
Chapter 1

Generic Programming for
Domain Reasoners
Johan Jeuring1, José Pedro Magalhães2, Bastiaan Heeren3

Category: Evaluation

Abstract: An exercise assistant is a tool that supports students learning proce-
dural skills, such as solving systems of linear equations, or rewriting a logic ex-
pression to disjunctive normal form. The domain reasoner is the component of
an exercise assistant that deals with tasks that depend on the semantics of a par-
ticular domain, for example the rules that may be applied, or the procedure that
should be followed when solving an exercise. An exercise assistant typically has
multiple domain reasoners, and the behavior of each of these is, to a large extent,
determined by the domain.

Generic programming techniques claim to reduce code duplication, to make
it easier to change the structure of data, and to provide implementations of many
useful functions on most datatypes. There are many libraries for generic program-
ming, all with different datatype support, expressiveness and ease of use. While a
lot of effort has been put into developing new libraries in the past few years, there
are few examples of real-life applications of generic programming. In this paper
we describe our experience with applying generic programming techniques to our
domain reasoners implemented in Haskell. We have used the Uniplate, Multirec,
and Regular generic programming libraries. We assess and compare the result-
ing generic domain reasoners with each other and with the initial, non-generic
version, using the software quality factors of the ISO 9126 international standard.

1Universiteit Utrecht and Open Universiteit, PO Box 80.089 3508TB Utrecht, The
Netherlands; johanj@cs.uu.nl

2Universiteit Utrecht, PO Box 80.089 3508TB Utrecht, The Netherlands;
jpm@cs.uu.nl

3Open Universiteit, PO Box 2960, 6401DL Heerlen, The Netherlands;
bastiaan.heeren@ou.nl

1

2 CHAPTER 1. GENERIC PROGRAMMING FOR DOMAIN REASONERS

1.1 INTRODUCTION

An exercise assistant helps a student with solving exercises, for example about
solving equations, or determining the derivative of a function. There exist hun-
dreds of exercise assistants, for many mathematical domains, logic, physics, etc.
An important part of an exercise assistant is the domain reasoner: a component
which tracks the steps the student takes, gives hints, diagnoses errors, records
progress, shows worked-out solutions, etc. The functionality of the domain rea-
soner fundamentally depends on the domain, the rules that hold for the domain,
and the strategies for solving exercises within the domain.

We have developed many domain reasoners. We have domain reasoners which
help with diagnosing student behavior in exercise assistants for calculating with
fractions, performing Gaussian elimination, solving systems of linear equations
and other linear algebra exercises, factoring polynomials, rewriting a logical term
to disjunctive normal form, rewriting relation algebra terms, developing (extended)
lambda-calculus programs, and determining the derivative or integral of a func-
tion [7, 8, 14, 17].

Our domain reasoners offer the functionality as described above as web ser-
vices [5]. Several exercise assistants, such as MathDox [4], ActiveMath [6], and
the Freudenthal digital mathematics environment [3], use our domain reasoning
web services. At the moment we develop and maintain our own domain reasoners,
but in the future we expect users of our services to add or adapt domains. Fur-
thermore, we are involved in two recently funded research projects about bridging
the knowledge gap in mathematics between secondary schools and universities:
Math-bridge (from the EU eContentPlus programme), and NKBW2 (from the
SURF Foundation, the Dutch higher education and research partnership organiza-
tion for ICT). For these projects we have to deliver a number of domain reasoners
each year.

The core components of a domain reasoner are:

• a description of the domain, consisting of an abstract syntax together with a
parser and a pretty-printer,

• rules with which expressions in the domain are manipulated. For example, for
the domain of logical expressions, the distribution rule x∨ (y∧ z) (x∨ y)∧
(x∨ z), De Morgan’s law ¬(x∨ y) ¬x∧¬y, etc.,

• and strategies for solving exercises in the domain. For example for rewriting
a term into disjunctive normal form: first remove boolean constants, implica-
tions and equivalences, then push negations inside, and finally move occur-
rences of ∨ upwards.

Additionally, for each domain we need functionality for unifying and rewriting
terms, generating exercises, traversing terms, determining the top-level equality
of two terms, etc.

To avoid reimplementing the same functionality for every domain, we have
used generic programming techniques [2] to implement rewriting, traversals, etc.

1.2. USING GENERIC PROGRAMMING 3

once and for all domains.
We have implemented our domain reasoners in Haskell. Initially we chose

Haskell because it is a language we feel comfortable in programming, and because
domain reasoners manipulate expression trees, at which Haskell is good. Later,
when we decided to make our domain reasoners generic, this turned out to be right
choice, since there are many approaches to generic programming in Haskell [10,
21]. Types (domains) play an important role in our software, and we also want
to use typed approaches to generic programming, which discards an approach
like DrIFT and other approaches based on meta programming or code generation.
The essential technology used in our domain reasoners is rewriting (together with
matching). When rewriting, we may apply any rewriting rule at any position
in a term. Of course, a rewriting rule can only be applied to a term within the
domain. It follows that we need to know which subterms of a term belong to the
domain again, which implies that we need to know the recursive structure of the
domain. There are only a few generic programming libraries in Haskell that give
the user access to the recursive structure of values: Uniplate [15], Regular [16] and
Multirec [20] in a straightforward way, and Scrap Your Boilerplate (SYB) [13] in a
rather cumbersome way (see the Uniplate module Data.Generics.PlateData which
implements Uniplate using SYB). We have three implementations of a generic
domain reasoner, one using Uniplate, one using Multirec, and one using Regular.

This evaluation paper discusses where and how generic programming tech-
niques impact in the quality of our software. To structure the discussion, we will
use the quality characteristics as used in the ISO 9126 [12] international standard
for the evaluation of software quality. When we discuss these characteristics, we
will give examples of how they play a role in our domain reasoners. We will com-
pare four versions of our domain reasoners: a version without generic program-
ming techniques and three versions using generic programming, one for each of
the Uniplate, Multirec and Regular libraries. We hope that our experience can be
used as a reference for other projects that consider using generic programming.

1.2 USING GENERIC PROGRAMMING

We have refactored our existing domain reasoners to split off components that
can be implemented by means of generic components. For example, the second
version of our first domain reasoner (2005–2006) implemented linear equations
using the following datatypes:

type Equations = [Equation]
data Equation = Expr :=:Expr
data Expr = Con Rational

| EVar String
| Expr :+: Expr
| Expr :−: Expr
| Expr :×: Expr
| Expr :/: Expr

4 CHAPTER 1. GENERIC PROGRAMMING FOR DOMAIN REASONERS

The domain reasoner contained functionality for rewriting linear equations and
mathematical expressions that are used in equations:

module EquationsRewriteAnalysis where
equationsRewrite = . . .
exprRewrite = . . .
equationsSubst = . . .
exprSubst = . . .

in a 449 line module. In our current domain reasoner, the domain of linear ex-
pressions does not contain specific functionality for rewriting and substitution
anymore. Instead, generic functions for rewriting and substitution are called when
the generic domain reasoner is used on linear expressions. The generic rewriting
and substitution functions themselves are implemented in terms of basic generic
functions such as fold, zip, crush and map [16]. All in all, the generic modules
for rewriting consist of 370 lines. The generic rewriting functionality is used on
all other domains as well.

There are several ways in which generic programming can be used in our
domain reasoners:

• To obtain instances of functions which naturally depend on the structure of the
data type, such as the rewriting function, but also basic functions like fold and
map.

• To use generic traversal functions to apply some function at a particular posi-
tion in a possible large value of a family of datatypes.

• To not have to adjust many functions when extending or redefining a domain.

We have used generic functions for all of these purposes.

1.3 GENERIC PROGRAMMING LIBRARIES

There are several libraries for generic programming in Haskell. These differ sub-
stantially in expressiveness, datatypes supported and usability. Recently, a de-
tailed comparison of generic programming libraries has been performed [19, 21].
We have used this comparison to choose a generic programming library.

1.3.1 Datatypes in the domain reasoners

Our domain reasoners currently represent several domains, such as logical expres-
sions, relation algebra and programming in a simple functional language. Each
domain is represented by one or more datatypes. To provide generic functionality
on a domain, we have to guarantee that the datatypes representing the domain can
be treated generically. Different libraries for generic programming have different
level of support for datatypes.

1.3. GENERIC PROGRAMMING LIBRARIES 5

Our datatypes have different levels of complexity. The domain of logical
expressions, for instance, is represented by a single, recursive, non-parametric
datatype:

data Logic = Logic :→: Logic -- implication
| Logic :↔: Logic -- equivalence
| Logic :∧: Logic -- conjunction (and)
| Logic :∨: Logic -- disjunction (or)
| Not Logic -- negation (not)
| Var String -- variables
| T -- true
| F -- false

The domains of relation algebra, programming and fraction simplification are rep-
resented by datatypes of similar complexity.

Our representation of general mathematical expressions uses lists:

data Expr = -- Numerical
Expr :+: Expr
| Expr :×: Expr
| Expr :−: Expr
| Negate Expr
| Con Integer

-- Fractional and floating
| Expr :/: Expr
| Sqrt Expr

-- Symbolic
| EVar String
| Sym String [Expr]

Due to their pervasiveness in Haskell, lists should be given a particular treatment
by the generic programming library. For instance, we expect the algebra for the
Sym constructor of the Expr datatype to have type

algSym ::String→ [r]→ r

This will not happen if, for instance, we treat the [Expr] occurrence as a constant
type.

The domain of systems of linear equations uses a family of parametric datatypes:

type LinearSystem = [Equation Expr]
data Equation a = a :==: a

We need the parametricity because we can represent equations of different kinds
of expressions.

The domain for polynomials uses an abstract datatype:

newtype Polynomial a = P (IntMap a)

6 CHAPTER 1. GENERIC PROGRAMMING FOR DOMAIN REASONERS

Using abstract datatypes increases effiency and conciseness of the code, but pre-
cludes the application of generic programming techniques.

The expressiveness of a generic programming library is orthogonal to its sup-
port for datatypes. Some libraries can express more generic functions than others.
For our domain reasoners, we need functionality such as rewriting, data genera-
tion, and folding. This clearly restricts our choice to libraries which have a notion
of the recursive structure of the datatypes: Uniplate, Regular and Multirec. We
have used each of these three libraries at different stages in our domain reasoners.
We will give a brief overview of each of the libraries and our reasons for using
them.

1.3.2 Uniplate

The Uniplate library [15] provides combinators for generic traversals. It is similar
in style to SYB, but simpler since it does not use rank-2 polymorphism. In the
simplified version we use for our domain reasoners, it consists of a single function
in a type class:

class Uniplate a where
uniplate ::a→ ([a], [a]→ a)

The uniplate function provides a way to access the immediate children of a term
(the first component of the result pair) and to rebuild a term using a list of replace-
ment children (the second component of the pair).

We used Uniplate as the first generic programming library in our domain rea-
soners. Its simplicity allowed for easy integration and implementation of function-
ality such as top-level equality and a form of rewriting. However, functionality
such as data generation or folding could not be expressed in Uniplate.

1.3.3 Multirec

Multirec [20] is a recently developed generic programming library. It has the
unique ability to represent mutually recursive datatypes in a fixed-point view,
therefore allowing the definition of generic folds in mutually recursive datatypes,
for instance. It is based on the representation of the pattern functor of a family of
types using type families. Consider a possible representation for the domain of
programming in a simple functional language:

data LExpr = Lambda String LExpr
| LVar String
| Apply LExpr LExpr
| Fix LExpr
| LInt Int
| Let Decl LExpr

data Decl = String :=LExpr

The pattern functor of this family of mutually recursive datatypes is given by:

1.3. GENERIC PROGRAMMING LIBRARIES 7

type instance PF AST =
(C Lambda (K String :×: I LExpr)

:+: C LVar (K String)
:+: C Apply (I LExpr :×: I LExpr)
:+: C Fix (I LExpr)
:+: C LInt (K Int)
:+: C Let (I Decl :×: I LExpr)

) :.: LExpr
:+: (C Assign (K String :×: I LExpr)

) :.: Decl

Also necessary are the conversion functions to and from the original datatypes
into the generic view:

instance Fam AST where
from LExpr (Lambda s e) = L (Tag (L (C (K s :×: I (I∗ e)))))
from . . .

to LExpr (L (Tag (L (C (K s :×: I (I∗ e)))))) = Lambda s e
to . . .

Our domain for functional programming does not currently use mutually recur-
sive datatypes, since we implement let bindings as syntactic sugar, but Multirec
allows them. We used Multirec in our second version of the generic domain rea-
soners to increase the expressiveness. With Multirec we can write generic folds
and datatype generation, as well as an improved rewriting mechanism. However,
Multirec cannot represent parametric datatypes such as Equation, or datatypes
with lists such as Expr (Section 1.3.1).4 This reduces the number of domains on
which we can use generic programming.

1.3.4 Regular

The Regular library is the underlying mechanism of the rewriting framework de-
scribed in [16]. It can be seen as a simplification of Multirec, representing a single
type at a time.

type instance PF Logic = C Impl (I :×: I) -- implication
:+: C Equiv (I :×: I) -- equivalence
:+: C Conj (I :×: I) -- conjunction (and)
:+: C Disj (I :×: I) -- disjunction (or)
:+: C Not I -- negation (not)
:+: C Var (K String) -- variables
:+: C T U -- true

4As we mentioned previously, we want to treat lists as a special case. We could repre-
sent a datatype with lists in Multirec by considering a (monomorphic) list datatype as being
part of the family, but this changes the semantics of the generic functions. For example,
the algebras for the fold become less natural.

8 CHAPTER 1. GENERIC PROGRAMMING FOR DOMAIN REASONERS

:+: C F U -- false

instance Regular Logic where
from (p :→: q) = L (I p :×: I q)
from . . .

to L (I p :×: I q) = p :→: q
to . . .

Regular does not support parametric datatypes or datatypes containing lists. How-
ever, we have investigated the possibility of changing the library to add support
for parameters [9] [Pedro: correct this citation] and functor composition (of which
datatypes with lists are a special case). Both extensions seem possible and do not
lead to much increased code complexity. After having used Multirec, we real-
ized our domain reasoners would benefit more from supporting parameters and
datatypes with lists than from supporting families. Moreover, the Regular library
is easier to use.

1.4 QUALITY CHARACTERISTICS

The ISO 9126 international standard introduces a quality model for the evaluation
of software quality. This model lists six characteristic areas of importance. We use
this set of characteristics to structure our discussion on the quality characteristics
of our domain reasoners.

Functionality We have split off several components from the individual domain
reasoners to be replaced by generic components. This has made it clear which
functionality is common to all domains, and which functionality is specific for a
particular domain. Examples of generic components are the fold function, func-
tions for rewriting and matching, functions for generating arbitrary terms, etc.
Splitting off generic components leads to an increased separation of concerns:
improvements in rewriting functionality are solved in the rewriting component,
and lead to improvements in rewriting for every domain. Furthermore, the func-
tionality of the generic components can now be used by other applications as well.
In addition to the generic components there is domain-specific functionality, for
example functionality for determining the semantics of an expression in the do-
main.

Our first generic variant of the domain reasoners used Uniplate for the generic
functionality. Uniplate allowed us to specify rewriting and traversals generically.
However, its simplicity limits its functionality. In Uniplate one cannot write
generic functions that build values from scratch. In both Multirec and Regular
we can write generic QuickCheck Arbitrary instances, which are used to generate
exercises and test data, whereas using Uniplate we cannot. Uniplate also cannot
define the generic fold, or even top-level equality. Both Multirec and Regular
support the definition of these functions.

1.4. QUALITY CHARACTERISTICS 9

Multirec supports families of (possibly mutually recursive) datatypes. We
have families of datatypes in some of our domain reasoners, but currently we do
not need access to the recursive structure of a family of types: in general, we can
focus on a single type and treat all the other occurring types as constants. For in-
stance, for the domain reasoner of systems of linear equations described in Section
1.3.1, we only have rewrite rules for the Equations, and not for LinearSystems.
However, having support for families of datatypes might be desirable in general.
We could describe our domain for simple functional programming by the LExpr
and Decl datatypes shown in Section 1.3.1. Neither Uniplate nor Regular can rep-
resent the rewrite rule for inlining in this domain, Let (x :=e) (LVar x) e, since it
requires matching of both expressions and declarations. Currently our domain for
simple functional programming deals with let declarations as syntactic sugar, and
we therefore do not need the above mutually recursive datatypes. Using Multirec,
however, would allow for such a change in the future.

However, the current version of Multirec has no support for type variables.
The domain reasoner for systems of equations uses parametrized datatypes, as
we have seen in Section 1.3.1. We expect support for parametric datatypes to be
available in Multirec soon, but for now we cannot use it on this particular domain
reasoner. For Regular, the extension necessary to support parametric datatypes is
more or less straightforward, and described in detail in [9].

Reliability The generic domain reasoners are more reliable than the original do-
main reasoners. One reason is that the generic domain reasoners make more use
of library code, which is generally more reliable than datatype-specific code. Fur-
thermore, the original domain reasoners contained some ad-hoc, and sometimes
dangerous, solutions, which have been removed in the generic domain reasoners.

An example of a dangerous solution is the way metavariables were introduced
and used in the original domain reasoners. To describe rewriting rules on the
domains, the variables of the domains themselves were used as metavariables.
This was implemented using a type class:

class MetaVar a where
metaVar :: Int→ a
isMetaVar ::a →Maybe Int

The instantiation for the domain of logic expressions, for instance, represented
metavariables as variables with a particular name:

instance MetaVar Logic where
metaVar n = Var ("_"++ show n)
isMetaVar (Var (’_’ : s)) | ¬ (null s) ∧ all isDigit s

= return (read s)
isMetaVar = Nothing

Other domains had similar instances. This led to the possibly dangerous situation
where a domain-level variable could be confused with a rewriting rule metavari-
able. Additionally, this only works for domains which have a notion of variables.

10 CHAPTER 1. GENERIC PROGRAMMING FOR DOMAIN REASONERS

The above solution is part of the domain reasoners that use Uniplate. Using
either Multirec or Regular, we represent metavariables at the generic structure rep-
resentation level. The type synonym Scheme t represents an alternative (indicated
by the sum :+:) between the t type and a metavariable:

type Scheme t = K MVar :+: PF t
type MVar = Int

The rewriting functions now operate on Scheme t instead of t, guaranteeing that
no metavariables can escape from the rewriting mechanism. Scheme t adds a new
case to the pattern functor of t, namely a constant case for integers. This also lifts
the restriction that the domain has to have some sort of variable constructor: every
type t for which we have a pattern functor can now be extended to Scheme t.

Usability From the perspective of a programmer who is adding a new domain,
customizing our domain reasoners is much easier using generic programming.
We only need to specify the abstract syntax for the domain and its semantics-
dependent operations (parsing and pretty-printing, rewriting rules, associative and
commutative operators, and the strategies). We get functionality such as folding,
top-level equality, rewriting with type-safe metavariable extension, traversals and
exercise generation for free.

With generic programming we also get a higher degree of composability. If
we have specified the domains of rationals, floats, and matrices, combining them
to obtain matrices of rationals or matrices of floats, with the correct set of rewrite
rules, requires no effort.

Efficiency Generic programs tend to be less efficient than their handwritten
counterparts. Compilers do not always perform the necessary optimizations to
remove the generic representation types and conversion functions from the com-
piled code. While this has been shown to be possible in at least the approach
of [1], in the general case it remains an open problem.

In [19] a simple benchmark of generic programming libraries is performed.
The two Uniplate functions tested are approximately 5 times slower than a hand-
written counterpart. For Multirec, performance varies from 1.7 to 47 times slower.
Rewriting in Regular was benchmarked in [16], revealing that it is, in general, 3
to 4 times slower than type-specific rewriting.

However, efficiency is generally not a problem for our domain reasoners.
Since the terms represent exercises to be worked with by humans, they tend to
be small. Hence, no penalty is noticeable for using any of the generic versions.
Nevertheless, this could pose a problem for other large applications, such as ab-
stract syntax tree traversals on compilers.

Maintainability Maintaining the code of the new domain reasoners is easier: not
only is there less code to maintain, but the code is also more clearly structured.
Initially we developed a naive generic Arbitrary generator that did not take term

1.4. QUALITY CHARACTERISTICS 11

size or constructor frequency into account. Later we improved the implementation
to take those into account. Since the generator is generic, it is only defined once,
and all the domains immediately benefit from the advantages. With handwritten
instances, we would have had to go through each domain implementing the same
improvement everywhere.

In particular, repetitive code fragments like Arbitrary and CoArbitrary in-
stances, folds, etc., lead to copy and paste programming which can give rise to
subtle bugs. By using generic functions we can move (and reduce) a lot of testing
to the generic programming library.

We looked at the number of lines of source code for defining the logic do-
main, together with essential functionality such as top-level equality, generation
of data and rewriting. This is a simple but representative way of comparing the
domain reasoners. The logic domain is not chosen because it is particularly suited
for improvement, but simply because it is one of our earlier domains, so we have
an non-generic domain reasoner for it. Our initial, non-generic version consisted
of 496 lines of code, including type-specific code for a zipper and handwritten
traversals over the domain. The Uniplate version, which used generic traversals
and rewriting, consisted of 282 lines of code. Using Multirec, we could remove
some remaining type-specific code for rewriting, and got the fold and data gener-
ation functions for free, reducing the total line count to 214, less than 50% of the
original line count. The reduction with Regular is exactly the same, since these
libraries have very similar characteristics. The number of lines of source code is
not necessarily a representative metric, but we think that in our case they faithfully
express the source code reduction we achieved. In general, a datatype with n con-
structors will be defined in n lines of code. Using Uniplate, we still had to write
the arbitrary, coarbitrary, top level equality, fold, and uniplate functions. Each of
these is generally defined by pattern-matching on the domain datatype, therefore
requiring n lines each. Additionally we had to define the MetaVar instance. With
Multirec or Regular, each of the functions which required n lines require one line
only, and there is no longer a MetaVar class. We only need to add 4 lines of code
to invoke the Template Haskell generation of generic representations.

Turning our tool into a generic program has also made the code in the tool
much more consistent. We had to be precise about our decisions in the generic
code, so that all generic functionality is conceptually exactly the same for the
different domains. Furthermore, there is now a single implementation for many
functions which previously had one implementation per domain.

The only negative implications in maintainability are, possibly, the increased
use of advanced Haskell programming techniques in the code. The initial version
of the domain reasoners was written by relatively inexperienced Haskell program-
mers. As the number of domains grew, maintenance of the project was handed
over to an experienced Haskell programmer, who introduced the generic version
using Uniplate. The version using Multirec would probably not have been pos-
sible without close contact with the library creators. For Regular we have had to
develop some features ourselves to increase the datatype suppport in the library.
We suspect that only a seasoned Haskell programmer with broad experience in

12 CHAPTER 1. GENERIC PROGRAMMING FOR DOMAIN REASONERS

generic programming can maintain our current domain reasoners. However, big-
ger programs become naturally more complex, and our domain reasoners now
offer much more functionality than in the initial version.

Nevertheless, care has to be taken to avoid proliferation of generics-related
code throughout the entire codebase. Multirec, for instance, introduces the con-
cepts of “family type” and “index type.” In most other generic programming li-
braries, there is a single generic type, like the a in Uniplate a. In Multirec, we have
Fam ϕ ix, with ϕ representing the family and ix a particular index on this family.
This causes propagation of parameters in type classes, and increases the overall
complexity of the code in the domain reasoners. For instance, instead of an exer-
cise on expressions (Exercise Expr), with Multirec we have an exercise on the ex-
pression type in the family of datatypes for expressions (Exercise ExprFam Expr).
However, for many domains, the family of datatypes contains a single type. There
is no additional generality but the family type has to be propagated through the
entire code. This reduces the overall readability and maintainability of the code.

Portability The original domain reasoners were developed in Haskell 98 [18],
which made the portability of the domain reasoners good. When we moved to
generic domain reasoners we first used an embedded implementation of Uniplate.
This implementation was a subset of the Uniplate package available on Hack-
ageDB which was entirely Haskell 98, so it did not influence portability. Then
we used Multirec and Regular, which introduce dependencies on a number of ad-
vanced extensions of Haskell (such as type families) only available in GHC, the
main compiler for Haskell. As a consequence, portability is worse.

1.5 CONCLUSIONS

The use of generic programming libraries in our domain reasoners has given us in-
creased functionality, reliability, usability, and maintainability. This is caused by a
clearer separation of concerns, decreased number of lines of code, higher compos-
ability and making it simpler to add a new domain. Using generic programming
possibly leads to worse performance, but this is not noticeable for users. Using
Multirec and Regular we depend on more language extensions and can only com-
pile with GHC.

We have also seen that using a simple generic programming library (Uniplate)
gave us a considerable improvement in our code quality, but it eventually became a
limitation in itself. The rewriting mechanism, for instance, required the domains
to have variables, and we could not write generic producers. Moving to more
complex generic programming libraries lifted these restrictions, but made us give
up on compiler portability.

We believe the use of generic programming and particularly Regular will also
enable us to improve the ease of use and functionality of the domain reasoners
further. We are currently looking into rewriting expressions taking into account
associativity and commutativity of (some) binary operators. This is useful for

1.5. CONCLUSIONS 13

two reasons: it reduces the number of rules of the domain5 and it simplifies rec-
ognizing application of rules to a term by the user. Since pretty-printed expres-
sions almost never contain unnecessary parentheses, a user is generally unaware
of associativity. For increased reliability in the traversals, we want to use the
generic zipper [11]. There is an implementation of a zipper for Multirec using
type-indexed datatypes through type families. This implementation can easily be
converted to Regular. This would replace the current untyped approach using a
list of integers to represent a location in a datatype. We also plan to look into
the generic selection problem in the exercise assistant: the user should be able to
select a subexpression and apply a rule to that part of the expression. Apart from
some domain-specific information regarding the way terms are pretty-printed and
which terms are selectable, this problem can also be solved with a generic algo-
rithm.

The use of generic programming techniques in our domain reasoners provides
us with a piece of software of better overall quality. The advantages clearly out-
weigh the disadvantages, and the effort invested into translating to a generic ap-
proach pay off when adding multiple new domains.

Acknowledgements This work has been partially funded by the Portuguese Foun-
dation for Science and Technology (FCT), via the SFRH/BD/35999/2007 grant,
and by the Netherlands Organisation for Scientific Research (NWO), through its
project on “Real-life Datatype-Generic Programming” (612.063.613). We would
like to thank Andres Löh for his help with using Multirec and Erik Hesselink for
his work on its extension. Alex Gerdes provided feedback on an early version of
this paper. Harrie Passier and Arthur van Leeuwen contributed to older versions
of the exercise assistants.

REFERENCES

[1] A. Alimarine and S. Smetsers. Optimizing generic functions. In D. Kozen and
C. Shankland, editors, MPC, volume 3125 of Lecture Notes in Computer Science,
pages 16–31. Springer, 2004.

[2] R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic programming—an
introduction. In AFP’98, volume 1608 of LNCS, pages 28–115. Springer, 1999.

[3] P. Boon and P. Drijvers. Algebra en applets, leren en onderwijzen (algebra
and applets, learning and teaching, in Dutch). http://www.fi.uu.nl/
publicaties/literatuur/6571.pdf, 2005.

[4] A. Cohen, H. Cuypers, E. Reinaldo Barreiro, and H. Sterk. Interactive mathematical
documents on the web. In Algebra, Geometry and Software Systems, pages 289–306.
Springer, 2003.

5Specifying x+0 x should be enough to express the neutral element of addition. The
extra rule 0+ x x should not be necessary.

http://www.fi.uu.nl/publicaties/literatuur/6571.pdf
http://www.fi.uu.nl/publicaties/literatuur/6571.pdf

14 CHAPTER 1. GENERIC PROGRAMMING FOR DOMAIN REASONERS

[5] A. Gerdes, B. Heeren, J. Jeuring, and S. Stuurman. Feedback services for exercise as-
sistants. In ECEL 2007: Proceedings of the 7th European Conference on e-Learning,
2008. Also available as Technical report Utrecht University UU-CS-2008-018.

[6] G. Goguadze, A. González Palomo, and E. Melis. Interactivity of exercises in Active-
Math. In International Conference on Computers in Education, ICCE 2005, 2005.

[7] B. Heeren and J. Jeuring. Recognizing strategies. In A. Middeldorp, editor, WRS
2008: Reduction Strategies in Rewriting and Programming, 8th International Work-
shop, 2008.

[8] B. Heeren, J. Jeuring, A. van Leeuwen, and A. Gerdes. Specifying strategies for
exercises. In S. Autexier et al., editor, MKM 2008: Mathematical Knowledge man-
agement, volume 5144 of LNAI, pages 430–445. Springer, 2008.

[9] E. Hesselink. To appear. Master’s thesis, Utrecht University, 2009.

[10] R. Hinze, J. Jeuring, and A. Löh. Comparing approches to generic programming in
Haskell. In Datatype-Generic Programming, LNCS 4719, pages 72–149. Springer,
2007.

[11] G. Huet. The zipper. JFP, 7(5):549–554, 1997.

[12] ISO/IEC. 9126-1:2001: Software engineering—product quality—part 1: Quality
model. Technical report, International Organization for Standardization, Geneva,
Switzerland, 2001.

[13] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical approach to
generic programming. In TLDI ’03, pages 26–37, 2003.

[14] J. Lodder, H. Passier, and S. Stuurman. Using IDEAS in teaching logic, lessons
learned. In CSSE 2008: International Conference on Computer Science and Software
Engineering, pages 553–556, 2008.

[15] N. Mitchell and C. Runciman. Uniform boilerplate and list processing. In Haskell’07,
2007.

[16] T. van Noort, A. Rodriguez Yakushev, S. Holdermans, J. Jeuring, and B. Heeren. A
lightweight approach to datatype-generic rewriting. In WGP ’08, pages 13–24. ACM,
2008.

[17] H. Passier and J. Jeuring. Feedback in an interactive equation solver. In M. Seppälä,
S. Xambo, and O. Caprotti, editors, WebALT 2006: Proceedings of the Web Advanced
Learning Conference and Exhibition, pages 53–68. Oy WebALT Inc., 2006.

[18] S. Peyton Jones et al. Haskell 98, Language and Libraries. The Revised Report.
Cambridge University Press, 2003. A special issue of JFP.

[19] A. Rodriguez. Towards Getting Generic Programming Ready for Prime Time. PhD
thesis, Utrecht University, 2009.

[20] A. Rodriguez, S. Holdermans, A. Löh, and J. Jeuring. Generic programming with
fixed points for mutually recursive datatypes. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming, ICFP 2009, 2009.

[21] A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and B. C. d. S. Oliveira.
Comparing libraries for generic programming in Haskell. In Haskell ’08, pages 111–
122, 2008.

	Generic Programming for Domain Reasoners
	Introduction
	Using generic programming
	Generic Programming libraries
	Datatypes in the domain reasoners
	Uniplate
	Multirec
	Regular

	Quality characteristics
	Conclusions
	References

