Incremental algorithms on lists

Johan Jeuring*

CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
(jt@cwi.nl)

Abstract

Incremental computations can improve the performance of interactive programs
such as spreadsheet programs, program development environments, text editors, etc.
Incremental algorithms describe how to compute a required value depending on the
input, after the input has been edited. By considering the possible different edit
actions on the data type lists, the basic data type used in spreadsheet programs and
text editors, we define incremental algorithms on lists. Some theory for the construc-
tion of incremental algorithms is developed, and we give an incremental algorithm
for a more involved example: formatting a text.

CR categories and descriptors: D11 [Software]: Programming Techniques —
Applicative Programming, D43 [Software]: Programming Languages — Language
constructs, 122 [Artificial Intelligence]: Automatic Programming — Program
transformation.

General terms: algorithm, design, theory.

Additional keywords and phrases: Bird-Meertens calculus for program construction,
incrementality, list, text-processing.

1 Introduction

There are a number of reasons why as yet intractable problems will be solvable on a com-
puter in the future. First, the processor speed of computers is still increasing. Second,
more efficient algorithms may be derived for problems for which the existence of an optimal

*This research has been supported by the Dutch organisation for scientific research under project-nr.

NF 62.518.

algorithm has not yet been shown. Third, for some classes of problems other kinds of algo-
rithms, such as parallel or incremental, may be derived. This paper deals with incremental
algorithms.

If a computation is performed repeatedly on slightly changed data, it is often profitable
to describe the computation by means of an incremental algorithm. An incremental al-
gorithm describes how to compute the required value depending on the slightly changed
data from the old value, the changes in the data, and perhaps some other information. Ex-
amples of computations which are performed repeatedly on slightly changed data can be
found in interactive programs such as program development environments and spreadsheet
programs. For example, in a spreadsheet program often lists of numbers are summed. If
a number of the list is changed from a to b, the sum s should be changed to s + (b — a).
This change does not require the summation of all numbers in the lists.

The form of an incremental algorithm depends on the data type on which it is defined,
and the edit model used. We propose a method for the description and derivation of incre-
mental algorithms in interactive programs on the data type list. Incremental algorithms
on other data types will be described elsewhere. Interactive programs such as text editors
and spreadsheet programs are based on the data type list, whereas program development
environments are usually based on the data type tree. Let f be a function defined on lists.
An incremental algorithm for f describes how to find the value of f when its argument is
edited. The possible edit actions are among others deletion or insertion of elements in the
argument list, splitting the argument, and joining two arguments. After each edit action
the value of f is recomputed. As an example, consider the task of breaking a paragraph
into lines such that the result looks nice (text-formatting). Algorithms for this problem
have been given by Knuth and Plass [12], and Bird [2]. We will derive an incremental algo-
rithm for this problem with which it is possible two combine two formatted paragraphs in
constant time. Furthermore, deleting or inserting a piece of text and breaking the resulting
paragraph into lines is done in time linear in the length of the deleted or inserted piece of
text. A consequence of these results is that while an author edits a text, the formatted
text is always available. This facilitates WYSIWY G-editing. Several other incremental
algorithms on lists will be given. The algorithms are derived in the Bird-Meertens style
of program construction. The Bird-Meertens style of program construction is a data type
oriented calculus for algorithm derivation by means of program transformations. Specifi-
cations are transformed into efficient functional algorithms using laws for functions defined
on some initial data type. Aspects of the Bird-Meertens calculus can be found in [14], [3],
[4], [10], [13], and [15].

Besides lots of articles on incremental algorithms for specific problems, like for example
the algorithm for incrementally computing the minimum spanning tree of Frederickson [7],
the algorithm for incremental Huffman coding of Knuth [11], and the algorithm for pattern
matching with a dynamically changing set of patterns of Meyer [16], several proposals for
the derivation and description of incremental algorithms have been given in the literature.
The language INC, designed by Yellin and Strom [25], automatically transforms algorithms
in an FP-like syntax to incremental algorithms. For each construct in FP an incremental
version is given, and since every algorithm consists of a series of FP constructs it can be

incrementalised by incrementalising its components. This approach has the disadvantage,
shared with all automatic methods for formal program derivation, that not always the most
efficient incremental algorithm will be derived. Furthermore, the only data types INC can
handle are bag and tuple, which is rather restrictive. Another approach to incrementality,
called finite differencing, is described by Paige [18]. So-called invariants, equalities of the
form £ = f(a,...,2,), are maintained by means of code which describes how to find
the value of F if one or more of the arguments are changed. The approach is generic,
and does not distinguish incrementality on different types. The approach sketched in
this paper can be compared with the work of Reps, Teitelbaum, and Demers [20] on
incremental attribute evaluators. They give an incremental algorithm in an interactive
program development environment (a tree editor) for the evaluation of the attributes of a
tree. A natural extension to trees of the edit model on lists presented here, would result
in a slightly more complex edit model than the model Reps, Teitelbaum, and Demers
give. The model obtained thus is more suitable for calculating with algorithms. Some
of the incremental algorithms given in this paper have been implemented in the Views
System [19].

This paper is organised as follows. Section 2 introduces the data types in the Boom-
hierarchy, such as list, and several functions defined on these data types, such as map, filter,
and catamorphism. Section 3 defines simply incremental algorithms on lists, and gives
incremental algorithms for most of the functions introduced in Section 2. The definition of
incremental algorithms is then generalised in order to be able to give incremental algorithms
for a class of problems for which we could not derive incremental algorithms using the old
definition. In fact, using this new definition we can give a (usually inefficient) incremental
algorithm for every catamorphism on lists. We give an efficient incremental algorithm for
text-formatting. Section 4 describes future work: possible ways in which the theory of
incremental algorithms on lists reported on in this paper can be extended to other data

types.

2 Preliminaries

This section introduces the basic notions and definitions used in the subsequent section.
The first subsection briefly describes the notational conventions for functions and operators.
Two important concepts in the Bird-Meertens calculus are the notions of catamorphism and
promotion. Catamorphisms are functions, defined on an initial data type, whose inductive
definitional pattern mimics that of the type. For every data type, catamorphisms can
be defined and a promotion theorem can be given. This process is described in detail by
Malcolm [13]. The second subsection introduces the Boom-hierarchy, a hierarchy consisting
of the data types set, bag, list, and binary tree, and it defines catamorphisms on these
data types. We also give some widely used examples of catamorphisms, such as map and
reduction. Finally, some auxiliary functions are introduced in the third subsection.

2.1 Functions and operators

Typical names of functions are f, ¢ and h. Function composition, which is associative,
is denoted by a small dot -. So the composition of f and ¢ is written as f - g. Function
application is denoted by white space. So the application of f to an argument a is written
as f a. Function application associates to the right, i.e., we have

(Fg-hye=Flgtha))=Sghe.

For every two types A and B there exists the product type A x B consisting of pairs
of elements from A and B. The operator x is defined on types as well as functions, i.e.,
given two functions f : A — B and ¢ : C' — D, we have a function f x g: Ax C — B x D.
The projection functions from A x B to A and B are denoted by <, the left-projection,
and >, the right-projection.

Binary operators will often be written in infix notation. Typical names of binary
operators are @, », and ®. They can be partially parametrised, i.e., if @ is a binary
operator of type A x B — (', we consider the expression (a®) to be a unary function
of type B — C, and similarly for ($b6). These parametrised operators are also known as
‘sections’. Binary operators take their left arguments as short as possible and their right
arguments as long as possible, and functions take their arguments as long as possible; so,
for example,

fadgboe = [a@(9(bDe))).

The notation # <; y expresses that (f 2) < (f y), and similarly for =, >, etc.

2.2 Data types and catamorphisms

The ‘Theory of Lists” described in this section has been introduced by Bird [3] and Meer-
tens [14]. The recursive data type list over some base type A, denoted by Ax, is introduced
by means of the following three constructor rules:

T € Ax
a€ A y € Ax
ly € A% [a] € Ax z H y € Ax

where 14 is the unit of 4, and H is associative. This data type is also called join-list,
because the operator H+ ‘joins’ two lists together.

The data type list is one of the four data types in the Boom-hierarchy. The Boom-
hierarchy, described by Meertens [14], consists of four data types: binary tree, list, bag,
and set. These data types are obtained from the above scheme for Ax by varying the
laws satisfied by . If 4 satisfies no laws, then the above scheme leads to the data type
binary tree with information at the leaves. If H is associative we obtain list, and if H
is associative and commutative we obtain bag (then +, [-], 14, and Ax are written as
respectively W, |-], 1y, and Aw). If 4 is also idempotent we obtain the data type set.

Let & : A x A — A be an associative operator, f : B — A a function, and ¢ € A

the unit of @. Then, by definition of the data type list, there exists a unique function
h : Bx — A such that

hly = e
(1) A[b] = fb
h(z+4y) = (he)d(hy).

If such a unit element does not exist, we may introduce a fictitious element (see Meer-
tens [14]) with the property that it is the unit of &. The function h defined above is called
a catamorphism.

It is a well-known fact that a catamorphism on list can be written as the composition
of a reduction and a map, which are defined as follows. The map operator * takes as
arguments a function and a list and returns a list consisting of the original elements to
which the function is applied. More precisely, if f : B — A, then f* : Bx — Ax is defined
by

frly = 1y
(2) fx[d] = [fa]
fr(zHy) = (fre)H(fry).

The value of applying the reduction operator / to an associative operator & and a list can
be obtained by placing & between adjacent elements of the list, so, if & : A x A — A, then
@/ Ax — A is defined by

B/ 1y = lg
3) &/ [d] = a
S/ (zHy) = (B/2)D(B/y).

where 1g is the, possibly fictitious, unit element of &. A catamorphism & can be split in
a reduction and a map, that is, there exist an operator & and a function f such that

(4) h = &/ fx,

a fact expressed by the Homomorphism Lemma from Meertens [14]. An example of a widely
used catamorphism is the filter operator <, which takes a predicate (i.e. a boolean function)
and a list and retains the elements satisfying the predicate in a list; so if p : A — bool,
then pa: Ax — Ax is defined by

(5) pa = 4/ p7x,

where p? a = [a] if p a holds and p? a = 14 otherwise. For example, odd «[3,4,5] = [3,5].

Another important notion of the Bird-Meertens formalism is promotion. Every data
type has its own promotion theorem. Promotion provides a means for proving equalities of
functions avoiding the application of induction in the development of algorithms. Inductive
arguments tend to be tedious and are less elegant than proofs using promotion. As early as
1975 this was one of the main motivations of Goguen [8] to use initiality in proofs. Before
we give the theorem, we first define promotability.

(6) Definition ((4, ®)—promotability) A function f : A — B is (6, ®)—-promotable
for associative operators @ : A x A — A and @ : B x B — B if and only if

flady) = (f2)@(fy)
flg = 1.

For example, function f* is (4, H)-promotable for all functions f, and function &/ is
(+, &)—promotable for all operators &. The proof of the following theorem (by structural
induction or using the uniqueness property of catamorphisms) is given by Meertens [14]

and Malcolm [13].

(7) Theorem (Promotion) A function f : A — B is (6, ®@)-promotable if and only
if

f-® gx=0)(f g)*.

From the proof of this theorem it follows that we may weaken the requirement that f is
(6, @)—promotable, in particular the equality f (2@ y) = (f)@ (f y) . 1t suffices to require
this equality for and y in the range of g*. An immediate consequence of the Promotion
Theorem is the map distributivity law:

() froge = (Fra).

Besides catamorphisms we will also use left-reductions and right-reductions defined on
join-list. (Left-reductions can be viewed as catamorphisms on the data type snoc-list,
lists which are constructed from left to right.) Given an element e : B and an operator
@ : B x A — B there exists a unique function @-e : Ax — B satisfying the following two
equalities.

(9) (bre) Ly = ¢
(Dpe) (x4 [a]) = (Ofe)a)Da.

Such a function is called a left-reduction. Right-reductions are defined similarly. Given an

element e : B and an operator @ : A x B — B there exists a unique function d¢-e : Ax —
B satisfying the following two equalities.

(@e)(la]42) = a®(Defe)r).
Every catamorphism can be written as a left-reduction and as a right-reduction, but not
vice versa.

2.3 Auxiliary functions and operators

In this section we define some auxiliary functions and operators. The operator cross is
used frequently in calculations. Cross takes two lists, and pairs each element of the first
list with each element of the second list. The result of cross is a bag of these pairs. For
example, [1,2] X [3,4,5] = [(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)]. The operator cross has
been introduced by Bird [4]. The following definition is taken from Jeuring [9].

vy = W/ (Fa)ry
(11) abFaz = (Ga)*x
b;a = (b,a).

Operator cross can be subscripted with a binary operator, by which we mean the following.
(12) Xy = @*-X.

Note that @ is a binary prefix operator.
Functions ¢, tl, hd, and [t have their usual meaning and are defined by

(13) it(xH[a]) = =
(14) lt(x+H[a]) = a
(15) hd([a] H z) = a
(16) t([a]Hz) = =.

Functions ¢/ and it commute with fx, that is, for all f

(17) fr-it = it-f+
(18) fx-tl = tl-f*.

Functions hd and [t satisfy for all f

(19) f-hd = hd-fx
(20) f-lt = It f*.

Using functions hd and ¢/ an indexing operator on lists, denoted by !, can be defined. This
operator takes a natural number n and a list of length at least n. It is defined by

0lz = hdx

(21) (n—l—l)LT = n!(tl$>-

The operator take, —, takes, given a natural number n and a list z, the first n elements
of z if #x > n, and it takes z itself if # x < n. For z such that # = > n it is defined as
follows.

04$ = 1_H_

(22) (n+1)—2 = [hda]4H (n—tlz).

In the specification of algorithms one often encounters generators, such as segs (return-
ing all consecutive substrings of a string), and parts (returning all partitions of a string).
Using list comprehension, see Turner [24], we define
(23) segsx =
(24) tailsx =
(25) initsx =

[v]Ju,w: 2 =u+HvH w]
[v]|dw: 2= w+H v]
[v]|dw: 2 =v+H w].
Following Bird [2], we characterise segs recursively by means of the functions tails and
inits as follows.
(26) segs = H/ - tailsx - inits
@7) taits = v/ [}
(28) inits = A/ -[[]]* .
where the function [[-]] is defined by [[-]] @ = [[«]], and the operators 7 and A are defined
by
(29) ey = ((H(hdy))xz) 4y
(30) Ay = a4 (((Itx)H)*y)
Function parts enumerates in a bag all ways in which a list can be broken into lists of
lists. It is defined by means of bag comprehension as follows.

(31) partsz = |yle=+4/y].

There are various recursive characterisations of the function parts. A characterisation
of parts as a left-reduction is given by Bird [2]. Here, a characterisation as a join-list
catamorphism of parts is given.

parts t Ak — Axxwm
parts 1 = [14]
U2 pans[a] = [[la]]
parts (x Hy) = (partsz)® (partsy) ,
where
33) zoy = Wa),y
(31) 10l = Lo
(35) 140z = |[a]
(36) «Qy = |t H [2l, yh] H yt, o0 H [ol H yh] H yt]
where

vi=dtx,xl=10tx, yh =hdy, yt =1tly.

In order to show that function parts = @/ - (|| - [[-]])* is well defined, it has to be shown
that operator @ is associative. The proof of this fact is omitted.

Let f : A — B, where B is totally ordered. Then operator 7; is a binary operator of
type A x A — A. It is defined by

x ifx>fy

B7) =try = y ify >y a
x ory otherwise .

We do not yet define 1y on arguments which have equal f-values, except that one of
the arguments is the outcome. It might be necessary to define 1; differently for different
problems. If the choice made by operator 1y on equal f-values is immaterial to the problem,
we will not give its exact definition. Operator |; is defined similarly.

3 Incremental algorithms on lists

Incremental algorithms on lists can be used in interactive programs such as text editors,
spreadsheet programs, etc. Suppose we want to code a text with respect to a dictionary.
Usually, the text is coded after it has been edited. By means of an incremental algorithm
the text can be coded while it is edited. Consequently, the coded text is available at
each moment. In this section we sketch an approach to incrementality on lists. We give
a definition of basic incremental algorithms in the first subsection, and we give several
examples of problems for which incremental algorithms can be given. Then we give a
definition of more general incremental algorithms, and, using this new definition, we show
that there exists an incremental algorithm for every catamorphism on lists. The second
subsection contains a more involved example: the derivation of an efficient incremental
algorithm for formatting a text.

3.1 Two definitions of incremental algorithms

Let f be a function defined on lists: f : A« — B. Suppose that we want to find the
f-value of a list, and that we are interactively editing this list. A description of interactive
programs in a functional setting has been given by Thompson [23]. When editing a piece
of data, a text, a program, or a list of numbers from a spreadsheet program, a cursor is
moved through the data. Suppose the data is represented as a list. The cursor is always
positioned in between two elements. If the cursor is positioned somewhere in the data, two
lists can be distinguished: the part of the data in front of the position of the cursor, and
the part after the position of the cursor. Several actions are possible.

e moving the cursor right or left;

o deleting or inserting one or more elements;
o splitting the data in two;

e concatenating two pieces of data.

This list of edit actions is incomplete, but it does comprise the basic components of an
editor. Most of the other components of editors consist of compositions of these actions.

After each action, we want the result of f applied to the resulting list(s) to be immediately
available. This implies that we have to adapt the interactive program we are working in.
After an edit action, the interactive program should also, besides for example showing
the result of the edit action on the screen, update the f-value(s). We now describe what
should happen after each of the edit actions. This determines the form of an incremental
algorithm.

When two pieces of data, say « and y, are concatenated, the value of f (¢ H y) has to
be determined from the values f « and f y. The first, tentative, assumption we make about
incremental algorithms is that there exists an operator ® such that f (z+Hy) = (f «)©O(f y).
It follows that f is a join-list catamorphism. This assumption is almost inevitable if we
want to deal with insertion and deletion properly, but it is also reasonable. Many functions,
possibly tupled with some extra information, are catamorphisms that can be implemented
efficiently. If the data is split into two pieces of data, say again z and y, the values of
f @ and [y have to be determined from the value f (2 # y) = (f) ® (f y). If operator
 is invertible this is easy; however, most binary associative operators are not invertible.
In general, there is no other way to find the values of f # and f y than to compute them
from scratch or to tuple the computation with the computation of the f-value of the list in
front of the cursor (f), and the f-value of the list after the cursor (f y). We have chosen
this last option. Splitting the data into two at the point where the cursor is located is
now simple: the f-values of the constituents are immediately available. Concluding, we
have assumed that the interactive program is extended with the computation of a triple of
values: the f-value of the list in front of the cursor, the f-value of the argument list, and
the f-value of the list after the cursor.

The form of incremental algorithms described above provides an elegant way to deal
with insertion and deletion of one or more elements. Suppose a list 2 is inserted in between
the two lists « and y, so the triple (f« , f(x + y), fy) should be transformed into
(f(e+2),f(eHz4Hy),fy). Toobtain this triple: split « # y and compute f z, and then
compute (fz) @ (fz) and (fz) B (f2) D (f y). If a segment z is deleted from = H =z 4 y:
first split « #+ 2z # y into # and z H# y, and then split z #+ y in z and y. Since the values
of fa and f y are now available, the triple (f =, f (¢ 4 y), f y) can be computed.

Finally, we have to deal with cursor movements. Suppose the cursor is positioned in
between two nonempty lists, say lists « 4 [a] and [b] H y, and the cursor is moved left.
Then it is required to find the values f o and f ([a,b] # y) from the values f (z H# [a]),
f([0]Hy), and f (z+[a, b]4y). Since we assume that f is a catamorphism ©/-r*, we have
f(la,b] 4 y) = (ra)©f([b] # y). Furthermore, we also have f (z H [a]) = (f2) ® (r a).
So, if there exists an operator @ such that ((f) ® (ra)) @ a = f x, then we can express
f @ in terms of f (2 4 [a]) by means of f 2 = (f (¢ + [a¢])) ® a. For incremental algorithms
we require the existence of such an operator ®. When the cursor is moved right it is
required to find the values f (¢ 4 [a, b]) and f y from the values f (¢ H[a]), f ([6] H y), and

f(x #[a,b] # y). For incremental algorithms we require the existence of an operator &

satisfying a & ((ra) © (f2)) = f .

(38) Definition (Basic incremental algorithm)
is a 3-tuple

(@/-T*,@,@),
such that

A basic incremental algorithm for f

We say a function is incremental if there exists a basic incremental algorithm for it.

We give some examples of incremental functions.

e For all functions f, function f* is incremental. The basic incremental algorithm

for f* is the 3-tuple

(H/- ([Nt - <t ->>) .

e For all predicates p, function p< is incremental. The basic incremental algorithm

for p<is the 3-tuple
(—I'I_/p?*v@v@)v

where operators @ and @ are defined by

ite ifpa

(39) 2 ®a = x otherwise
tle ifpa

(40) ae = x otherwise .

e Function @/ is incremental, provided sections (Ga) and (a@®) are invertible. An
example of an incremental reduction is 4+/. The basic incremental algorithm for +/

is (+/,—,—).

e Function parts, see (32), is incremental. Let function ¢ be defined by

apy S = e]y L,

g (z 4 [[e]]) = .

The definition of ¢ 14 is irrelevant. Then, if remdups is a function which removes all

duplicates,
partsx = remdups g% parts (¢ H [a]) .
Similarly, if & is defined by

(42) h([la] 4yl 4 2) = [yl ily# 1y

h([[a]] 4) =
then
partsx = remdups hx parts ([a] H z) .

It follows that (®/-(|-] - [[-]])*, remdups- g%- <, remdups-h*->>) is a basic incremental
algorithm for parts.

Let (®/-r+,®,@) be a basic incremental algorithm for f, and let g be a function. We
want to find conditions on ¢ such that the existence of a basic incremental algorithm for
g - f 1s guaranteed.

(43) Theorem Let (®/ - r+,® , @) be a basic incremental algorithm for f, and let g
be a (®,0)-promotable function satistying

gla®a) = (g2)0a

gladbz) = ac(ga),
for some operators © and &. Then (O/ - (g-)%, ,S) is a basic incremental algorithm
for g-f.

Proof Since g is (®,0)-promotable it follows using Promotion, Theorem 7, that g-f =
0O/ - (g - r)*. Furthermore, we have by calculation

((gfx)D(gra))Oa
= ¢ is (®, 0)-promotable
(9((f2)©(ra)@a
= (gr)0a=g(z®a)
g((fz)©(ra))@a)
= (®/-r+,®,®) is a basic incremental algorithm for f

gfec.
Similarly, « & ((9ra) 0 (gfx)) = gf«. It follows that (T/-(g-r)*,©,S) is a basic

incremental algorithm for ¢ - f. a

By the theorem we obtain a basic incremental algorithm for the problem of finding the
shortest partition into ascending lists of a string. The problem is specified by

(44) sap = lg/ - (all ascending)< - parts .
Given a predicate p, the predicate all p is defined by
(45) allp = N/ -p*.

For example, if we apply function sap to the list [1,3,2,1,4] we obtain the partition
[[1,3],[2],[1,4]]. Since parts is a basic incremental algorithm, we try to apply Theorem 43.
The derivations of definitions of operators O, ©, and & are omitted. Let O, @, and © be
defined by

rHy if ltltex > hd hd y

rhy = (ite)H [(tx)H (hdy)] H (Hy) otherwise
rpoa = gx
aOr = hz.
Then, since |4/ - (all ascending)<-[-]-[[-]] = [[']], we have that (T/-[[']]*,©,&) is a basic

incremental algorithm for |4/ - (all ascending)< - parts.

An example of an algorithm which is not incremental is the reduction 1/. For 1/
there do not exist operators @& and @ satisfying respectively « & (a 1 (1/2)) = 1/« and
((1/2) 1T a) ® a =1/ x. Another problem for which no basic incremental algorithm exists
is the maximum segment sum problem. Since we do want to have incremental algorithms
for these problems we generalise the definition of incremental algorithms.

Given a function f which is required to be incremental, the interactive program in
which f is computed is extended with the computation of a 3-tuple (f 2, f(z H# y),fy),
where « (y) is the list in front of (after) the cursor. Instead of the 3-tuple (f «,f (xHvy),f y)
we extend the interactive program with the computation of the 3-tuple (g «.f (¢ Hy),h y),
and we suppose there exist (efficiently computable) functions o and 3 such that f =« - ¢
and f = # - h. Furthermore, to deal with cursor movements, ¢ is a left-reduction @-Ae
such that there exists an operator @ satisfying (¢ @ a) © @ = x, and h is a right-reduction
¢~ u such that there exists an operator & satisfying « & (a & z) = x. Note that g, or the
three-tuple (®@-4e, @, «), and h, or the three-tuple (d¢fu , &,), play a dual role.

(46) Definition (Incremental algorithm) An incremental algorithm for f is a 7-
tuple

(@/'T*,@%G,@,O&,@%U,@,ﬁ),
such that

f ©/ - rx
I a- @
[= B-&u
(@pe)z)@a)0a = (@fe)
aS(ad((Pfu)z)) = (Bfu)a.

A basic incremental algorithm (®/ - r+, @ , &) for a function f can be extended to an
incremental algorithm for f by taking

(©) - r+,@pbe,0,id,Bdu,o,id),
where operators @ and @ are defined by

t@a = O (ra)

adr = (ra)ox.

In fact, for every catamorphism there exists an incremental algorithm. This is expressed
by the following theorem.

(47) Theorem Let f be a catamorphism. Then
(f, f*-inits it - << I, f*- tails , tl->, hd)
is an incremental algorithm for f.

Proof The proof consists of showing that fx* - inits is a left-reduction @-4e such that
it (x @ a) = x and showing that f+-tails is a right-reduction &4 u such that t (a®z) = =.
This is easy and omitted. Furthermore, we have to show that [t - f* - inits = f, and that
hd - fx - tails = f. Since It - fx = f - lt, and [t - inits = id, and similarly for /t and inits
replaced by respectively hd and tails, these equalities follow immediately. a

The maximum segment sum problem is specified by

(48) 1/ -4/ - segs .

A slight generalisation of this problem (tuple with the maximum sum among the tails,
the maximum sum among the inits, and the sum of the argument list) is a catamorphism,
see Smith [22]. Hence Theorem 47 gives an efficient incremental algorithm for finding the
maximum segment sum of a list.

3.2 Formatting a text incrementally

The problem considered here is the derivation in the Bird-Meertens style of program con-
struction of an efficient incremental algorithms for breaking a paragraph into lines (text-
formatting). The derivation will not be given in full detail, we merely give a brief overview.

When formatting a document, one of the tasks is to break each paragraph into individual
lines such that the result looks nice. There are many aspects to this task. In the detailed
study on the breaking of paragraphs into lines by Knuth and Plass [12], many of these
aspects are treated.

One of the aspects of text-formatting is the formalisation of ‘nicely looking’. Knuth
and Plass [12] describe several functions, which, given a formatted text, determine the
‘badness’ of that solution. These functions are called waste functions. Given a waste
function, it is then required to find a solution which minimises the amount of waste.
Algorithms for this problem have been given by Knuth and Plass [12], Achugbue [1], and
Bird [2]. These algorithms are on line: suppose f is the problem to be solved, z is the
text processed until now (so f « is available), and a new word « is added to the right end
of z, then there exists an operator ¢, which requires constant time on the average for its
evaluation, such that f (¢ 4 [a]) = (f ¢) & a.

In this paper we derive in the Bird-Meertens calculus an incremental algorithm that
solves the paragraph problem. This algorithm combines two paragraphs in constant time,
that is, there exists an operator @ such that f (z #y) = (f #) @ (f y), and taking constant
time for its evaluation. Of course, the time to combine two paragraphs is bounded below by
the time to write a screen. The solution of Knuth and Plass to the paragraph problem will
give different results in some cases. Combining two paragraphs using their solution requires

time linear in the length of the second paragraph. Since @ can be evaluated in constant
time, the algorithm we obtain for formatting a paragraph is linear time, so the algorithm
we obtain has the same time complexity as the on-line algorithms. Furthermore, deleting or
inserting a piece of text and breaking the resulting paragraph into lines can be done in time
linear in the length of the deleted or inserted piece of text. A consequence of these results
is that a text can be formatted while it is edited. This facilitates WYSIWY G-editing.

We give a formal specification of the problem of breaking a paragraph into lines. Sup-
pose a list of natural numbers is given, representing the lengths of the words in the text. It
is assumed that punctuation marks are glued to the words on which they follow. This list
of numbers has to be broken into lists that all fit on a given line length such that a given
waste function is minimised. We suppose the line length is given by a constant C, and
that all natural numbers in the input are at most this value C. For example, the following
sentence from ‘Pride and Prejudice’ by Jane Austen

It is a truth universally acknowledged, that a single man in possession of a
good fortune, must be in want of a wife.

is represented by the list
[2,2,1,5,11,13,4,1,6,3,2,10,2,1,4,8,4,2,2,4,2,1,5] .
If ¢ = 25, one of the many formattings is the following.

It is a truth universally
acknowledged, that a single

(49) man in possession of a good
fortune, must be in want of a
wife.

We specify the problem to be solved, f, by

o Ax — Axx
[= lu/-(dlfit)a- parts,

where |,, and fit are defined as follows.
The predicate fit is defined by

(51) fitz = (+/a)<C.

(50)

for some given constant C'.

For the reduction |, /, function w has to be defined, and the definition of |, on objects
with equal w-value has to be given. For function w various choices can be made. We
choose one of the simplest, such that, for the on-line case, f can be implemented by a
greedy algorithm. Other, more sophisticated, choices of w are given by Bird [2] and Knuth
and Plass [12]. I don’t know whether incremental algorithms can be derived if one of these
other definitions of w is chosen

w = 4/ uk-il
(52) C—(+/z) if+/z2<C
ur = :
00 otherwise .
If ¢ = 25, the w-value of the solution given in (49) is 10. For an argument z, ‘function’ f
thus defined may have several different solutions, all with equal w-value, and one of the
important themes in previous papers (see Bird [2] and Fokkinga [6]) is to resolve this
nondeterminism. In fact, we could specify a relation instead of a function, thus avoiding
having to define |, on objects with equal w-value. However, we have chosen to stay within
the functional framework. A derivation of one of the on-line algorithms for breaking a
paragraph into lines in a relational framework is carried out by De Moor [17]. Here, the
nondeterminism is resolved in an ad-hoc fashion by defining |, on objects with equal w-
value as follows. Again, it is not clear to me whether incremental algorithms can be derived
for other definitions of |,,. If + =, y, then

ey = (itz) b (ity).
This concludes the specification of the problem. If we apply the specification to Jane
Austen’s sentence we obtain the solution given in (49).

We derive an incremental algorithm for the paragraph problem f specified in (50).
For that purpose, we have to express f as a catamorphism, that is, we have to find an
operator @ and a function r such that

[= o/ r«.

Since f is defined by |,/ - (all fit)< - parts, we could try to apply the theory developed
for function parts by for example Bird [5]. However, none of this theory is applicable.
Intuitively, this can be seen as follows. If f (2 + y) has to be expressed in terms of f «
and f y, the information obtained from f y is useless. Instead of the information how to
split 3 into lines where the first line starts at the left, we would like to have the information
how to split y into lines after gluing an initial part of y to the last line of z. It follows that
we want to have the f-values of all tails of y available. The specification of the paragraph
problem is generalised to k.

(53) k = [f*-tails.

Since tails is a catamorphism 7/ - [[-]]*, see (27), we can apply Promotion, Theorem 7.
Suppose f* (27 y) = (f*2) ® (f+y) for some operator &, then we have

(54) fx-tails = ©f(f+- [s
Function f* - [[-]] can be simplified as follows.
AR
= definition of [[-]]
S+ lal]
= definition of map, and f

[[e]]] -

It follows that fx - [[-]] = [[[]]], where [[[]]] is defined by [[[-]]] « = [[[«]]]. Operator © is

synthesised as follows.

[+ (27 y)
= definition of 7
Fr(((hd y))* x) 4y
= definition of map, map distributivity

(/- (4-(hd y)))x z) 4+ (F* y)

= assumption

(O y))xfre) H (fry),
where we have assumed that f - (#(hdy)) = (O(fxy)) - f, for some operator <. So,

provided there exists an operator < satisfying this requirement, we have found that
(55) k= of ([,

where operator © is defined by

(56) 20y = ((Cy)rz)4y.

The derivation of an operator < is quite difficult and is omitted for reasons of space. It
can be defined as follows.

& © Axk X Asekx — Asokok
AROR)) = (((z,0)®) - (tx)0)/ - inits - 4/ - hd) v
%) o Ax X (Ax x Ax) = Ax

a Ly(epy b i (fit ¢ Ha) V (fil ¢4+ D)
co(a,d) = alyb if (fita)V (fith)

(57))
1y, otherwise
D i (Akk X Asrx) X Ax — Axx
(z,v) e = ((2@) - ([cd4) - (F#)) v
® : Awk X Akk — Axx
T @y = Lo/ (dlfit)a(zOy) .

We give some operational understanding of the algorithm we have obtained. Given the
values of ka and kb, we have to find the value of k(a 4). The value of k (a H# 0)
is the concatenation of a section (O(k b)) mapped to k a, and kb (this is expressed by
operator ®). Given an element z from k a, the section (O(k b)) starts with finding the
longest element ¢ in inits b which fits on one line when appended to the last line of =z,
or, when no element of inits b appended to the last line of z fits on one line, the longest
element of inits b which fits on one line (this is expressed by operator ©). Operator &
prepends the resulting partition to the ((# ¢) + 1)th element from £ b.

The catamorphism given for & in (55) can be implemented such that the resulting
algorithm requires quadratic time for its evaluation. We now show how a linear-time
algorithm is obtained. Let ¢ be (({t)@)/ inits b. Since ((It x)©)/ inits b returns the longest
element in inits b which fits on one line when appended to the last element of an element
of k a, we have # ¢ < C. In fact, we even have # ¢ < D, where D = # 14/ fit asegs (a+b).
This implies that computing the first D + 1 elements of k suffices for our purposes. The
final specification of our problem reads

(58) | = (D+1—)-k.

Again, we have [= &'/ - [[[']]]*, where the operator ' is the following amendment of
operator (.

(Cy)xx f#Hes=D+1
(Cy)xax) #H ((D+1—(#2)) = y) otherwise .

This algorithm can be implemented such that it requires linear time for its evaluation.

(59) z0'y =

Since [is a catamorphism, Theorem 47 can now be applied to obtain an incremental
algorithm for it. However, the resulting algorithm is hopelessly space inefficient. Therefore,
we derive an alternative incremental algorithm for it. We first try to find a basic incremental
algorithm for the paragraph problem [. Using function ¢ defined in equality (41) it can be
proved that (# 1y)< g+ 2 @ [[[a]]] = z, so operator @ of the basic incremental algorithm
can be defined by (# 14)< - g% - <. For the other component of the basic incremental
algorithm, I can not find an efficiently computable operator & such that a&([[[¢]]]@) = =.
Therefore, the search for a basic incremental algorithm for [is abandoned, and we try to
find an incremental algorithm for it.

According to the definition of incremental algorithms, finding an incremental algorithm
for [amounts to finding a left-reduction 6-4€ and a right-reduction @<~ u such that there
exists functions «, and (3, and operators ©, and @ satisfying the following equations.

(60) I = a-o-pe
(61) = [-0u
(62) (((obe)z)oa)ea = (6he)x
(63) a®(a® ((®u)z)) = (Dfu)e.

Function a and operators ©, and © are defined as follows. Since [is a catamorphism
'/ - [[[]]J*, we have [= 6414, where operator & is defined by * 6 a = & @' [[[a]]]. So we
may take o = id. Furthermore, as has been remarked above, if we define operator & by
(# 14)<- g% - <, then we have (x © a) © a = z for all z and a.

Function 8 and operators @ and @ are defined as follows. For right-reduction @<~ u
we take the right-reduction for function k. Since k is a catamorphism ©/ - [[[-]]]*, we have
k = @-41g, where operator @ is defined by @ @ a = [[[¢]]] ©® . By definition of [and k we
have [= (D + 1 —) - k, so we let 3 be the section (D 4+ 1 —). If we define operator @ by
tl->, then a ® (a ® z) = « for all z and a.

We have found the following incremental algorithm for .

(Q//) [[H]]*) @7@16’ O, id > ®@L1® » D, (D +1 4)) :

Another problem for which I have derived an incremental algorithm is the problem of
coding a text with respect to a dictionary. This algorithm can be used in algorithms for
data compression. On-line algorithms for this problem are well known, see e.g. Rodeh,
Pratt, and Even [21]. The specification of this problem is similar to the specification of
the paragraph problem; it is specified by

(64) lg/ - (all(€ D))<- parts ,

where D is a dictionary. The derivation of an efficient algorithm for this problem uses
another recursive characterisation of function parts.

4 Future work

The work reported on here is part of ongoing research on incremental algorithms. The
theory developed thus far is specific to lists. A first natural extension to the theory is to
model the notion of cursor in the Boom-hierarchy (see Section 2), and to develop theory
for the four data types in this hierarchy in one go. A second extension is to model in-
cremental data types by the admissible edit actions; to let an incremental data type be
modelled by the initial data type induced by a set of constructors corresponding to the
edit actions. Together with the development of theory of incremental data types, examples
of incremental algorithms should be derived to support the development of theory.

Acknowledgements. The discussions on incremental algorithms with Richard Bird,
Maarten Fokkinga, and Jaap van der Woude are gratefully acknowledged. Furthermore,
Maarten Fokkinga and Jaap van der Woude commented on previous versions of this paper
and pointed out several ways to improve the presentation and contents.

References

[1] J.O. Achugbue. On the line breaking problem in text formatting. ACM SIGOA
Newsletter, 2(1 & 2):117-121, 1981.

[2] R.S. Bird. Transformational programming and the paragraph problem. Science of
Computer Programming, 6:159-189, 1986.

[3] R.S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of Pro-
gramming and Calculi of Discrete Design, volume F36 of NATO ASI Series, pages
5—42. Springer—Verlag, 1987.

[4]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

R.S. Bird. Lectures on constructive functional programming. In M. Broy, editor,
Constructive Methods in Computing Science, volume F55 of NATO ASI Series, pages
151-216. Springer—Verlag, 1989.

R.S. Bird. Small specification exercises. In W.H.J. Feijen, A.J.M. van Gasteren,
D. Gries, and J. Misra, editors, Beauty Is Our Business, A Birthday Salute to Edsger
W. Dijkstra, pages 390-398. Springer-Verlag, 1990.

M.M. Fokkinga. Using underspecification in the derivation of some optimal partition

algorithms. CWI, Amsterdam, 1990.

G.N. Frederickson. Data structures for on-line updating of minimum spanning trees,

with applications. SIAM Journal on Computing, 14(4):781-798, 1985.
J.A. Goguen. Memories of ADJ. Bulletin of the EATCS, 39:97-102, 1989.

J. Jeuring. Deriving algorithms on binary labelled trees. In P.M.G. Apers, D. Bosman,
and J. van Leeuwen, editors, Proceedings SION Computing Science in the Netherlands,
pages 229-249, 1989.

J. Jeuring. Algorithms from theorems. In M. Broy and C.B. Jones, editors, Program-
ming Concepts and Methods, pages 247-266. North-Holland, 1990.

D.E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 6:163—180, 1985.

D.E. Knuth and M.F. Plass. Breaking paragraphs into lines. Software: Practice &
Experience, 11(11):1119-1184, 1981.

G. Malcolm. Data structures and program transformation. Science of Computer

Programming, 14:255-279, 1990.

L. Meertens. Algorithmics—towards programming as a mathematical activity. In
J.W. de Bakker, M. Hazewinkel, and J.K. Lenstra, editors, Proceedings of the CWI
Symposium on Mathematics and Computer Science, volume 1 of CWI Monographs,
pages 289-334. North—Holland, 1986.

L. Meertens. Paramorphisms. Technical Report CS5-R9005, CWI, 1990. To appear in
Formal Aspects of Computing.

B. Meyer. Incremental string matching. Information Processing Letters, 21:219-227,
1985.

O. de Moor. Categories, relations and dynamic programming. submitted for publica-
tion, 1991.

R. Paige. Programming with invariants. IEEE Software, 3(1):56-69, 1986.

[19]

[20]

[21]

[22]

23]

[24]

[25]

S. Pemberton. Views: An open-architecture user-interface system. to appear in: Pro-
ceedings of Interacting with computers, preparing for the nineties, Noordwijkerhout,

The Netherlands, 1990.

T. Reps, T. Teitelbaum, and A. Demers. Incremental context-dependent analysis for
language-based editors. ACM Transactions on Programming Languages and Systems,

5(3):449-477, 1983.

M. Rodeh, V.R. Pratt, and S. Even. Linear algorithm for data compression via string
matching. Journal of the ACM, 28(1):16-24, 1981.

D.R. Smith. Applications of a strategy for designing divide-and-conquer algorithms.
Science of Computer Programming, 8:213-229, 1987.

S. Thompson. Interactive functional programs, a method and a formal semantics. In
David A. Turner, editor, Research Topics in Functional Programming, pages 249-285.
Addison-Wesley Publishing Company, 1990.

D.A. Turner. An overview of Miranda. In David A. Turner, editor, Research Topics
in Functional Programming, pages 1-16. Addison-Wesley Publishing Company, 1990.

D. Yellin and R. Strom. INC: A language for incremental computations. ACM Trans-
actions on Programming Languages and Systems, 13(2):211-236, 1991.

