
Generic programming with fixed points for
mutually recursive datatypes

Alexey Rodriguez Yakushev1 Stefan Holdermans2 Andres Löh2 Johan Jeuring2,3

1Vector Fabrics B.V., Paradijslaan 28, 5611 KN Eindhoven, The Netherlands
2Department of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

3School of Computer Science, Open University of the Netherlands, P.O. Box 2960, 6401 DL Heerlen, The Netherlands

alexey.rodriguez@gmail.com {stefan,andres,johanj}@cs.uu.nl

Abstract
Many datatype-generic functions need access to the recursive posi-
tions in the structure of the datatype, and therefore adopt a fixed
point view on datatypes. Examples include variants of fold that
traverse the data following the recursive structure, or the Zipper
data structure that enables navigation along the recursive posi-
tions. However, Hindley-Milner-inspired type systems with alge-
braic datatypes make it difficult to express fixed points for anything
but regular datatypes. Many real-life examples such as abstract syn-
tax trees are in fact systems of mutually recursive datatypes and
therefore excluded. Using Haskell’s GADTs and type families, we
describe a technique that allows a fixed-point view for systems of
mutually recursive datatypes. We demonstrate that our approach is
widely applicable by giving several examples of generic functions
for this view, most prominently the Zipper.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.13 [Software
Engineering]: Reusable Software—Reusable libraries; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features—Data
types and structures

General Terms Design, Languages

1. Introduction
One of the most ubiquitous activities in software development is
structuring data. Indeed, many programming methods and devel-
opment tools center around the creation of datatypes (or XML
schemas, UML models, classes, grammars, et cetera). Once the
structure of the data has been decided on, a programmer adds func-
tionality to the datatypes. Here, there is always some functional-
ity that is specific to a datatype – and part of the reason that the
datatype has been designed in the first place. Other functionality is,
however, generic and similar or even the same on many datatypes.
Classic examples of such generic functionality are testing for equal-
ity, ordering, parsing, and pretty printing.

Implementing generic functionality can be tiresome and, there-
fore, error-prone: it involves adapting and applying the same high-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’09, August 31–September 2, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-332-7/09/08. . . $5.00

level programming patterns to different datatypes, time and time
again. Datatype-generic programming alleviates this burden by en-
abling programmers to write generic functions, i.e., functions that
are defined once, but that can be used on many different datatypes.

Over the years, a vast body of work has emerged on adding
support for datatype-generic programming to mainstream func-
tional programming languages, most notably Haskell (Peyton Jones
2003). While early proposals encompassed extending the under-
lying language with dedicated new constructs for generic pro-
gramming (Jansson and Jeuring 1997; Hinze 2000a,b), recent ap-
proaches favour the definition of generic functions in Haskell itself
using Haskell’s advanced type-class system (Cheney and Hinze
2002; Hinze 2004; Lämmel and Peyton Jones 2003).

The various approaches to generic programming generally dif-
fer in the expressivity of the generic functions that can be defined
and the classes of datatypes that are supported. The most promi-
nent example is that quite a number of generic functions operate
on the recursive structure of datatypes, but most approaches do
not provide access to the recursive positions in a datatype’s def-
inition. The approaches that do provide access to these recursive
positions are limited in the sense that they only apply to a re-
stricted set of datatypes. In particular, the full recursive structure
of families of mutually recursive datatypes is beyond the reach of
these approaches. Still, many real-life applications of functional
programming do involve mutually recursive datatypes, arguably
the most striking example being the representation of abstract syn-
tax trees in compilers. Moreover, the generic functions that arise
in such applications typically require access to the full recursive
structure of these types; examples include navigation (Huet 1997;
Hinze et al. 2004; McBride 2008), unification (Jansson and Jeuring
1998), rewriting (Jansson and Jeuring 2000; Van Noort et al. 2008),
and pattern matching (Jeuring 1995) and, more generally, recursion
schemes such as fold and the like (Meijer et al. 1991) and down-
wards accumulations (Gibbons 2000).

In this paper, we present an approach to datatype-generic pro-
gramming embedded in Haskell that does enable the definition of
generic functions over the full recursive structure of mutually re-
cursive datatypes. Specifically, our contributions are the following:

• We show how to generalise the encoding of regular datatypes
as fixed points of functors (reviewed in Section 2) to arbitrary
families of mutually recursive types. We make use of a single
higher-order fixed point operator (Section 3).

• The functors for families of mutually recursive datatypes can be
constructed from a small set of combinators, thereby enabling
datatype-generic programming (Section 4).

• We present several applications of generic programming in this
setting, most notably the Zipper for mutually recursive types in
Section 5 and generic rewriting in Section 6.

Related work is presented in Section 7, and future work and con-
clusions in Section 8.

A strength of our approach is that it can be readily implemented
in Haskell, making use of language extensions such as type fami-
lies (Schrijvers et al. 2008) and GADTs (Peyton Jones et al. 2006).
The multirec and zipper libraries that are based on this paper can
be obtained from HackageDB.

2. Fixed points for representing regular datatypes
Let us first review generic programming using fixed points for
regular datatypes. While this is well-known, it serves not only as
an introduction to the terminology we are using, but also as a
template for our introduction of the more general case for families
of mutually recursive types in Section 4.

A functor is a type constructor of kind ∗ → ∗ for which we can
define a map function. Fixed points are represented by an instance
of the Fix datatype:

data Fix f = In {out :: (f (Fix f))}

Haskell’s record notation is used to introduce the selector function
out ::Fix f→ f (Fix f).

2.1 Defining a pattern functor directly
Using Fix, we can represent the following datatype for simple
arithmetic expressions

data Expr = Const Int | Add Expr Expr |Mul Expr Expr

by its pattern functor:

data PFExpr r = ConstF Int | AddF r r |MulF r r

type Expr′ = Fix PFExpr

The types Expr and Expr′ are isomorphic, and in Haskell we can
witness this isomorphism by instantiating a class

class Regular a where
deepFrom ::a→ Fix (PF a)
deepTo ::Fix (PF a)→ a

where

type family PF a ::∗→ ∗

The type family PF is an open type-level function mapping a
regular type a of kind ∗ to its pattern functor PF a of kind ∗ → ∗.
We can instantiate it by saying

type instance PF Expr = PFExpr

The functions deepFrom and deepTo are straightforward to define.
In practice, converting between a datatype and its fixed-point repre-
sentation occurs often when programming generically, and travers-
ing the whole value as required by deepFrom and deepTo is often
more work than is actually required.

We therefore present an alternative correspondence, making use
of the isomorphism

a∼= Fix (PF a)∼= (PF a) (Fix (PF a))∼= (PF a) a

This means that we relate a to its one-layer unfolding PF a a (a
shallow conversion). We redefine class Regular to use the following
conversion functions from and to:

class Regular a where
from ::a→ PF a a
to ::PF a a→ a

As before, in the instance for expressions,

instance Regular Expr where
from = fromExpr
to = toExpr

the shallow conversion functions fromExpr and toExpr are trivial to
define.

In order to establish that PFExpr really is a functor, we make it
an instance of class Functor:

instance Functor PFExpr where
fmap f (ConstF i) = ConstF i
fmap f (AddF e e′) = AddF (f e) (f e′)
fmap f (MulF e e′) = MulF (f e) (f e′)

Given fmap, many recursion schemes can be defined, for example:

fold :: (Regular a,Functor (PF a))⇒
(PF a r→ r)→ (a→ r)

fold f = f◦ fmap (fold f)◦ from
unfold :: (Regular a,Functor (PF a))⇒

(r→ PF a r)→ (r→ a)
unfold f = to◦ fmap (unfold f)◦ f

Note how the conversions in the class Regular allow us to work
with the original datatype Expr rather than its fixed point represen-
tation Expr′, but it is easy to define the deep conversion functions.
For instance, fold In turns a regular datatype a into its fixed-point
representation Fix (PF a).

Another recursion scheme we can define is compos (Bringert
and Ranta 2006). Much like fold, it traverses a data structure and
performs operations on the children. There are different variants of
compos, the simplest is equivalent to PolyP’s mapChildren (Jans-
son and Jeuring 1998): it applies a function of type a→ a to all
children. This parameter is also responsible for performing the re-
cursive call, because compos itself is not recursive:

compos :: (Regular a,Functor (PF a))⇒ (a→ a)→ a→ a
compos f = to◦ fmap f◦ from

2.2 Building functors systematically
The approach presented above still requires us to write fmap by
hand for every datatype. Furthermore, other applications such as
navigation or rewriting require functions defined on the pattern
functor that cannot directly be derived from fmap. Thus, having
to write fmap and such other functions manually for each datatype
is undesirable. Fortunately, it is also unnecessary.

In the following, we present a fixed set of datatypes that can be
used to construct pattern functors systematically:

data K a r = K a
data I r = I r
data (f :×: g) r = f r :×: g r
data (f :+: g) r = L (f r) | R (g r)
infixr 7 :×:
infixr 6 :+:

The type K is used to represent occurrences of constant types,
such as Int and Bool in the Expr example. The type I represents
recursive positions. Using :×:, we can combine different fields of a
constructor, and with :+:, we can combine constructors.

Using the above datatypes, we can thus represent the pattern
functor of Expr as follows:

type PFExpr = K Int :+: (I :×: I) :+: (I :×: I)
type Expr′ = Fix PFExpr

Datatypes, such as Expr, whose recursive structure can be repre-
sented by a polynomial functor (consisting of sums, products and

constants) are often called regular datatypes. The uniform encod-
ing allows us to define functions that work on all regular datatypes.
In particular, we can now define a generic map function by declar-
ing the following instances of the class Functor:

class Functor f where
fmap :: (a→ b)→ f a→ f b

instance Functor I where
fmap f (I x) = I (f x)

instance Functor (K a) where
fmap (K x) = K x

instance (Functor f,Functor g)⇒ Functor (f :+: g) where
fmap f (L x) = L (fmap f x)
fmap f (R y) = R (fmap f y)

instance (Functor f,Functor g)⇒ Functor (f :×: g) where
fmap f (x :×: y) = fmap f x :×: fmap f y

With these declarations, we obtain fmap on PFExpr for free. Simi-
larly, we get fmap on all datatypes as long as we express them as
fixed points of pattern functors using K, I, :×: and :+:. Using fmap,
we get fold, unfold and compos for free on all these datatypes. By
providing one structural representation of a datatype (the instantia-
tions of PF and Regular), we gain access to a multitude of powerful
functions, and can easily define more.

Being able to convert between the original datatype such
as Expr and the fixed point Expr′ or the one-layer unfolding
PF Expr Expr now becomes much more important, because for
application-specific, non-generic functions, we want to be able to
use the original constructor names rather than sequences of con-
structor applications for the representation. This is reflected in the
fact that the conversion functions fromExpr and toExpr, while still
being entirely straightforward, now become more verbose. Here is
fromExpr as an example:

fromExpr ::Expr→ PF Expr Expr
fromExpr (Const i) = L (K i)
fromExpr (Add e e′) = R (L (I e :×: I e′))
fromExpr (Mul e e′) = R (R (I e :×: I e′))

To facilitate the conversion, some generic programming languages
automatically generate mappings that relate datatypes such as Expr
with their structure representation counterparts (Expr′) (Jansson
and Jeuring 1997; Löh 2004; Holdermans et al. 2006). In this
case – if we do not want to extend the compiler – we can use
a meta-programming tool such as Template Haskell (Sheard and
Peyton Jones 2002) to generate the PF and Regular instances for a
datatype.

3. Fixed points for mutually recursive datatypes
In Section 2, we have shown how we can generically program with
regular datatypes by expressing them as fixed points of functors.
In practice, one often has to deal with large families of mutually
recursive datatypes, which are not regular. As an example, consider
the following extended version of our Expr datatype:

data Expr = Const Int
| Add Expr Expr
| Mul Expr Expr
| EVar Var
| Let Decl Expr

data Decl = Var := Expr
| Seq Decl Decl

type Var = String

We now have two datatypes that are mutually recursive, Expr
and Decl. Both make use of a third type Var. In order to deal

with families such as this representation of an abstract syntax tree,
we will now demonstrate how to generalize the representation of
datatypes as fixed points of functors to such families.

3.1 Fixed points for a specific number of datatypes
Swierstra et al. (1999) have shown how to represent a family of
two mutually recursive types as a fixed point in Haskell. The idea
is to introduce a different fixed point datatype that abstracts over
bifunctors of kind ∗→ ∗→ ∗ rather than functors of kind ∗→ ∗:

data Fix2 f g = In2 (f (Fix2 f g) (Fix2 g f))

We can easily generalize this idea further and define Fix3, Fix4
and so on. Depending on whether we want to count Var as a full
member of our abstract syntax tree family or not, we can then use
either Fix2 or Fix3 to represent such a family as a fixed point of
functors.

The problem, however, is that we can also no longer use I, K, :+:
and :×: to construct functors for arbitrary families systematically.
Instead, it turns out that we require new variants of I, K, :+:
and :×: for each arity. In the end, we have to rework our entire
generic programming machinery for each arity of family we want
to support, defeating the very purpose of generic programming.
Furthermore, families of datatypes can be very large, and we cannot
hope that supporting a limited amount of arities will suffice in
practice.

3.2 A uniform way to represent fixed points
At first, it looks like we cannot easily abstract over the arities of
fixed-points in Haskell. However, it is well-known that an n-tuple
of types can be encoded as a function taking an index (between
0 and n− 1) to a type. In other words, we have an isomorphism
between the kinds ∗n and n→ ∗ provided that n is a kind with
exactly n different inhabitants.

Let us apply this idea to fixed points. A fixed point of a single
datatype is given by

Fix :: (∗→ ∗)→∗
For a family of two datatypes, we need two applications of

Fix2 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗
which modulo currying is the same as

Fix2 :: (∗2→∗)2→∗
For a family of n datatypes, we need n applications of

Fixn :: (∗n→∗)n→∗
or a single application of

Fixn :: ((∗n→∗)n→∗)n

Applying the isomorphism between ∗n and n→∗, we get

Fixn :: n→ (n→ ((n→∗)→∗))→∗
Reordering the arguments reveals that we have really generalized
from a fixed point for kind ∗ to a fixed point for n→∗:

Fixn :: ((n→∗)→ (n→∗))→ (n→∗)
Apart from the fact that n is not available in Haskell’s kind system,
we now have a uniform representation of a fixed-point combina-
tor that is suitable to express arbitrary families of datatypes. Fortu-
nately, the remaining gap is easy to bridge, as we show in the next
section.

4. Indexed fixed points in Haskell
After having presented the idea of how to get a uniform representa-
tion of fixed points, we are now going to explain how to make use

of this idea in Haskell. We develop a library for generic program-
ming with families of mutually recursive types much in the same
style as we did in Section 2 for regular datatypes. We are going
to use the family of abstract syntax trees from the introduction of
Section 3 as our running example.

4.1 Encoding indexed fixed points in Haskell’s kind system
First, we have to find a way to encode n in Haskell’s kind system,
where n is supposed to be a kind that has exactly n types as
inhabitants. Haskell offers just one base kind, namely ∗, so we
are left with little choice. However, we can simply approximate
n by ∗ in Haskell, as long as we promise to instantiate ∗ with only
n different types.

In practice, if we have a family ϕ with n different types, we
use the types in the family themselves as the indices to instantiate
such positions of ∗. In this paper, we will write ∗ϕ rather than ∗ for
such positions in order to make it more explicit that we are using a
virtual subkind of ∗ that only consists of the members of family ϕ .
Thus, our uniform fixed-point combinator now has kind

HFix :: ((∗ϕ →∗)→ (∗ϕ →∗))→ (∗ϕ →∗)

and can be defined in Haskell as
data HFix (f :: (∗ϕ →∗)→ (∗ϕ →∗)) (ix ::∗ϕ) =

HIn (f (HFix f) ix)

In our abstract syntax tree example, we have a family that we
choose to call AST with three different types, and we are going to
write ∗AST for the subkind of ∗ consisting only of the types Expr,
Decl, and Var.

We go even further and introduce a family-specific GADT (that
we also call ϕ) and define it such that a value of ϕ ix can serve as
a proof that ix is a type that belongs to ϕ . Whenever we quantify
over a variable of kind ∗ϕ , we will pass such a value of type ϕ ix to
make explicit that we quantify over a limited set of types.

For the example, we introduce the GADT

data AST ::∗AST→∗ where
Expr ::AST Expr
Decl ::AST Decl
Var ::AST Var

such that a value of AST ix serves as a proof that ix is a member of
the AST family.

One example where we make use of explicit proofs is when
defining a map function for higher-order functors. Since the type
has changed, we have to define a new class

class HFunctor (ϕ ::∗ϕ →∗)
(f :: (∗ϕ →∗)→ (∗ϕ →∗)) where

hmap :: (∀ix.ϕ ix→ r ix→ r′ ix)→ ϕ ix→ f r ix→ f r′ ix

The function hmap has a rank-2 type. The function that is mapped
is quantified over all members ix of family ϕ . If for every index
ix in ϕ , this function transforms an r ix into an r′ ix, then we can
transform a functor with recursive calls given by r into a functor
with recursive calls given by r′.

It is perhaps instructive to note that if ϕ is a family consisting of
only one type, there will be only one choice for ϕ ix, and the type
of hmap reduces to the type of fmap for regular functors.

Instead of using explicit proofs of type ϕ ix, it is sometimes
helpful to use a type class

class El (ϕ ::∗ϕ →∗) (ix ::∗ϕ) where
proof :: ϕ ix

and then use an implicit class constraint El ϕ ix instead of a value
of type ϕ ix.

For the AST family, we define the following instances:

instance El AST Expr where proof = Expr
instance El AST Decl where proof = Decl
instance El AST Var where proof = Var

4.2 Defining a pattern functor directly
Before we discuss how to represent functors of families generically,
let us show how we can represent our family for abstract syntax
trees as a fixed point in terms of HFix directly.

The functor for AST can be defined as follows:
data PFAST :: (∗AST→∗)→ (∗AST→∗) where

ConstF :: Int → PFAST r Expr
AddF :: r Expr→ r Expr→ PFAST r Expr
MulF :: r Expr→ r Expr→ PFAST r Expr
EVarF :: r Var → PFAST r Expr
LetF :: r Decl→ r Expr→ PFAST r Expr

BindF :: r Var→ r Expr → PFAST r Decl
SeqF :: r Decl→ r Decl → PFAST r Decl

VF ::String → PFAST r Var

The parameter r is used to denote a recursive call. At each recursive
position, we apply r to the appropriate index in order to indicate the
type we recurse on. Furthermore, each constructor of the functor
targets a specific member of the family.

By using HFix on the pattern functor, we obtain types that are
isomorphic to the original family:

type Expr′ = HFix PFAST Expr
type Decl′ = HFix PFAST Decl
type Var′ = HFix PFAST Var

The isomorphisms can be witnessed by conversion functions once
more, and for this purpose, we declare a class Family that corre-
sponds to Regular:

class Family ϕ where
from :: ϕ ix→ ix→ PF ϕ I∗ ix
to :: ϕ ix→ PF ϕ I∗ ix→ ix

type family PF (ϕ ::∗ϕ →∗) :: (∗ϕ →∗)→ (∗ϕ →∗)
Like in the class Regular, we decide to implement a shallow con-
version rather than a deep conversion. Note that all conversion
functions take a ϕ ix as first argument, as proof that ix is indeed
a member of ϕ . In the pattern functor, we have to describe the type
of the recursive positions by means of a datatype of kind ∗ϕ → ∗.
The one-layer unfolding uses the original datatypes of the family
in the recursive positions, and we express this by choosing I∗:

data I∗ (ix ::∗ϕ) = I∗ {unI∗ :: ix}
The type I∗ behaves as the identity on types so that recursive
occurrences inside the functor are stored “as is”. Although the
definition of I∗ is essentially the same as that of I in Section 2, we
give it a different name to highlight that we are using it conceptually
at kind ∗ϕ → ∗ rather than kind ∗ → ∗, even though the two kinds
coincide in the Haskell code.

Here is the Family instance of AST:

type instance PF AST = PFAST

instance Family AST where
from = fromAST
to = toAST

The functions fromAST and toAST are straightforward and not given
here.

We can now go on to define a HFunctor instance and sub-
sequently recursion schemes such as fold and unfold for PFAST.
However, since we strive for programming generically with fami-
lies of datatypes, we want to avoid having to define HFunctor man-

ually for our family. Instead, we will try – as we have before in
Section 2 – to build our functor systematically from a fixed set of
datatypes.

4.3 Building functors systematically
It turns out that we can use almost the same datatypes as before to
represent functors. The datatypes K, :×:, and :+: can be lifted from
being parameterized over an r of kind ∗ to being parameterized over
an r of kind ∗ϕ →∗ and an index ix of kind ∗ϕ :

data K a (r ::∗ϕ →∗) (ix ::∗ϕ) = K a
data (f :+: g) (r ::∗ϕ →∗) (ix ::∗ϕ) = L (f r ix) | R (g r ix)
data (f :×: g) (r ::∗ϕ →∗) (ix ::∗ϕ) = f r ix :×: g r ix

The type I has been used to represent a recursive call. In the current
situation, recursive calls can be to a specific index in the family.
Therefore, I gets an additional argument xi :: ∗ϕ that is used to
determine the recursive call to make:

data I (xi ::∗ϕ) (r ::∗ϕ →∗) (ix ::∗ϕ) = I (r xi)

It is perhaps surprising that xi is different from ix. But where ix
projects out a certain member of the family, the type of the recursive
call is independent of the type we are ultimately interested in. In
fact, we have not yet used the parameter ix anywhere. If we look
at the direct definition of PFAST, we see that depending on the
index we choose to project out of the functor, we get different
functors. Only the first five constructors of PFAST contribute to
PFAST r Expr, for example.

We introduce another combinator for pattern functors in order
to express such constraints on the index:

infix 6 :.:
data (f :.: (xi ::∗ϕ)) (r ::∗ϕ →∗) (ix ::∗ϕ) where

Tag :: f r xi→ (f :.: xi) r xi

By tagging a functor with an index from the family, we make
explicit that the tagged part only contributes to the structure of that
particular member of the family.

We now have all the combinators we need to give a structural
representation of the AST pattern functor:

type PFAST = K Int :.: Expr :+: -- Const
(I Expr :×: I Expr) :.: Expr :+: -- Add
(I Expr :×: I Expr) :.: Expr :+: -- Mul
I Var :.: Expr :+: -- EVar
(I Decl :×: I Expr) :.: Expr :+: -- Let
(I Var :×: I Expr) :.: Decl :+: -- :=
(I Decl :×: I Decl) :.: Decl :+: -- Seq
K String :.: Var -- V

To match the structure of the direct definition of PFAST more
closely, we have chosen to tag the representation of every construc-
tor with the index it targets. Alternatively, we could have tagged the
sum of all constructors of a type just once.

If we use the structural version of PFAST in the Family in-
stance, we have to adapt the conversion functions. Again, these are
straightforward, but lengthy. We only show fromAST:

fromAST ::AST ix→ ix→ PFAST I∗ ix
fromAST Expr (Const i) =

L (Tag (K i))
fromAST Expr (Add e e′) =

R (L (Tag (ci e :×: ci e′)))
fromAST Expr (Mul e e′) =

R (R (L (Tag (ci e :×: ci e′))))
fromAST Expr (EVar x) =

R (R (R (L (Tag (ci x)))))
fromAST Expr (Let d e) =

R (R (R (R (L (Tag (ci d :×: ci e))))))

fromAST Decl (x := e) =
R (R (R (R (R (L (Tag (ci x :×: ci e)))))))

fromAST Decl (Seq d d′) =
R (R (R (R (R (R (L (Tag (ci d :×: ci d′))))))))

fromAST Var x =
R (R (R (R (R (R (R (Tag (K x))))))))

ci x = I (I∗ x)

4.4 Generic hmap
We still have to establish that our new functor combinators are
actually higher-order functors themselves:

instance El ϕ xi⇒ HFunctor ϕ (I xi) where
hmap f (I x) = I (f proof x)

instance HFunctor ϕ (K a) where
hmap f (K x) = K x

instance (HFunctor ϕ f,HFunctor ϕ g)⇒
HFunctor ϕ (f :+: g) where

hmap f p (L x) = L (hmap f p x)
hmap f p (R y) = R (hmap f p y)

instance (HFunctor ϕ f,HFunctor ϕ g)⇒
HFunctor ϕ (f :×: g) where

hmap f p (x :×: y) = hmap f p x :×: hmap f p y
instance HFunctor ϕ f⇒ HFunctor ϕ (f :.: ix) where

hmap f p (Tag x) = Tag (hmap f p x)

Despite our generalization, the code for hmap looks almost com-
pletely identical to the code for fmap. We need an additional, but
trivial case for (:.:). A slight change occurs in the case for I, where
we additionally have to require that the recursive call is actually in
our family via El ϕ xi, to be able to pass the required proof to the
mapped function f.

4.5 Generic compos
Using hmap, it is easy to define compos:

compos :: (Family ϕ,HFunctor ϕ (PF ϕ))⇒
(∀ix.ϕ ix→ ix→ ix)→ ϕ ix→ ix→ ix

compos f p = to p◦hmap (λp→ I∗ ◦ f p◦unI∗) p◦ from p

The only differences to the version in Section 2 are due to the
presence of explicit proof terms of type ϕ ix and because the actual
values in the structure are now wrapped in applications of the I∗
constructor.

Bringert and Ranta (2006) describe in their paper on compos
how to define the function on families of mutually recursive
datatypes. Their solution, however, requires to modify the fam-
ily of datatypes and rewrite them as a single GADT. Our version of
compos works on families of mutually recursive datatypes without
modification.

As an example use of compos, consider the following expres-
sion:

example = Let ("x" := Mul (Const 6) (Const 9))
(Add (EVar "x") (EVar "y"))

The following function renames all variables in example – note how
renameVar′ can use the type representation to take different actions
for different nodes – in this case, filter out nodes of type Var.

renameVar ::Expr→ Expr
renameVar = renameVar′ Expr

where
renameVar′ ::AST a→ a→ a
renameVar′ Var x = x++"_"
renameVar′ p x = compos renameVar′ p x

The call renameVar example yields:

Let ("x_" := Mul (Const 6) (Const 9))
(Add (EVar "x_") (EVar "y_"))

4.6 Generic fold
We can also define fold using hmap. Again, the definition is very
similar to the single-datatype version:

type Algebra ϕ r = ∀ix.ϕ ix→ PF ϕ r ix→ r ix

fold :: (Family ϕ,HFunctor ϕ (PF ϕ))⇒
Algebra ϕ r→ ϕ ix→ ix→ r ix

fold f p = f p◦hmap (λp (I∗ x)→ fold f p x) p◦ from p

Using fold is slightly trickier than using compos, because we have
to construct a suitable argument of type Algebra. This algebra ar-
gument involves a function operating on the pattern functor, which
is itself a generically derived datatype. We therefore have to write
a function that destructs a sum of products, where the fields in the
products are wrapped by occurrences of K or I. It is much more
natural to define an algebra by giving one function per construc-
tor, with the functions taking as many arguments as there are fields,
preferably even in a curried style.

This problem is not caused by having families of many datatypes.
The generic programming language PolyP (Jansson and Jeuring
1997) has a special ad-hoc construct that helps in defining algebras
in a convenient style. We can do better: in the following, we will
define a type-indexed datatype (Hinze et al. 2004) for algebras, as
a type family inductively defined over the structure of functors. We
can then define algebras in a convenient style, and use them in a
generic fold.

The type-indexed datatype Alg is defined as follows:

type family Alg (f :: (∗ϕ →∗)→∗ϕ →∗)
(r ::∗ϕ →∗) (ix ::∗) ::∗

type instance Alg (K a) r ix = a→ r ix
type instance Alg (I xi) r ix = r xi→ r ix
type instance Alg (f :+: g) r ix = (Alg f r ix,Alg g r ix)
type instance Alg (K a :×: g) r ix = a→ Alg g r ix
type instance Alg (I xi :×: g) r ix = r xi→ Alg g r ix
type instance Alg (f :.: xi) r ix = Alg f r xi

The definition shows how we want to define our algebras: Oc-
currences of K and I are unwrapped. An algebra on a sum is a
pair of algebras on the components. In the product case, we make
use of knowledge on how datatypes are built: products are always
nested to the right, and the left components are always fields, either
wrapped by K or I. Hence, we can give two cases that allow us to
turn algebras on a product into curried functions. The case for tags
simply recurses.

We then have to show that we can transform such a more
convenient algebra into the form that fold expects. To this end, we
define the generic function apply:

class Apply (f :: (∗ϕ →∗)→∗ϕ →∗) where
apply ::Alg f r ix→ f r ix→ r ix

instance Apply (K a) where
apply f (K x) = f x

instance Apply (I xi) where
apply f (I x) = f x

instance (Apply f,Apply g)⇒ Apply (f :+: g) where
apply (f,g) (L x) = apply f x
apply (f,g) (R x) = apply g x

instance Apply g⇒ Apply (K a :×: g) where
apply f (K x :×: y) = apply (f x) y

instance Apply g⇒ Apply (I xi :×: g) where
apply f (I x :×: y) = apply (f x) y

instance Apply f⇒ Apply (f :.: xi) where
apply f (Tag x) = apply f x

We can further facilitate the construction of algebras by defining an
infix operator for pairing:

infixr 1 &
(&) = (,)

As an example, let us specify an evaluator on our abstract syntax
tree types using an algebra.

Because different types in our family are mapped to different
results, we need another family of datatypes for the result type of
our algebra:

data family Value a ::∗
data instance Value Expr = EV (Env→ Int)
data instance Value Decl = DV (Env→ Env)
data instance Value Var = VV Var

type Env = [(Var, Int)]

An environment maps variables to integers. Expressions can con-
tain variables, we therefore interpret them as functions from en-
vironments to integers. Declarations can be seen as environment
transformers. Variables evaluate to their names. We can now state
the algebra:

evalAlg ::Algebra AST Value
evalAlg = const (apply

((λx → EV (const x)) -- Const
& (λ (EV x) (EV y)→ EV (λm→ x m+ y m)) -- Add
& (λ (EV x) (EV y)→ EV (λm→ x m∗ y m)) -- Mul
& (λ (VV x) → EV (fromJust◦ lookup x)) -- EVar
& (λ (DV e) (EV x)→ EV (λm→ x (e m))) -- Let
& (λ (VV x) (EV v)→ DV (λm→ (x,v m) : m)) -- :=
& (λ (DV f) (DV g)→ DV (g◦ f)) -- Seq
& (λx → VV x))) -- V

Testing

eval ::Expr→ Env→ Int
eval x = let (EV f) = fold evalAlg Expr x in f

in the expression eval example [("y",−12)] yields 42.

4.7 Summary
We have now introduced a library for generic programming on
families of mutually recursive types. The library consists of the type
family PF, the classes Family and El, and the functor constructors
I, K, :+:, :×:, and :.:. Furthermore, the library contains classes
and instances for a number of generic functions, such as all the
HFunctor code, the definitions of compos, fold and unfold.

To use the library for a specific family a user has to do the
following: define a GADT such as AST, instantiate the type family
PF to the pattern functor, and construct Family and El instances.
This may still seem a significant amount of work, but all of this
code is entirely straightforward and can easily be automated. In
fact, we have implemented the generation of most of this boilerplate
code in Template Haskell, so that only the definition of the GADT
and a call to a Template Haskell function remains.

Once the library is instantiated, all generic functions that are
provided by the library are available for this family without any
further work.

5. The Zipper
For a tree-like datatype, the Zipper (Huet 1997) is a derived data
structure that allows efficient navigation through a tree, along its

recursive nodes. At every moment, the Zipper keeps track of a
location: a point of focus paired with a context that represents the
rest of the tree. The focus can be moved up, down, left, and right.

For regular datatypes, it is well-known how to define Zippers
generically (Hinze et al. 2004). In the following, we first show how
to define a Zipper for a system of mutually recursive datatypes us-
ing our example of abstract syntax trees (Section 5.1). Then, in Sec-
tion 5.2, we give a generic algorithm in terms of the representations
introduced in Section 4.3.

5.1 Zipper for mutually recursive datatypes
We first give a non-generic presentation of the Zipper for abstract
syntax trees as defined in Section 3.

A location is the current focus paired with context information.
In a setting with multiple types, the type of the focus ix is not known
– hence, we make it existential, and carry around a representation
of type AST ix:

data LocAST ::∗AST→∗ where
Loc ::AST ix→ ix→ CtxsAST a ix→ LocAST a

The type CtxsAST encodes context information for the focus as a
path from the focus to the root of the full tree. The path is stored in
a stack of context frames:

data CtxsAST ::∗AST→∗AST→∗ where
Nil ::CtxsAST a a
Cons ::CtxAST ix b→ CtxsAST a ix→ CtxsAST a b

A context stack of type CtxsAST a b represents a value of type a
with a b-typed hole in it. More specifically, a stack consists of
frames of type CtxAST ix b that represent constructor applications
that yield an ix-value with a hole of type b in it. The full tree that is
represented by a location can be recovered by plugging the value in
focus into the topmost context frame, plugging the resulting value
into the next frame, and so on. For this to work, the target type ix
of each context frame must be equal to the type of the hole in the
remainder of the stack – as enforced by the type of Cons.

5.1.1 Contexts
A single context frame CtxAST is following the structure of the
types in the AST system closely.

data CtxAST ::∗AST→∗AST→∗ where
AddC1 ::Expr→ CtxAST Expr Expr
AddC2 ::Expr→ CtxAST Expr Expr
MulC1 ::Expr→ CtxAST Expr Expr
MulC2 ::Expr→ CtxAST Expr Expr
EVarC :: CtxAST Expr Var
LetC1 ::Expr→ CtxAST Expr Decl
LetC2 ::Decl→ CtxAST Expr Expr

BindC1 ::Expr→ CtxAST Decl Var
BindC2 ::Var → CtxAST Decl Expr
SeqC1 ::Decl→ CtxAST Decl Decl
SeqC2 ::Decl→ CtxAST Decl Decl

The relation between CtxAST and AST becomes even more pro-
nounced if we also look at the directly defined pattern functor
PFAST from Section 4.2. For every constructor in PFAST, we have
as many constructors in CtxAST as there are recursive positions.
We can descend into a recursive position. The type of the recursive
position then becomes the type of the hole, the second argument
of CtxAST. The other components of the original constructor are
stored in the context. As an example, consider:

Let :: Decl→ Expr→ Expr
LetF :: r Decl→ r Expr→ PFAST r Expr

We have two recursive positions. If we descend into the first, then
Decl is the type of the hole, while Expr remains – and so we get

LetC1 ::Expr→ CtxAST Expr Decl

If, however, we descend into the second position, then Expr is the
type of the hole with Decl remaining:

LetC2 ::Decl→ CtxAST Expr Expr

5.1.2 Navigation
We now define functions that move the focus, transforming a loca-
tion into a new location. These functions return their result in the
Maybe monad, because navigation may fail: we cannot move down
from a leaf of the tree, up from the root, or right if there are no more
siblings in that direction.

Moving down analyzes the current focus. For all constructors
that do not build leaves, we descend into the leftmost child by
making it the new focus, and by pushing an appropriate frame onto
the context stack. For leaves, we return Nothing.

down ::LocAST ix→Maybe (LocAST ix)
down (Loc Expr (Add e e′) cs) =

Just (Loc Expr e (Cons (AddC1 e′) cs))
down (Loc Expr (Mul e e′) cs) =

Just (Loc Expr e (Cons (MulC1 e′) cs))
down (Loc Expr (EVar x) cs) =

Just (Loc Var x (Cons EVarC cs))
down (Loc Expr (Let d e) cs) =

Just (Loc Decl d (Cons (LetC1 e) cs))
down (Loc Decl (x := e) cs) =

Just (Loc Var x (Cons (BindC1 e) cs))
down (Loc Decl (Seq d d′) cs) =

Just (Loc Decl d (Cons (SeqC1 d′) cs))
down = Nothing

The function right succeeds for nodes that actually have a right
sibling. The size of the context stack remains unchanged: we just
replace its top element with a new frame.

right ::LocAST ix→Maybe (LocAST ix)
right (Loc e (Cons (AddC1 e′) cs)) =

Just (Loc Expr e′ (Cons (AddC2 e) cs))
right (Loc e (Cons (MulC1 e′) cs)) =

Just (Loc Expr e′ (Cons (MulC2 e) cs))
right (Loc d (Cons (LetC1 e) cs)) =

Just (Loc Expr e (Cons (LetC2 d) cs))
right (Loc x (Cons (BindC1 e) cs)) =

Just (Loc Expr e (Cons (BindC2 x) cs))
right (Loc d (Cons (SeqC1 d′) cs)) =

Just (Loc Decl d′ (Cons (SeqC2 d) cs))
right = Nothing

The function left is very similar to right. Finally, the function up is
applicable whenever the current focus is not the root of the tree, i.e.,
whenever the context stack is non-empty. We then analyze the top
context frame and plug in the old focus, yielding the new focus, and
retain the rest of the context. The definition is omitted for reasons
of space.

5.1.3 Using the Zipper
To use the Zipper, we need functions to turn syntax trees into
locations, and back again. For manipulating trees, we provide an
update operation that replaces the subtree in focus.

To enter the tree, we place it into the empty context:

enter ::AST ix→ ix→ LocAST ix
enter p e = Loc p e Nil

To leave, we move up as far as possible and then return the expres-
sion in focus.

leave ::LocAST Expr→ Expr
leave (Loc e Nil) = e
leave loc = leave (fromJust (up loc))

To update the tree, we pass in a function capable of modifying
the current point of focus. Because the value in focus can have
different types, this function needs to be parameterized by the type
representation.

update :: (∀ix.AST ix→ ix→ ix)→
LocAST Expr→ LocAST Expr

update f (Loc p x cs) = Loc p (f p x) cs

As an example, we modify the multiplication in

example = Let ("x" := Mul (Const 6) (Const 9))
(Add (EVar "x") (EVar "y"))

To combine the navigation and edit operations, it is helpful to
make use of flipped function composition (>>>) ::(a→ b)→ (b→
c)→ (a→ c) and monadic composition (>=>) ::Monad m⇒ (a→
m b)→ (b→m c)→ (a→m c). The call

enter Expr >>>down>=>down>=> right>=>update solve>>>
leave>>> return $ example

with
solve ::AST ix→ ix→ ix
solve Expr = Const 42
solve x = x

results in

Just (Let ("x" := Const 42) (Add (EVar "x") (EVar "y")))

5.2 A generic Zipper
We now define a Zipper generically for a system of mutually re-
cursive datatypes. We make the same steps as in the example for
abstract syntax trees before.

The type definitions for locations and context stacks stay essen-
tially the same:

data Loc :: (∗ϕ →∗)→∗ϕ →∗ where
Loc :: (Family ϕ,Zipper ϕ (PF ϕ))⇒

ϕ ix→ ix→ Ctxs ϕ a ix→ Loc ϕ a

data Ctxs :: (∗ϕ →∗)→∗ϕ →∗ϕ →∗ where
Nil ::Ctxs ϕ a a
Cons :: ϕ ix→ Ctx (PF ϕ) ix b→ Ctxs ϕ a ix→ Ctxs ϕ a b

Instead of a specific proof term AST ix, we now store a generic
proof term ϕ ix for an arbitrary family in a location. Additionally,
we need a Zipper for the system ϕ . This condition is expressed by
Zipper (PF ϕ) and will be explained in more detail below.

In the stack Ctxs, we also require that the types of the elements
are in ϕ via the field ϕ ix.

5.2.1 Contexts
The context type is defined generically on the pattern functor of ϕ .
We thus reuse the type family PF defined in Section 3. We have
to distinguish between different type constructors that make up the
pattern functor, and therefore define Ctx as a datatype family:

data family Ctx f ::∗ϕ →∗ϕ →∗
Like the context stack, a context frame is parameterized over both
the type of the resulting index and the type of the hole.

The simple cases are for constant types, sums and products.
There is a correspondence between the context of a datatype and
its formal derivative (McBride 2001):

data instance Ctx (K a) ix b = CK Void
data instance Ctx (f :+: g) ix b = CL (Ctx f ix b)

| CR (Ctx g ix b)
data instance Ctx (f :×: g) ix b = C1 (Ctx f ix b) (g I∗ ix)

| C2 (f I∗ ix) (Ctx g ix b)

For constants, there are no recursive positions, hence we produce
an empty datatype, i.e., a datatype with no constructors:

data Void

For a sum, we are given either an f or a g, and compute the context
of that. For a product, we can descend either left or right. If we
descend into f, we pair a context for f with g. If we descend into g,
we pair f with a context for g.

We are left with the cases for I and (:.:). According to the
analogy with the derivative, the context of the identity should be the
unit type. However, we are in a situation where there are multiple
types involved. The type index of I fixes the type of the hole. We
express this type equality as follows, by means of a GADT:1

data instance Ctx (I xi) ix b where
CId ::Ctx (I xi) ix xi

For the case of tags, we have a similar situation. A tag does not
affect the structure of the context, it only provides information for
the type system. In this case, not the type of the hole, but the type
of the context itself is required to match the type index of the tag:

data instance Ctx (f :.: xi) ix b where
CTag ::Ctx f xi b→ Ctx (f :.: xi) xi b

This completes the definition of Ctx. We can convince ourselves
that instantiating Ctx to PF AST results in a datatype that is iso-
morphic to CtxAST. It is also quite a bit more complex than the
hand-written variant, but fortunately, the programmer never has to
use it directly. Instead, we can interface with it using generic navi-
gation functions.

5.2.2 Navigation
The navigation functions are again generically defined on the struc-
ture of the pattern functor. Thus, we define them in a class Zipper:

class Zipper ϕ f where
. . .

We will fill this class with methods incrementally.

Down To move down in a tree, we define a generic function first
in our class Zipper:

class Zipper ϕ f where
. . .
first :: (∀b.ϕ b→ b→ Ctx f ix b→ a)→

f I∗ ix→Maybe a

The function takes a functor f I∗ ix and tries to split off its first
recursive component. This is of some type b where we know ϕ b.
The rest is a context of type Ctx f ix b. The function takes a
continuation parameter that describes what to do with the two parts.
Function down is defined in terms of first:

down ::Loc ϕ ix→Maybe (Loc ϕ ix)
down (Loc p x cs) =

first (λp′ z c→ Loc p′ z (Cons p c cs)) (from p x)

We try to split the tree in focus x. If this succeeds, we get a new
focus z and a new context frame c. We push c on the stack.

1 Currently, GHC does not allow instances of datatype families to be defined
as GADTs. In the actual implementation, we therefore simulate the GADT
by including an explicit proof of type equality (Peyton Jones et al. 2006;
Baars and Swierstra 2002).

We define first by induction on the structure of pattern functors.
Constant types constitute the leaves in the tree. We cannot descend,
and return Nothing.

instance Zipper ϕ (K a) where
. . .
first f (K a) = Nothing

In a sum, we descend further, and add the corresponding context
constructor CL or CR to the context.

instance (Zipper ϕ f,Zipper ϕ g)⇒ Zipper ϕ (f :+: g) where
. . .
first f (L x) = first (λp z c→ f p z (CL c)) x
first f (R y) = first (λp z c→ f p z (CR c)) y

We want to get to the first child. Therefore, we first try to descend
to the left in a product. Only if that fails (mplus), we try to split the
right component.

instance (Zipper ϕ f,Zipper ϕ g)⇒ Zipper ϕ (f :×: g) where
. . .
first f (x :×: y) = first (λp z c→ f p z (C1 c y)) x

‘mplus‘ first (λp z c→ f p z (C2 x c)) y

In the I case, we have exactly one possibility. We split I (I∗ x) into
x and the context CId and pass the two parts to the continuation f:

instance El ϕ xi⇒ Zipper ϕ (I xi) where
. . .
first f (I (I∗ x)) = return (f proof x CId)

It is interesting to see why this is type correct: the type of x is xi, so
applying f to x instantiates b to xi and forces the final argument of f
to be of type Ctx (I xi) ix xi. But that is exactly the type of CId.

Finally, for a tag, we also descend further and apply CTag to the
context.

instance Zipper ϕ f⇒ Zipper ϕ (f :.: xi) where
. . .
first f (Tag x) = first (λp z c→ f p z (CTag c)) x

This is type correct because Tag introduces the refinement that
CTag requires: applying CTag to c results in Ctx (f :.: xi) xi b. This
can be passed to f only if ix from the type of first is equal to xi. But
it is, because the pattern match on Tag forces it to be.

Up Now that we can move down, we also want to move up again.
We employ the same scheme as before: using an inductively defined
generic helper function fill, we then define up. The function fill has
the following type:

class Zipper ϕ f where
. . .
fill :: ϕ b→ b→ Ctx f ix b→ f I∗ ix

The function takes a value together with a compatible context frame
and plugs them together, producing a value of the pattern functor.
This operation is total, so no Maybe is required in the result.

With fill, we can define up as follows:

up ::Loc ϕ ix→Maybe (Loc ϕ ix)
up (Loc p x Nil) = Nothing
up (Loc p x (Cons p′ c cs)) = Just (Loc p′ (to p′ (fill p x c)) cs)

We cannot move up in the root of the tree and thus fail on an empty
context stack. Otherwise, we pick the topmost context frame, and
call fill. Since fill results in a value of the pattern functor, we have
to convert back into the original form using to.

We start the definition of fill with the case for K. As an argument
to fill, we need a context for K, for which we defined but one
constructor CK with a Void parameter. In other words, in order
to call fill on K, we have to produce a value of Void, which, apart

from ⊥, is impossible. In the context of our Zipper library, we can
guarantee that ⊥ is never produced for Void. We therefore define:

instance Zipper ϕ (K a) where
. . .
fill p x (CK void) = impossible void

impossible ::Void→ a
impossible void = error "impossible"

The definition of fill is very straight-forward: for I, we return the
element to plug itself; for (:.:) and (:+:), we call fill recursively. In
the case for products, we recurse into the context:

instance (Zipper ϕ f,Zipper ϕ g)⇒ Zipper ϕ (f :×: g) where
. . .
fill p x (C1 c y) = fill p x c :×: y
fill p y (C2 x c) = x :×: fill p y c

Right As a final example of a navigation function, we define
right. We again employ the same scheme as before. We define a
generic function next with the following type:

class Zipper ϕ f where
. . .
next :: (∀b.ϕ b→ b→ Ctx f ix b→ a)→

(ϕ b→ b→ Ctx f ix b→Maybe a)

The function takes a context frame and an element that fits into the
context. By looking at the context, it tries to move the focus one
element to the right, thereby producing a new element – possibly
of different type – and a new compatible context. These can, as in
first, be combined using the passed continuation.

With next, we can define right:

right ::Loc ϕ ix→Maybe (Loc ϕ ix)
right (Loc p x Nil) = Nothing
right (Loc p x (Cons p′ c cs)) =

next (λp z c′→ Loc p z (Cons p′ c′ cs)) p x c

We cannot move right in the root of the tree, thus right fails in
an empty context. Otherwise, we only need to look at the topmost
context frame, and pass it to next, together with the current focus.
On success, we take the new focus, and push the new context frame
back on the stack.

Most cases of next are without surprises: calling next for K
is again impossible; in sums and on tags we recurse. Since an I
indicates a single child – a leaf in the tree – we cannot move right
from there and return Nothing.

The most interesting case is the case for products. If we are
currently in the first component, we try to move to the next element
there, but if this fails, we have to select the first child of the second
component, calling first. In that case, we also have to plug the old
focus x back into its context c, using fill. If, however, we are already
in the right component, we do not need a case distinction and just
try to move further to the right using next.

instance (Zipper ϕ f,Zipper ϕ g)⇒ Zipper ϕ (f :×: g) where
. . .
next f p x (C1 c y) =

next (λp′ z c′→ f p′ z (C1 c′ y)) p x c
‘mplus‘ first (λp′ z c′→ f p′ z (C2 (fill p x c) c′)) y

next f p y (C2 x c) =
next (λp′ z c′→ f p′ z (C2 x c′)) p y c

5.2.3 Using the Zipper
The functions enter, leave and update can be converted from the
specific case for AST almost without change. The code is exactly
as before, we only have to adapt the types.

enter :: (Family ϕ,Zipper ϕ (PF ϕ))⇒ ϕ ix→ ix→ Loc ϕ ix
enter p x = Loc p x Nil
leave ::Loc ϕ ix→ ix
leave (Loc p x Nil) = x
leave loc = leave (fromJust (up loc))
update :: (∀ix.ϕ ix→ ix→ ix)→ Loc ϕ ix→ Loc ϕ ix
update f (Loc p x cs) = Loc p (f p x) cs

Let us repeat the example from before, but now use the generic Zip-
per: apart from the additional argument to enter, nothing changes

enter Expr >>>down>=>down>=> right>=>update solve>>>
leave>>> return $ example

and the result is also the same:

Just (Let ("x" := Const 42) (Add (EVar "x") (EVar "y")))

6. Generic rewriting
Term rewriting can be specified generically, for arbitrary regular
datatypes, if these are viewed as fixed points of functors (Jansson
and Jeuring 2000,Van Noort et al. 2008). In the following we show
how to generalize term rewriting even further, to work on families
with an arbitrary number of datatypes. For reasons of space, we do
not discuss generic rewriting in complete detail, but focus on the
operation of matching the left-hand side of a rule with a term.

6.1 Schemes of regular datatypes
Before tackling matching on families of mutually recursive data-
types, we briefly sketch the ideas behind its implementation on
regular datatypes. Consider how to implement matching for the
simple version of the Expr datatype introduced in Section 2. First,
we define expression schemes, which extend expressions with a
constructor for rule meta-variables. Then we define matching of
those schemes against expressions:

data ExprS = MetaVar String | ConstS Int
| AddS ExprS ExprS |MulS ExprS ExprS

match ::ExprS→ Expr→Maybe [(String,Expr)]

On success, match returns a substitution mapping meta-variables to
matched subterms. For example, the call

match (MulS (MetaVar "x") (MetaVar "y"))
(Mul (Const 6) (Const 9))

yields Just [("x",Const 6),("y",Const 9)].
To implement match generically, we need to define the scheme

of a datatype generically. To this end, recall that a regular datatype
is isomorphic to the type Fix f, for a suitably defined f. A meta-
variable can appear deep inside a scheme, this suggests that the
extension with MetaVar should take place inside the recursion, and
hence on f. This motivates the following definition for schemes of
regular datatypes:

type Scheme a = Fix (K String :+: PF a)

For example, the expression scheme that is used above as the first
argument to match can be represented by

In (R (R (R (I (In (L (K "x"))) :×: I (In (L (K "y")))))))

6.2 Schemes of a datatype family and substitutions
A family of mutually recursive datatypes requires as many sorts of
meta-variables as there are datatypes. For example, for the family
used in Section 3, we need three meta-variables, ranging over Expr,
Decl and Var, respectively. Fortunately, we can deal with all these
meta-variables in one go:

type Scheme ϕ = HFix (K String :+: PF ϕ)

As in the regular case, the pattern functor is extended with a meta-
variable representation. We want meta-variable representations to
be polymorphic, so, unlike other constructors, K String is not
tagged with (:.:). Now, the same representation can be used to
encode meta-variables that match, for example, Expr, Decl and
Var.

Dealing with multiple datatypes affects the types of substi-
tutions. We cannot use a homogeneous list of mappings as we
did earlier, because different meta-variables may map to different
datatypes. We get around this difficulty by existentially quantifying
over the type of the matched datatype:

data DynIx ϕ = ∀ix.DynIx (ϕ ix) ix
type Subst ϕ = [(String,DynIx ϕ)]

6.3 Generic matching
Generic matching is defined as follows:

type MatchM s a = StateT (Subst s) Maybe a

matchM :: (Family ϕ,HZip ϕ (PF ϕ))⇒ ϕ ix→
Scheme ϕ ix→ I∗ ix→MatchM ϕ ()

matchM p (HIn (L (K metavar))) (I∗ e)
= do subst← get

case lookup metavar subst of
Nothing→ put ((metavar,DynIx p e) : subst)
Just → fail ("repeated use: "++metavar)

matchM p (HIn (R r)) (I∗ e)
= combine matchM r (from p e)

Generic matching tries to match a term of type I∗ ix against a
scheme of corresponding type Scheme ϕ ix. The resulting informa-
tion is returned in the MatchM monad. The definition of MatchM
uses Maybe for indicating possible failure, and on top of that
monad we use the state transformer StateT. The state monad is
used to thread the substitution as we traverse the scheme and the
term in parallel. The class HZip, which contains functionality for
zipping, is introduced in the following subsection.

Generic matching consists of two cases. When dealing with a
meta-variable, we first check that there is no previous mapping
for it. (For the sake of brevity, we do not show how to deal with
multiple occurrences of a meta-variable.) If that is the case, we
update the state with the new mapping. The second case deals
with matching constructors against constructors. More specifi-
cally, this corresponds to matching Mul (Const 6) (Const 9) against
MulS (MetaVar "x") (MetaVar "y"). This is handled by the
generic function combine, which matches the two pattern functor
representations. If the representations match (as in our example),
then matchM is applied to the recursive occurrences (for instance,
on MetaVar "x" and Const 6, and MetaVar "y" and Const 9).

Now we can write the following wrapper on matchM to hide the
use of the state monad that threads the substitution:

match :: (Family ϕ,HZip ϕ (PF ϕ))⇒ ϕ ix→
Scheme ϕ ix→ ix→Maybe (Subst ϕ)

match p scheme tm = execStateT (matchM p scheme (I∗ tm)) []

6.4 Generic zip and combine
The generic function combine is defined in terms of a another
function, which is a generalization of zipWith for arbitrary functors.
Like hmap, the function hzipM is defined by induction on the
pattern functor by means of a type class:

class HZip ϕ f where
hzipM ::Monad m⇒

(∀ix.ϕ ix→ r ix→ r′ ix→m (r′′ ix))→
f r ix→ f r′ ix→m (f r′′ ix)

The function hzipM takes an argument that combines the r and r′

structures stored in the pattern functor. The traversal is performed
in a monad to notify failure when the functor arguments do not
match, and to allow the argument to use state, for example.

In the case of combine, we are not interested in the resulting
merged structure (r′′ ix). Indeed, matchM stores information only
in the state monad, so we define combine to ignore the result.

data K∗ a b = K∗ {unK∗ ::a}
combine :: (Monad m,HZip ϕ f)⇒

(∀ix.ϕ ix→ r ix→ r′ ix→m ())→
f r ix→ f r′ ix→m ()

combine f x y = do hzipM wrapf x y
return ()

where wrapf p x y = do f p x y
return (K∗ ())

In the above, K∗ is used to ignore the type ix in the result. The
definition of hzipM does not differ much from that used when
dealing with a single regular datatype:

instance El ϕ xi⇒ HZip ϕ (I xi) where
hzipM f (I x) (I y) = liftM I (f proof x y)

instance (HZip ϕ a,HZip ϕ b)⇒ HZip ϕ (a :×: b) where
hzipM f (x1 :×: x2) (y1 :×: y2)

= liftM2 (:×:) (hzipM f x1 y1) (hzipM f x2 y2)
instance (HZip ϕ a,HZip ϕ b)⇒ HZip ϕ (a :+: b) where

hzipM f (L x) (L y) = liftM L (hzipM f x y)
hzipM f (R x) (R y) = liftM R (hzipM f x y)
hzipM f = fail "zip failed in :+:"

instance HZip ϕ f⇒ HZip ϕ (f :.: ix) where
hzipM f (Tag x) (Tag y) = liftM Tag (hzipM f x y)

instance Eq a⇒ HZip ϕ (K a) where
hzipM f (K x) (K y) | x≡ y = return (K x)

| otherwise = fail "zip failed in K"

In the definition above, we use liftM and liftM2 to turn the pure
structure constructors into monadic functions.

7. Related work
Malcolm (1990) shows how to define two mutually recursive types
as initial objects of functor-algebras. Swierstra et al. (1999) show
how to implement fixed points for mutual recursive datatypes in
Haskell. They introduce a new fixed point for every arity of mutu-
ally recursive datatypes. None of these approaches can be used as a
basis for an implementation of fixed points for mutually recursive
datatypes in Haskell suitable for implementing generic programs.
Higher-order fixed points like our HFix have been used by Bird
and Paterson (1999) and Johann and Ghani (2007) to model folds
on nested datatypes.

Several authors discuss how to generate folds and other re-
cursive schemes on mutually recursive datatypes (Böhm and Be-
rarducci 1985; Sheard and Fegaras 1993; Swierstra et al. 1999;
Lämmel et al. 2000). Again, the definitions in these papers can-
not be directly generalised to families of arbitrary many datatypes
in Haskell.

Mitchell and Runciman (2007) show how to obtain traversals
for mutually recursive datatypes using the class Biplate. However,
the type on which an action is performed remains fixed during a
traversal. In contrast, the recursion schemes from Section 4.4 can
apply their function arguments to subtrees of different types.

Since dependently typed programming languages have a much
more powerful type system than Haskell extended with GADTs
and type families, it is possible to define fixed-points for mutually

recursive datatypes in many dependently typed programming lan-
guages. Benke et al. (2003) give a formal construction for mutually
recursive datatypes as indexed inductive definitions in Alfa. Some
similarities with our work are that the pattern functor argument is
indexed by the datatype sort, and recursive positions specify the
sort index of the subtree. Altenkirch and McBride (2003) show how
to do generic programming in the dependently typed programming
language OLEG. We believe that it is easier to write generic pro-
grams on mutually recursive datatypes in our approach, since we do
not have to deal with kind-indexed definitions, environments, type
applications, datatype variables and argument variables, in addition
to the cases for sums, products and constants.

McBride (2001) first described a generic Zipper on regular
datatypes, which was implemented in Epigram by Morris et al.
(2006). The Zipper has been used as an example of a type-indexed
datatype in Generic Haskell (Hinze et al. 2004), but again only for
regular datatypes. The dissection operator introduced by McBride
(2008) is also only defined for regular datatypes, although McBride
remarks that an implementation in a dependently typed program-
ming language for mutually recursive datatypes is possible.

In most other generic programming approaches, recursion is not
explicitly represented and types occurring at such positions cannot
be changed. Such approaches cannot be used to define the examples
in this paper. For example SYB (Lämmel and Peyton Jones 2003)
and EMGM (Oliveira et al. 2006) cannot be used to define fold.
In fold, the algebra function is applied to constructor fields where
the recursive positions have been replaced by the carrier of the
algebra. However, in these approaches, values at recursive positions
cannot be transformed into values of other types. PolyLib (Norell
and Jansson 2004) supports the definition of fold, but it is limited
to regular datatypes. A similar argument can be made for type-
indexed types. Generic approaches that support type-indexed types
(Oliveira and Gibbons 2005) need to represent recursion explicitly
in order to define the Zipper and generic rewriting.

8. Conclusions
Until now, many powerful generic algorithms were known, but their
adoption in practice has been hindered by their restriction to regular
datatypes. In this paper, we have shown that we can overcome this
restriction in a way that is directly applicable in practice: using
recent extensions of Haskell, we can define generic programs that
exploit the recursive structure of datatypes on families of arbitrarily
many mutually recursive datatypes. For instance, extensive use
of generic programming becomes finally feasible for compilers,
which are often based on an abstract syntax that consists of many
mutually recursive datatypes. Furthermore, our approach is non-
invasive: the definitions of large families of datatypes need not be
modified in order to use generic programming.

Additionally, we have demonstrated our approach by imple-
menting several recursion schemes such as compos and fold, the
Zipper, and rewriting functionality.

Based on this paper, the libraries multirec and zipper have been
developed. They are available for download from HackageDB. A
version of the rewriting library based on multirec will be released
soon.

The multirec library contains Template Haskell code to auto-
matically generate the boilerplate code for a family of datatypes.
Also, in addition to the functionality shown here, the library offers
access to the names of constructors. Furthermore, in this paper we
have focused on functions that consume or transform values rather
than functions that produce values. This, however, is no limitation,
and we have for instance implemented a function that generates val-
ues of a particular type according to certain criteria using multirec.

Initial measurements indicate that our approach is in the slower
half of generic programming libraries for Haskell. On the other

hand, some benchmarked functions expose significant optimisation
opportunities to GHC. In one such example, GHC optimisations
removed the intermediate use of generic values leaving code that is
similar to what one would write manually. As a result, this example
runs only 1.7 times slower than handwritten code (compared to 68.7
for the slowest library). More details can be found in the thesis of
Rodriguez (2009).

In its current form, our approach cannot be used directly on
parameterized types and does not support functor composition.
We have, however, prototypical code that demonstrates that our
approach can be extended to support these concepts without too
much difficulty, and we plan to integrate this functionality into the
library in the near future.

We plan to study the application of our representation using
(:.:) to arbitrary GADTs, hopefully giving us fold and other generic
operations on GADTs, as in the work of Johann and Ghani (2008).

In parallel to the Haskell version, we have also experimented
with an Agda (Norell 2007) version of our library, using dependent
types. The Agda version has proved to be invaluable in thinking
about the development without having to worry about Haskell lim-
itations at the same time. As to Haskell, we hope that the support
for type families, which we rely on very much, will continue to sta-
bilize in the future, and that perhaps the kind system will be slightly
improved with possibilities to encode kinds such as our ∗ϕ , or with
the possibility to define kind synonyms.

Acknowledgements José Pedro Magalhães and Marcos Viera
commented on a previous version of this paper. Claus Reinke sug-
gested to us the “type families desugaring trick” to get around a
problem with the type checker in an older version of GHC. The
anonymous reviewers have provided several useful suggestions for
improving the presentation. This research has been partially funded
by the Netherlands Organisation for Scientific Research (NWO),
through its projects on “Real-life Datatype-Generic Programming”
(612.063.613) and “Scriptable Compilers” (612.063.406).

References
T. Altenkirch and C. McBride. Generic programming within dependently

typed programming. In Generic Programming, pages 1–20. Kluwer,
2003.

A. Baars and D. Swierstra. Typing dynamic typing. In ICFP’02, pages
157–166, 2002.

M. Benke, P. Dybjer, and P. Jansson. Universes for generic programs and
proofs in dependent type theory. Nordic J. of Comp., 10(4):265–289,
2003.

R. Bird and R. Paterson. Generalised folds for nested datatypes. Formal
Aspects of Computing, 11:11–2, 1999.

C. Böhm and A. Berarducci. Automatic synthesis of typed Λ-programs on
term algebras. Theoretical Computer Science, 39:135–154, 1985.

B. Bringert and A. Ranta. A pattern for almost compositional functions. In
ICFP’06, pages 216–226, 2006.

J. Cheney and R. Hinze. A lightweight implementation of generics and
dynamics. In ACM SIGPLAN Haskell Workshop, 2002.

J. Gibbons. Generic downwards accumulations. SCP, 37(1–3):37–65, 2000.

R. Hinze. A new approach to generic functional programming. In POPL’00,
pages 119–132, 2000a.

R. Hinze. Polytypic values possess polykinded types. In MPC’00, volume
1837 of LNCS, pages 2–27. Springer, 2000b.

R. Hinze. Generics for the masses. In ICFP’04, pages 236–243, 2004.

R. Hinze, J. Jeuring, and A. Löh. Type-indexed data types. SCP, 51(2):
117–151, 2004.

S. Holdermans, J. Jeuring, A. Löh, and A. Rodriguez. Generic views on
data types. In MPC’06, volume 4014 of LNCS, pages 209–234. Springer,

2006.

G. Huet. The Zipper. JFP, 7(5):549–554, 1997.

P. Jansson and J. Jeuring. A framework for polytypic programming on
terms, with an application to rewriting. In WGP’00, 2000.

P. Jansson and J. Jeuring. PolyP — a polytypic programming language
extension. In POPL’97, pages 470–482, 1997.

P. Jansson and J. Jeuring. Polytypic unification. JFP, 8(5):527–536, 1998.

J. Jeuring. Polytypic pattern matching. In FPCA’95, pages 238–248, 1995.

P. Johann and N. Ghani. Foundations for structured programming with
GADTs. In POPL’08, pages 297–308, 2008.

P. Johann and N. Ghani. Initial algebra semantics is enough! In Proceed-
ings, Typed Lambda Calculus and Applications, pages 207–222, 2007.

R. Lämmel and S. Peyton Jones. Scrap your boilerplate: A practical design
pattern for generic programming. pages 26–37. ACM Press, 2003.

R. Lämmel, J. Visser, and J. Kort. Dealing with large bananas. In WGP’00,
2000.

A. Löh. Exploring Generic Haskell. PhD thesis, Utrecht University, 2004.

G. Malcolm. Data structures and program transformation. SCP, 14:255–
279, 1990.

C. McBride. Clowns to the left of me, jokers to the right (pearl): dissecting
data structures. In POPL’08, pages 287–295, 2008.

C. McBride. The derivative of a regular type is its type of one-hole contexts.
strictlypositive.org/diff.pdf, 2001.

E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with
bananas, lenses, envelopes, and barbed wire. In FPCA’91, volume 523
of LNCS, pages 124–144. Springer, 1991.

N. Mitchell and C. Runciman. Uniform boilerplate and list processing. In
ACM SIGPLAN Haskell Workshop, 2007.

P. Morris, T. Altenkirch, and C. McBride. Exploring the regular tree types.
In Types for Proofs and Programs, LNCS. Springer, 2006.

T. van Noort, A. Rodriguez, S. Holdermans, J. Jeuring, and B. Heeren. A
lightweight approach to datatype-generic rewriting. In WGP’08, 2008.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Chalmers University of Technology, 2007.

U. Norell and P. Jansson. Polytypic programming in Haskell. In IFL’03,
volume 3145 of LNCS, pages 168–184. Springer, 2004.

B. C. d. S. Oliveira and J. Gibbons. Typecase: A design pattern for type-
indexed functions. In ACM SIGPLAN Haskell Workshop, 2005.

B. C. d. S. Oliveira, R. Hinze, and A. Löh. Extensible and modular generics
for the masses. In H. Nilsson, editor, TFP’06, pages 199–216, 2006.

S. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, Cambridge, 2003.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for GADTs. In ICFP’06, pages 50–61,
2006.

A. Rodriguez. Towards Getting Generic Programming Ready for Prime
Time. PhD thesis, Utrecht University, 2009.

T. Schrijvers, S. Peyton Jones, M. Chakravarty, and M. Sulzmann. Type
checking with open type functions. In ICFP’08, pages 51–62, 2008.

T. Sheard and L. Fegaras. A fold for all seasons. In FPCA’93, pages 233–
242, 1993.

T. Sheard and S. Peyton Jones. Template meta-programming in Haskell. In
ACM SIGPLAN Haskell Workshop, 2002.

D. Swierstra, P. Azero, and J. Saraiva. Designing and implementing com-
binator languages. In AFP, volume 1608 of LNCS, pages 150–206.
Springer, 1999.

