [6]. Tools can give students some complemen-

tary support. We have designed a tutoring system for programming

that teaches students to refactor functionally correct programs. The

system focuses on method-level refactorings, such as rewriting a

complex expression, removing unneeded code, and replacing a lan-

guage construct by a more suitable alternative. The functionality of

the tutoring system is based on input from teachers and how they

would want students to rewrite their code, which we investigated

in an earlier study [18]. The system offers refactoring exercises: it is

the student’s task to rewrite functionally correct code. The student

can check the program against test cases to ensure it still works

correctly, and ask for hints with increasing detail if he or she does

not know how to proceed.

This paper describes the results of a study of 133 students work-

ing with the tutoring system. The students are more experienced

novices who have already taken programming courses before. We

analyse log data to find out how they use the system, and if they are

able to identify issues and rewrite the programs. We also describe

the results of a student survey on the tutor. We discuss the findings

on how students refactor and how the system can help them, as

well as future improvements and implications for its use.

The contributions of this work are: (1) a first exploration of how

students refactor code; (2) an analysis of the issues they struggle

with and which hints they need to deal with those issues; (3) insight

into how students value code quality.

This paper is organised as follows: Section 2 discusses related

work. Section 3 describes the tutoring system. Section 4 describes

the method. The results are shown in Section 5, and discussed in

Section 6. Section 7 concludes and describes future work.

2 BACKGROUND AND RELATEDWORK

2.1 Code quality in education

Our goal is to make students who already have some basic program-

ming knowledge aware of the qualitative aspects of their programs,

https://doi.org/10.1145/3428029.3428043
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and teach them how to refactor their programs to make them eas-

ier to understand, more efficient, with the best use of language

constructs. We define code refactoring as improving code step by

step while preserving its functionality [13]. We focus on single

methods and how to improve their directly observable properties

such as control flow, expressions, and choice of language constructs.

Layout, naming and commenting are outside our scope.

Maintaining high-quality code is a major topic in the field of

software engineering. There is evidence of the persistence of code

smells in large software systems (e.g. [29]). For programmers to

produce good code it is vital that they learn to be aware of flaws and

refactor code as soon as possible. We should therefore incorporate

this into our Computer Science curricula, which has not always

been done [4]. Kirk et al. [21] studied learning outcomes of 141

introductory programming courses, and found that for 71% of these

courses code quality is not part of the learning outcomes. For the

courses that do mention code quality in learning outcomes, it is

unclear what exactly is being taught.

Several studies investigated non-functional problems in student

code (e.g. [9, 10, 17]), from which we learn they are evident and

often remain unfixed. Studies showmixed results regardingwhether

students address issues, which is apparently more the case when

they are being assessed on it. In cases where they are not, issues

remain present (e.g. [17]).

2.2 Tutoring systems for programming

There has been a wealth of studies describing digital tools and en-

vironments that help students with learning programming [8, 20].

These tools enable students to learn whenever and wherever they

want, and alleviate teacher workload. Many of these systems sup-

port the student with (automated) feedback. Feedback is an essential

aspect in teaching [14, 28], having the potential to exert great influ-

ence on learning, assuming it is delivered in an appropriate manner.

Feedback can be summative (focused on the outcome) or formative,
the latter defined by Shute as ‘information communicated to the

learner that is intended to modify his or her thinking or behavior

for the purpose of improving learning’ [28]. While assessment tools

are mainly focussed on grading programs and giving summative

feedback on final submissions, (intelligent) programming tutors

help students during the stepwise process of solving exercises.

Intelligent Tutoring Systems (ITSs) have been studied exten-

sively for various domains [31]. VanLehn found that ITSs were

nearly as effective as human tutors [32]. ITSs have an inner loop,
giving stepwise hints and feedback, and updating the student model;

some ITSs also have an outer loop, selecting a suitable next task.

Focussing on the inner loop, several aspects are important for of-

fering feedback and hints [31]. A hint should preferably be given

when a student really needs it, but it can be tricky to predict and

control this. The suggested step should be analogous to what the

teacher would advise, but should also support the student if he or

she has already embarked on a certain solution path. The manifes-

tation of hints is often gradual: a general hint, followed by a more

descriptive hint, and finally a bottom-out hint, which is the actual

step to be taken. Feedback usually consists of simply indicating

correctness or incorrectness, and error-specific messages. For the

domain of programming, several ITSs have been developed that

offer features supporting both the inner loop and the outer loop [8].

These Intelligent Programming Tutors often teach a specific aspect

(such as recursion), or support building small programs.

2.3 Automated feedback on code quality

In a paper that describes the details of the design of our tutoring

system, we argue why professional code quality tools are unsuitable

for novice programmers [19]. One type of such a tool is the static

analyser that reports on violated issues in source code, which can

be run inside an IDE or standalone. Examples are PMD, Checkstyle,

SonarQube, and linters. Problematic for novices are the technical

terminology, and the possibly very long lists of reported issues

that are not always relevant in the context of novice programs.

Other types are refactoring tools and other code transformation

tools, often integrated in IDEs. These tools execute refactorings in

one step, giving little insight into the inner workings. Some IDEs

offer numerous code edits, often without a clear goal. Our tutoring

system aims to overcome these problems by offering a student-

friendly introduction to code refactoring, using understandable

language, and layered feedback for a selection of relevant issues.

Professional tools have been used in the context of education

though, and are surely relevant for the more experienced program-

mer [11, 24]. Jansen et al. [15] have used the Better Code Hub (BCH)

tool in education. This tool checks a codebase in GitHub against ten

software engineering guidelines, such as ‘write short units of code’

and ‘write code once’, finding some evidence of increased code

quality, although the opinions of students about the tool varied.

There are also systems analysing code quality specifically aimed

at students. FrenchPress [3] is an Eclipse plugin that checks Java

code for seven issues related to misuse of fields, the public modifier,

booleans, and loop control variables, and presents student-friendly

messages. It was used in a trial by around 45 students for four exer-

cises, with the result that between 36% and 64% self-reported that

they would change their code according to the feedback received.

The Style++ tool provides students with a report on style issues

such as commenting, naming and code size [1]. The tool has been

used and evaluated by a great number of students, but how students

use the tool has not been studied. The authors have seen an increase

in the quality of programs, but that could also be partly attributed

to the fact that submitted programs had to be approved by the tool.

WebTA [30] is a programming environment in which students

receive feedback continuously, including stylistic issues. Examples

most related to our system are useless language constructs, and

declaring variables or resources inside a loop. We cannot derive

from the paper how feedback is presented to students, and the effect

of using the tool has not been measured yet. The Java Critiquer [26]

points students to quality problems in their code. We could not find

a study on student use.

AutoStyle [7] gives stepwise, data-driven feedback on how to

improve the style of correct programs, consisting of teacher-written

hints on clustered programs and automatic hints on features that

could be added or removed. An experiment with students using

the system has shown improvements, especially in recognising

good coding style, but students also still struggled with improving

code [35]. AutoStyle is different from our tool because it relies

on historical student data, which has the disadvantage that this
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Figure 1: Web application for the tutoring system.

data is not always available, and requires teachers to write hints

beforehand. Moreover, different from the AutoStyle studies, we

have performed a quantitative study of log data on how students

approach code improvements at the method level. We are not aware

of any other such study.

3 THE REFACTOR TUTOR

This section describes the tutoring system for refactoring. The

target audience are students (typically CS majors) who already

know the basics of programming (control structures, loops, arrays,

methods, etc.). The system offers exercises in which a problem

specification and a functionally correct, but problematic program

is given. The student’s task is to improve (refactor) the program to

make it more concise, efficient, and understandable.

Fig. 1 shows the web interface of the system. To implement the

code editor we used the open source Ace editor
1
, which supports

syntax highlighting, automatic indentation, highlighting matching

parentheses, code folding, and more. The student has two ways to

ask for feedback during programming: check progress and get

hints. The check progress button checks the current status of

the program, resulting in one of the following diagnoses:

• Expected. The system recognises a step, see Fig. 2a.

• Correct. The submitted program is functionally correct, but

the system does not know what has been done.

• Similar. Nothing has changed, or the student went back to

the previous state after doing an incorrect edit.

• Buggy. The system recognises a known incorrect step.

• Failed test case. The functionality of the programhas changed.

The first failed test case is shown, see Fig. 2b.

• Compiler error. The system detects an unsupported lan-

guage construct or a syntax error, showing the number of

errors and the first Oracle Java compiler error message.

For the first three diagnoses (dealing with a correct program) the

system also shows how many improvements are left (see Fig. 2a).

The get hints button generates hints for the current program

state, after checking that the program is still correct by executing a

progress check in the background. If it is not correct, the diagnosis

is shown, otherwise hints are generated. The system presents hints

1
ace.c9.io/

(a)

(b)

(c)

Figure 2: (a) Feedback acknowledging a correct step and an

indicator of the number of improvements left, shown after

clicking the check progress button. (b) Error message for

a failed test case. (c) Partly collapsed hint tree.

in a tree structure, of which the first option is shown by default.

The student can expand a hint (by clicking explain more) to get

a more detailed hint, or click on another hint to get a different

hint. An example of a partly collapsed hint tree is shown in Fig. 2c.

The hints the system gives are based on rules, derived from

teacher suggestions for a set of imperfect student programs, col-

lected in our earlier study that investigated how teachers would

give feedback on improving code [18]. Other rules are based on

other studies [9, 36], a subset of rules from professional static anal-

ysis tools considered suitable for novices, and equality rules from

arithmetic and logic. The system also contains some ‘buggy rules’

that describe common mistakes. The system, its motivation, design,

and example sessions are described in more detail elsewhere [19].

The system can be accessed online
2
, and consists of a web-based

interface and a backend that processes JSON requests and replies

with JSON responses. All requests and responses are logged in a

database: retrieving the exercises, loading an exercise, checking

progress, asking for hints, and expanding a hint. The current state

of the code is attached to the requests. Two teachers and a TA tested

the system before the experiment. It offers six refactoring exercises

with varying difficulty. The programs contain between two and

four quality issues at the start, see Table 1. These issues correspond

to the rules described earlier. Some issues become apparent after

dealing with initial issues. Certain issues reappear in a later exercise,

sometimes in a slightly different way. The last exercise (exercise 6)

has no starting code, only a description of its functionality and a set

of test cases. Feedback and hints are available for all exercises, and

are generated dynamically for the student code. Listings 1–2 show

the start code and description for the first two exercises. Exercise

2 is taken from another study [23], exercise 1 and 6 are from the

Codingbat website
3
, and exercise 3, 4 and 5 are our own.

2
www.hkeuning.nl/rpt

3
www.codingbat.com/java

ace.c9.io/
www.hkeuning.nl/rpt
www.codingbat.com/java
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Table 1: The issues that appear (•) or may appear later (◦) in

the exercises.

Ex1 Ex2 Ex3 Ex4 Ex5

Expressions
Simplify boolean expression - • • - -

Use compound operator • - • • -

Optimise calculation - • - - -

Remove self-assign • - • - -

Improve odd/even check • - - - -

Branching
Remove duplication - • - - -

Remove useless else if - - • - •

Remove empty statement ◦ - ◦ - -

Extract from if else - - - • -

Loops
For to foreach • • - - -

For to while - - - - •

Exit loop early - - ◦ - ◦

Replace loop by calculation - - - • -

4 METHOD

Our research questions are:

RQ1 How do students solve refactoring exercises? Which steps

do they take, and which mistakes do they make?

RQ2 When do they ask for a hint? For which issues do they need

hints? How do they respond to a hint?

RQ3 What do students think about working with a refactoring

tool?

We conducted an experiment at Windesheim University of Ap-

plied Sciences in the Netherlands in the week of 14 October 2019.

This week was the final week of the term for (mostly) second-year

IT-students specialising in Software Engineering, who were all

doing a C# programming course. A minority of the students are

specialising in other fields, such as embedded systems or business

IT. All students had followed at least two previous programming

courses: web programming in PHP, and object-oriented program-

ming in Java. The course assumes the programming knowledge

from these courses, in which all basic language constructs (variables,

branching, loops, methods, object-oriented concepts, etc.) are dis-

cussed. The C# course transfers to the C# language, first discussing

the C# equivalents for known language constructs, and then han-

dling more advanced topics such as delegates and events, generics,

LINQ, functional programming constructs and unit testing.

The course was taught by four different lecturers in seven groups

of approximately 25 students. One of the researchers is a colleague

of these lecturers. The experiment lasted one hour, in which the

lecturer and one researcher were present. All students worked with

the system. We did not offer a pre- and post-test for this study,

because we want to focus on how students use the tool, how they

respond to feedback and hints, and how they edit the code.

The experiment consisted of three parts: the first 15 minutes

were used to introduce the topic of code quality, to demonstrate

the tool, and to explain the experiment. The students were asked

to fill in a form to provide consent for using their data, and to

give some general information such as age, gender and previous

knowledge. All students were given a unique ID to login to the

system. If they did not give consent to use their data, they could log

in anonymously and still do the exercises. In the next 30 minutes the

students individually worked on six exercises on their own laptop.

The students received an information sheet with some notes on

how the system works, and the Java syntax for certain language

constructs supported by the system. The system’s interface and its

feedback is in English. This is not the students’ native language,

but the students use other English study material as well. The

researcher helped with questions on how the tool works, but not

with questions on how to solve the exercises. The students were

also asked not to consult other students. The final 15 minutes were

spent to fill in a short survey with questions about their experience

with the system. The survey had three Likert-scale questions and

three open questions.

After the experiment the log database was cleaned by removing

records from anonymous IDs and IDs that did not give consent. We

also removed activity from outside the 30minutes of the experiment,

extended with an overrun of 10 minutes. We checked the dataset for

abnormal activity and removed log sequences with more than 50

identical actions per minute. We suspect some of those sequences

are not from the user interface, but were fired by a script.

Because the number of program states in this study is large, we

performed an automated analysis. To check whether our system

correctly identifies programs as ‘ready’, we manually inspected a

random subset of 10% of the ready end states for each exercise.

5 RESULTS

In total 143 students (of around 200 enrolled, and some who had to

retake the course) attended the experiment, of which 135 students

gave consent to use their data, and 8 did not. For 1 of the 135

students that gave consent we could not find log data, and all

records from 1 student were removed due to abnormal behaviour

(an excessive number of requests), resulting in 133 students for the

analysis. The students produced 12,254 log entries. The main events

are summarised in Table 2.

The students were between 17 and 31 years old (average 20.5,

median 20, 1 student did not provide age). A total of 86% identified

as male, 8% as female, and 5% did not provide their gender. All

but 1 student attended the web programming course and 130 (98%)

passed. All but 4 students attended the Java programming course

and 122 (92%) passed. Of all students, 10% reported they had no

programming experience besides school, 60% had a little, 13% had

a lot, and 23% had experience from a previous education. A total of

122 students (92%) are in their second study year and have chosen

a software engineering profile, 2 students (2%) are retaking the

course, and 9 students (7%) are IT students with a different profile

that are taking the course as part of an elective minor.

5.1 Solving exercises (RQ1)

Fig. 3 shows the number of students who started and completed

the exercises. We only include attempts for an exercise with at least

one action (such as check or hint request). We define ‘ready’ as

the system not having any hints left, ‘gave up’ as performing at

least one action, but not dealing with all issues and moving on to a

new exercise, and ‘time up’ as working on the exercise when the

experiment stopped. For ‘gave up’ we also calculated the number
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Table 2: Summary of tutor events, between parentheses the

number of unique students.

Exercise Startups Diagnoses Generated

hint trees

Hint ex-

pansions

1 Even 228 (133) 1537 (133) 205 (97) 122 (53)

2 SumValues 222 (133) 2539 (133) 456 (112) 573 (99)

3 OddSum 167 (123) 1329 (118) 261 (86) 226 (59)

4 Score 120 (103) 775 (97) 121 (51) 88 (30)

5 Double 93 (76) 402 (69) 55 (27) 26 (10)

6 HaveThree 75 (60) 376 (44) 18 (11) 14 (6)

Total 905 6958 1116 1049

0 20 40 60 80 100 120 140

Ex6

Ex5

Ex4

Ex3

Ex2

Ex1

Ready GaveUp0 GaveUp1 GaveUp2 GaveUp3+ TimeUp

Figure 3: For each exercise the number of students that

solved all issues (green), did not solve all issues and contin-

uedwith another exercise (yellow/orange/red, depending on

the number of open issues), andwereworking on an exercise

when their time was up (blue).

Figure 4: For each exercise a boxplot showing the distribu-

tion of the number of diagnoses per student.

of hints remaining for the last known and valid program state.

The first two exercises were started by all students, with a gradual

decline for the subsequent exercises. In total 52% of the students got

to exercise 5, and exercise 6 was attempted by only 33%, although

45% started it. This is probably due to the fact that students had

to write code from scratch in exercise 6. We exclude exercise 6 in

the remainder of this paper, because of its different nature, and

low number of students that attempted it. Exercise 2 and 3 have by

comparison the most students that did not complete it.

Table 3: Time on task.

Exercise Min Max Mean Median

1 Even 1:33 17:55 7:06 6:44

2 SumValues 1:38 27:34 10:12 9:33

3 OddSum 1:54 16:15 6:41 6:23

4 Score 1:11 14:06 4:41 4:14

5 Double 1:05 13:45 3:49 3:20

Figure 5: For each exercise the distribution of diagnoses.

Table 3 shows for each exercise how much time students spent

working on them, excluding timeups. Students worked at least

between 1 and 2 minutes on all exercises. They spent on average

most time on exercise 2.

Next we zoom in on the diagnoses students received while work-

ing on the exercises. A diagnosis is calculated when a student clicks

on check progress, but also when a student asks for a hint, be-

cause hints are only generated once the current program state is

functionally correct. Again, we only include sessions in which the

student has performed at least one action. We exclude timed-out

sessions because their diagnose count would not be representative

for a full session. Fig. 4 shows how many diagnoses a student re-

ceives, which varies per exercise with a median between 4 and 17.

We manually inspected some of the outlier sessions, in which we

often noticed a large number of identical error diagnoses given

in a short time frame, giving the impression that the student kept

clicking the button again and again.

Fig. 5 shows the distribution of the various diagnoses. Table 4

shows the diagnoses with a functionally correct result, and Table 5

the diagnoses with a problematic result. For exercises 1 to 4 we see

a fair amount of expected (a single recognised step) diagnoses in

relation to correct diagnoses (multiple or unknown steps resulting

into a correct program). This is much less the case in exercise 5.

Failed test was a major category (22%) of the problematic diag-

noses for exercise 2. Failed test can be an actual test case failing, the

inability to execute a test because a student changed the method

header, or some other runtime error such as a suspected infinite

loop. Compiler errors are also pervasive. Note that one compiler er-

ror instance might consist of multiple compiler errors. The number

of compiler errors is the largest in the first exercise, which could

be attributed to getting used to the Java syntax. We also noticed

students using language constructs unsupported by our tutoring
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Table 4: For each exercise the total number of diagnoses for

functionally correct solutions, and between parentheses the

number of unique students receiving that diagnosis.

Exercise Expected Correct Similar

1 Even 152 (98) 382 (132) 367 (115)

2 SumValues 213 (103) 307 (120) 700 (116)

3 OddSum 172 (93) 349 (113) 388 (98)

4 Score 107 (61) 214 (92) 185 (62)

5 Double 5 (3) 107 (63) 114 (44)

Total 6580 1359 1754

Table 5: For each exercise the total number of problematic

diagnoses.

Exercise Failed

Test

Compiler

error

Unsup-

ported

Other

1 Even 140 (45) 361 (101) 4 (3) 131 (46)

2 SumValues 567 (108) 226 (82) 22 (19) 63 (28)

3 OddSum 233 (68) 158 (71) 0 (0) 29 (16)

4 Score 157 (46) 92 (48) 1 (1) 19 (9)

5 Double 53 (27) 108 (44) 6 (3) 9 (5)

Total 1150 945 33 251

system, such as the ?: ternary operator (shorthand for an if), other

unusual operators, and calling library methods.

The ‘other’ category are diagnoses that were less clear, and con-

tained some internal errors caused by bugs. Students using con-

structs such as return sum+=1 and if(x=1) with assignments in

(boolean) expressions received messages that should have been

clearer: the system dealt with these constructs insufficiently. We

also noticed that students often (mostly in the first exercise) mixed

a foreach with standard array indexing, causing an error message

not suitable for the actual problem. We explain the ‘buggy’ category

for exercise 2, accounting for 17% of the diagnoses, in Section 5.2.2.

5.2 Hint seeking (RQ1 and RQ2)

Fig. 6 shows per exercise how many hints students have seen, in-

cluding the top-level hint of the initial hint tree, and hint expansions

and alternatives. We exclude timed-out sessions and sessions with

no activity. The most hints were seen for exercise 2, with a median

of 7.5. The medians for the other exercises are at most 2, but there

are quite some outliers with students viewing many more hints.

The last three exercises show a decreasing number of hints.

Next, we focus on the individual exercises to investigate which

hints were shown and if students were able to solve issues with

or without help. We exclude students whose time was up for a

particular exercise. Tables 6 and 7 show the main hints for exercises

1 and 2, and are discussed in detail in the next subsections. Recurring

issues (sometimes in a slightly different manifestation) are indicated

with a ⟳. Issues that might come up later during the exercise are

marked with a⋆. For these later issues we only look at students who

received a hint for it. Some other issues that came up incidentally

because of undesirable student edits (for which hints are generated

dynamically) are omitted from the tables and analysis.

Figure 6: For each exercise a boxplot showing the distribu-

tion of the number of hints seen per student.

5.2.1 Exercise 1. Table 6 shows the main hints associated with

exercise 1, organised in the tree structure in which the hints were

shown to the students. All hints in this table are known issues and

form the complete hint tree generated for the start program. The

table shows the number of students that have seen the hint, and

how many students have solved the issue. The issue for which most

hints were generated is replacing the for-loop by a foreach-loop,

which was seen by 61% of the students. Almost a third of those

students expanded that hint to see the code example. Some students

did not make this change to the code in the end. A total of 43% of

the students saw the hint on rewriting the even check, for which

more than half expanded to see more detail, and almost a third of

those saw the code example. A small number of students did not

solve the issue. Most students removed a self-assignment statement

and used a compound operator without help.

Manual inspection of 10% of the ready programs confirmed that

all issues were dealt with, although one student used +=1 instead of
++ and one program contained an unnecessary declaration, some-

thing the system cannot detect yet. The most common failed test

case was often caused by replacing the statement count=count
by return count, which is a curious misconception. We also saw

some students using values[i]%2==2, which can never be true.

5.2.2 Exercise 2. Table 7 shows the main hints for exercise 2, with

which students struggled more. Most of the main hints were seen

by more than half of the students, except replacing the for-loop by

a foreach-loop. This was a recurring issue that, compared to the

previous exercise, twice as many students changed without seeing

a hint. In particular, students struggled a lot with the duplicated

addition. More than two thirds of the students viewed some hint

on this topic, and the majority of those students clicked all the way

through to the code example. Those students were most likely (88%)

to deal with the issue, but in the end only 75% of all students did.

The system contains a ‘buggy rule’ related to merging the two

conditions for adding the array value (lines 5–12), which detects the

common mistake of incorrectly combining the conditions, resulting

in the code below:

if (positivesOnly && values[i] >= 0) {

sum += values[i];

}

else {

sum += values[i];

}
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Listing 1: Start code for exercise 1.

1 int countEven(int [] values) {

2 int count;

3 count = 0;

4 for (int i=0; i < values.length; i++)

5 {

6 if (values[i] % 2 != 1) {

7 count = count + 1;

8 }

9 else {

10 count = count;

11 }

12 }

13 return count;

14 }

Description: The countEven method returns the

number of even integers in the values-array.

Example test case: {1,2,3,4,5} returns 2. You don’t

have to deal with negative numbers.

The solution is already correct, but can you im-

prove this program?

Listing 2: Start code for exercise 2.

1 int sumValues(int [] values ,

2 boolean positivesOnly) {

3 int sum = 0;

4 for (int i=0;i < values.length;i++) {

5 if (positivesOnly == true) {

6 if (values[i] >= 0) {

7 sum += values[i];

8 }

9 }

10 else {

11 sum += values[i];

12 }

13 }

14 return sum;

15 }

Description: The sumValues method adds up

all numbers from the values-array, or only the

positive numbers if the positivesOnly boolean

parameter is set to true.

Example test case: calling sumvalues with {1,2,3,4,-

5} and true returns 10.

Our system confused students by reporting the name of this issue

(‘buggycollapseif’) instead of an informative message. Excluding

timed-out sessions, we counted 415 diagnoses of this issue for 80

students, who saw the message between 1 and 40 times with a

median of 3. 49 (61%) students solved the issue, which is lower than

the 75% of all students. Showing an explanatory message probably

helps understanding what went wrong, and increases the number

of students solving the issue.

Table 6: Hints seen and solved for exercise 1 (n=132). The ‘solved by’ column cal-

culates the percentage based on the ‘seen by’ column.

Type of the most detailed hint seen Seen by Solved by Total solved

Replace for by foreach-loop (line 4-12)
No hint 52 (39%) 49 (94%)

}
121 (92%)Top-level hint 54 (41%) 48 (89%)

→ Code example 26 (20%) 24 (92%)

Rewrite the even check using ==0 (line 6)
No hint 75 (57%) 73 (97%) }

128 (97%)

Top-level hint 19 (14%) 19 (100%)

→ Detailed hint 26 (20%) 25 (96%)

→ Code example 11 (8%) 10 (91%)

Remove useless else with self-assign (line 9-11)
No hint 119 (90%) 118 (99%) }

130 (98%)

Top-level hint 6 (5%) 5 (83%)

→ Detailed hint 4 (3%) 4 (100%)

→ Code example 3 (2%) 3 (100%)

Use the compound ++ operator (line 7)
No hint 124 (94%) 123 (99%) }

130 (98%)

Top-level hint 4 (3%) 4 (100%)

→ Detailed hint 2 (2%) 2 (100%)

→ Code example 2 (2%) 1 (50%)

Table 7: Hints seen and solved for exercise 2 (n=126). * We do not calculate total

solved for incidental issues, because not all students had to deal with them.

Type of the most detailed hint seen Seen by Solved by Total solved

Remove duplication by simplifying ifs (line 5-12)
No hint 35 (28%) 26 (74%) }

94 (75%)

Top-level hint 10 (8%) 5 (50%)

→ Detailed hint 12 (10%) 2 (17%)

→ Code example 69 (55%) 61 (88%)

Boolean expression issues
No hint 43 (34%) 40 (93%)

Top-level hint 14 (11%) 13 (93%)

→ Detailed hint for remove == true (line 5) 11 (9%) 11 (100%)
}
123 (98%)

→ Code example 0 (0% ) –

→ Detailed hint for complex expression ⋆ 5 (4%) 4 (80%)
}
n.a.*

→ Code example 54 (43%) 51 (94%)

Use > to avoid useless calculations (line 6)
No hint 47 (37%) 43 (91%) }

114 (90%)

Top-level hint 23 (18%) 18 (78%)

→ Detailed hint 18 (14%) 17 (94%)

→ Code example 38 (30%) 36 (95%)

Replace for by foreach-loop (line 4-13) ⟳
No hint 113 (90%) 99 (79%)

}
109 (87%)Top-level hint 5 (4%) 4 (80%)

→ code example 8 (6%) 6 (75%)

Many students also saw some hint on improving a boolean

expression, such as removing ==true, which most students did

without a hint. Another issue in this category that came up during

refactoring, was simplifying a complex expression, usually appear-

ing after merging the two conditions for adding the array value.

Students probably used the code example from the duplication

hint, which first showed the disjunction of the two cases. Most stu-

dents needed the code example to see how the expression could be
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simplified, which involved applying logic rules. Of all students, 63%

saw the hint on using > instead of >=, often also expanding to the

code example. Students that only saw the top-level hint were least

likely to address the issue. In the end 90% changed the operator.

Manual inspection of 10% of the ‘ready’ programs revealed that

two students chose an alternative solution by always adding a value

to the sum, and either setting that value to 0 in certain cases, or

later subtracting the value if it should not have been added. We

have seen this type of solution in teacher solutions as well, and it

would be a good candidate to discuss its pros and cons. In two cases

the >= was still present, but should have been detected, and one of

those cases still contained the duplication in a different construct.

The other 5 programs contained no issues.

5.2.3 Exercise 3 to 5. We only discuss notable observations from

exercises 3 to 5, which were attempted by fewer students. The

extensive analysis and descriptions for these exercises can be found

in a PhD thesis [16].

For exercise 3, the issue not dealt with by the largest number of

students (8) was removing a useless check in the else-if part of an

if-else. All but one of the students that saw a hint for that issue fixed

it, and for half of those students the top-level hint was sufficient.

The code for exercise 3 contained multiple recurring issues, such

as a useless else with a self-assignment similar to the code for

exercise 1. However, a slightly smaller percentage (95% versus 98%)

dealt with it. A possible reason for this might be that the code for

exercise 3 was much more complex, distracting from these useless

lines of code. However, we also observe that the top-level hint was

more often helpful compared to exercise 1. The ==false is also

changed less often than the ==true from exercise 2, but that might

be because this change is slightly more difficult. The compound

operator += hint was seen by 50% of the students, which could also

be due to the fact that this hint appeared early in the ordering of

hints. Students asked for various levels of detail, and managed to

use the operator in all but 2 cases. We expect that students are less

familiar with this operator than the more common ++ operator.
Exercise 3 contains a loop that can terminate once -1 is seen in an

array, on which hints are given once all clutter has been removed.

Of all students, 38% have seen a hint for this. The system offers two

alternative solutions, of which the first (adding the stop-variable

to the condition of the loop) has been seen by more students than

the second (directly checking if the current array value contains -1

in the loop condition). The majority of students seeing these hints

have also dealt with the issue.

Manual inspection of 10% of the ‘ready’ programs showed that

all issues were dealt with, except some issues with exiting from

the loop once -1 was seen. Some students used a return or break:

a good alternative to the system’s suggestions. In a few of those

cases the stop variable was maintained, which is unnecessary. One

student used a foreach while maintaining a counter for skipping

even indices: we consider converting this into a buggy rule.

The start code for exercise 4 contains an unnecessary for-loop

that can be replaced by a simple calculation. Almost half of the

students saw the top-level hint for this exercise, and quite a few

also requested the code example. All of these students managed to

replace the loop. The code also contained an if-else statement with

the same code at the end of both the if-part and the else-part, which

can be moved after the if-else. Around a quarter of the students

viewed the hint, of which the majority needed more detail. Only one

student did not fix it despite the hints. The recurring compound -=
operator was now replaced more often than in the previous exercise,

and a much smaller percentage needed a hint for this issue.

The start code for exercise 5 contains a recurring issue: the use-

less check in the else-if that also appeared in exercise 3. Here a

larger percentage of students solved it, and the same percentage

viewed a hint, but only 1 student requested more detail. Earlier

exercises suggested to use a foreach instead of a regular for-loop,

whereas this exercise suggests using a while because of the un-

known number of iterations and the more complex stop condition.

In the end, 87% changed the loop.

5.3 Student evaluation (RQ3)

All 133 students filled in a survey after the tutoring session. They

answered ‘what do you think about paying attention to code quality’

on a 5-point Likert scale ranging from ‘not important at all’ to ‘very

important’. 24% answered very important, 67% important and 9%

neutral. 3% of 131 students found the exercises very easy, 14% easy,

68% neutral, 15% difficult, and 0% very difficult. 13% found the hints

very useful, 64% useful, 13% neutral, 3% not useful, and 0% not

useful at all. Ten students answered that they did not use the hints.

The remaining subsections discuss the responses to the questions

‘what did you like about the system’ and ‘what would you want to

see different in the system’ in four different categories.

5.3.1 Learning about code quality. Multiple students said some-

thing like ‘fun’, ‘challenge’ and ‘good initiative’. Four students com-

mented on the topic of code quality and its importance. One student

wrote: ‘Code quality is one of the most important things in a team.

It should be stimulated more and the tool helps with that’. More

than 40 students said something they liked about what they learned

from working with the system, such as ‘That you can see that the

code looks simpler when you changed something and it is correct’.

Several students used the phrase ‘making you think’, such as ‘It

lets you think about solutions that you normally wouldn’t think

of’. Three students mentioned as an improvement that it would be

useful to better explain what the benefit is of a certain suggestion.

5.3.2 Hints and feedback. About 48 students positively mentioned

the hints and feedback the system gives. Most comments were about

the usefulness and clarity of the hints. Six students appreciate that

hints can be gradually revealed and do not give away the solution

straight away: ‘Often, the first was sufficient’ and ‘Hints only point

in the right direction, so you’ll come upwith improvements yourself,

unless you really can’t’. Multiple students like the fact that they can

track progress by seeing how many improvements can be made.

There are some issues with the feedback, which seems to be the

case for a few specific instances, such as the ‘buggy if collapse’

(discussed in 5.2.2). Other students said the feedback could have

been clearer, which was mentioned more often for error messages

than for hints. Some students suggested to improve the feedback, for

example by clearly indicating the location of errors. Students also

pointed out some unexpected behaviour (‘Errors where there should

not be an error’). We also suspect some students were confused by

Java compiler messages, a known and persistent problem [2].
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5.3.3 User interface. A total of 28 students mentioned the user

interface in a positive way, mentioning its simplicity, usability and

speed, or simply that it worked well. 22 students were unhappy

that the current state for an exercise is not saved, so they lose their

progress if they go to another exercise or accidentally leave the page.

9 students expressed their satisfaction with the code editor and its

syntax highlighting, code formatting and useful shortcuts. The

responses also contain suggestions for improving the editor (auto-

completion, underlining syntax errors similar to what IDEs do),

and multiple suggestions about improving the interface in general

(smoother transition between exercises, undo/redo functions).

5.3.4 Exercises. 11 students particularly mention the exercises in

a positive way: clear and not too big. 9 students would like to see

some changes: 3 found some exercises unclear and the others all had

their own requests, such as more (variety in) exercises and difficulty

levels. 7 students would like to see C# support (or other languages),

which they were mostly using at that time. 4 students requested

support for features such as functions and ternary operators.

6 DISCUSSION

This section revisits the research questions and discusses our find-

ings (6.1), reflects on the implications for teaching code refactoring

(6.2), and discusses threats to validity (6.3).

6.1 Student refactoring behaviour

How do students solve refactoring exercises? Which steps do they
take, and which mistakes do they make? (RQ1). The students man-

aged quite well to solve refactoring exercises. However, because

exercise 2 showed signs of struggle, fewer students completed the

exercises after the second. On average, 92% of the quality issues that

were present at the start were dealt with. Students regularly used

the Check diagnosis function, which we view positively because

a central aspect of refactoring is to maintain functional behaviour.

The proportion of expected diagnoses shows that students also

regularly took small steps. Compiler errors and failed tests are still

pervasive, even though the students started with functionally cor-

rect code. We want to decrease the number of failed tests by adding

more buggy rules to provide specific feedback on incorrect steps.

For the first few exercises, the majority of the students saw at least

one hint. In the subsequent exercises, fewer students saw hints.

When do they ask for a hint? For which issues do they need hints?
How do they respond to a hint? (RQ2). The majority of the students

regularly requested hints. For all issues in the code that were known

at the start, on average 34% received a hint (mean 22%). It varied

per issue whether a student expanded the hint to get more detailed

information. Even though some researchers warn against providing

progressive hints ending with the correct answer [28], we did not

see negative effects of this. We told students to just ask for the hints

when needed, and noticed from the data that they requested hints

at various levels. For only a few complex issues the bottom-out hint

was also the most requested. The fact that the participants were

second-year students might have contributed to this behaviour.

Students had no problem with simple edits, such as using com-

pound operators and removing self assignments, but did have trou-

ble with complex control flow (nested if statements and breaking

out of a loop) and composed expressions. Professional static analy-

sis tools usually do not flag these more algorithmic issues, showing

the need for educational tools that provide support for these issues.

For recurring issues we see progress in some cases. More students

managed to solve them, or needed a hint with less detail. Not in all

cases we noticed an effect, which could be due to a different context

and the student’s inability to transfer what they had done before.

What do students think about working with a refactoring tool?
(RQ3). We noticed a positive attitude towards code quality, which

might be expected from students in their second year that have

chosen the software engineering profile. They found the level of

the exercises appropriate for the amount of time and their skills.

Overall, the students positively evaluated the system, and consid-

ered the hints to be useful. Some bugs and unclear (error) messages

understandably confused them. These negative experiences might

have caused resistance to the system. Making students aware and

letting them think about code quality instead of just writing code

to meet the requirements of an assignment seems to be a valuable

effect of using the tool. However, from the feedback we also learn

that discussing the improvements the tool suggests is important.

6.2 Teaching code refactoring

Students can solve refactoring exercises, and from their comments

we derive it has made them think about a topic they think is im-

portant, but normally do not spend much time on. We think better

results can be obtained by accompanying the tool with instruc-

tions on code quality, and discussing the suggestions of the tool

afterwards. A few students mentioned they disagreed with cer-

tain ‘improvements’. We might discuss the nature of the various

refactorings, varying from stylistic, such as using the compound

operator *=, to more algorithmic. We should warn that the system

might introduce them to language constructs that they might not

have encountered yet. For example, using foreach instead of a for-

loop, if possible, has benefits and can protect the programmer from

accidentally doing something unwanted. We want to incorporate

this in the tool, and make it part of the programming instruction.

Research on using educational code quality tools with students

is scarce. Wiese et al. [35] gave an experimental group feedback

from their AutoStyle tool, and a control group only a quality metric

(the ABC-metric [12]). Both groups took a pre-test and a post-test,

and the authors described some case studies of particular student

types. Because their students started out with their own code, and

our study focusses more on how students worked in the tutor, we

cannot directly compare results. However, both studies support

the potential for using these kinds of systems, the call for more

in-depth help for students, and more studies evaluating the results.

6.3 Threats to validity

The system contained some bugs, which confused some students

and might have slowed down their progress. Because the students

were learning a different programming language at the time of the

experiment, they probably needed time to recall Java syntax.

The granularity of the log data is at snapshot-level, which is

in between submission-level and key-stroke-level, as identified by

Vihavainen et al. [34]. The snapshots were recorded when students

did a check or hint request, implying that we do not have detailed
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information on all of their steps, and our analysis could have missed

relevant edits that were undone before taking an action. Solving

an issue is measured by calculating hints for subsequent program

states, and determining the differences. Some issues might be solved

in unexpected ways for which our system does not generate a hint,

which could mean in some cases there was no actual improvement.

Another threat to validity is that fewer students worked on the

last few exercises, which are probably the ‘better’ students. This

could cause an overestimation on how well students performed

on these exercises, and would explain the fact that fewer students

received hints for these exercises. The novelty of a new tutoring

system could also have an effect on the enthusiasm of the students.

7 CONCLUSION AND FUTUREWORK

This paper describes the results of an exploratory study of log data

from students working on refactoring exercises, and the students’

personal experiences thereof. The students worked on six exercises

in which they had to improve imperfect example solutions. All

participants had at least a basic background in programming, and

were mostly able to do the exercises, with regular checks to verify

correctness. However, they struggled with complex control flow.

The students regularly requested hints, at various levels of detail.

After seeing a hint about a particular issue, most students solved the

same issue without a hint when they encountered it again. Overall,

students valued the topic of code quality and working with the

system, but also proposed valuable enhancements.

These results contribute to focussing the attention of teachers

and tool designers, by incorporating the discussion of refactoring

rules in education (in particular those related to complex expres-

sions and control flow), paying attention to alternative language

constructs, and providing feedback at various levels to meet the

needs of individual students. We will continue to improve and val-

idate the system with students to make them more aware of the

quality of code and the importance of refactoring. We intend to

extend the ruleset and add more buggy rules. We also want to refine

feedback messages and hints with more explanations on why an

edit is useful. Support for methods could present new opportunities

to improve code. After incorporating improvements, we intend

to conduct an experiment with a control group and experimental

group, and a pre- and post-test to determine learning gains. We

also want to study the effect of using different types of feedback.
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