The Derivation of a Hierarchy of Algorithms for
Pattern Matching on Arrays

Johan Jeuring*
CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
(jt@Qcwi.nl)

1 Introduction

The pattern-matching problem can be posed on all ‘structured’ data types: given a pattern
and a subject, determine an occurrence of the pattern in the subject. For example, if P is
a u by v rectangular two-dimensional array, and S is an m by n array of the same type, the
problem is to find a pair (7,) such that for all £ and [such that u >k >1and v >1>1

(1) Sli—u+k,j—v+l] = P[k,1].

This description of the two-dimensional pattern-matching problem is taken from Baker [2].
For higher dimensional arrays similar definitions of matching can be given. This paper
derives a hierarchy of algorithms for pattern matching on arrays in the Bird-Meertens
calculus for program transformation. In this calculus, both specifications and algorithms
are functions, and a few high-level theorems are used as transformation rules. An algorithm
is derived from its specification by means of a calculation which typically consists of a
sequence of equalities, each an instantiation of a high-level theorem or a definition. Aspects
of the Bird-Meertens calculus can be found in [4], [5], [9], [14], [15], and [13].

The laws we use in the derivation are derived from the definition of the data type
array. The data type array can be defined in various ways. For a specific problem a
suitable definition has to be chosen, and this choice may differ for different problems.
Here, as in Jeuring [8], we define arrays as nested lists. The definition of the data type
array given in [8] is slightly modified and as a result the definition of several functions
given in [8], such as the function that returns all subarrays of an array (a subarray of an
array is the extension of the notion of substring or segment on lists to arrays), are shorter.
Other definitions of the data type array have been given by Bird [5], and Mullin [16].

*This research has been supported by the Dutch organisation for scientific research under project-nr.
NF 62.518.

Pattern matching algorithms on arrays have been described before. The algorithms
for pattern matching from Knuth et al. [12] and Aho and Corasick [1] can be used in an
algorithm for two-dimensional pattern matching. This algorithm is described by Bird [3]
and Baker [2]. Baker also notices the existence of (but does not give) a hierarchy of algo-
rithms for pattern matching on arrays. Karp, Miller and Rosenberg [11] give an algorithm
for finding repeated occurrences of square subarrays. This algorithm can be adjusted to
deal with pattern matching. Although this algorithm is well suited for parallel implemen-
tation, see Crochemore and Rytter [7], it is inefficient compared with the aforementioned
sequential algorithms.

This paper is organised as follows. Section 2 defines the data type array, and gives
some laws. Section 3 specifies the pattern-matching problem in terms of subarrays and
Section 4 sketches the derivation of a hierarchy of efficient algorithms for pattern matching
on arrays. For reasons of space, most of the proofs are omitted; these proofs can be found

in [10].

2 The data type array

This section defines the data type array. The data type arrayis an example of a hierarchical
data type: data types of which the nth component (n > 1) is expressed in terms of
the (n—1)th component, see Jeuring [10]. We give a definition of the data type zero-
dimensional array, denoted by Axq, of the data type one-dimensional array, denoted by
Ax, and we define the data type n-dimensional array (n > 1) in terms of the data type
(n—1)-dimensional array.

Elements of the data type zero-dimensional array, which is denoted by Axq, are scalars:
elements of simple types like bool and nat (the data type natural numbers). The data
type one-dimensional array over base type A, denoted by Ax, is the data type snoc-list
which is informally defined as follows (for a formal definition the reader is referred to
Malcolm [13]). The empty list O is a snoc-list, so O : Ax, and if z is a snoc-list and «
is an element of type A, then x K a is a snoc-list, so K : Ax x A — Ax. The list
with consecutive elements 1, 2 and 8, formally O+ 1 2K 8 is written [1,2,8]. The
data type snoc-list is defined as an initial algebra in the category of algebras with two
operators ¢ : B x A — B and ¢ : B. By definition, an initial algebra satisfies the property
that each homomorphism from an initial algebra to another algebra is unique. Such a
unique homomorphism satisfies nice calculational properties. In the case of snoc-list, we
have that, given an operator & : B x A — B and a value e : B, there exists a unique
function h : Ax — B that satisfies

hO = e
h(zKa) = (he)Da.

Function h is called a left-reduction, and it is denoted by &-e. If operator &: Ax A — A
with unit e is associative we write &/ for &-e, so +/[1,2,8] = 11, and we call §/ a
reduction. We give some examples of left-reductions.

e Given a function f : A — B, the map f*x : Ax — Bx takes a list and applies f to
each element in the list, so f*[1,2,8] = [f 1, [2, f8]. We have

fx = (i x)40,
where operator x is defined by (f x g) (a,b) = (f a,¢gb).

e Given a predicate p : A — bool, the filter p<a: Ax — Ax takes a list and retains the
elements that satisfy p in the list, so odd<[1,2,8] = [1]. We have p< = &40, where
operator & is defined by

r+Ka ifpa
z otherwise .

rTPha =

The composition of functions &/ - p < equals the composition of functions @/ - p7g*,
where p?g 1s defined by

r ifpax

plgxr =

vg otherwise |,

where vg is the unit of operator ®. Thus we can rewrite the composition of a
reduction and a filter into the composition of a reduction and a map. Function
plg itself is a left-reduction, the definition of which is omitted, provided predicate p
satisfiles pO and p(z K a) = pz.

e The operator 4K, which concatenates two lists, is defined in terms of a left-reduction

by
TRy = (Kpz)y.
Operator 4K is associative and has unit O.
e The function which returns the length of a list is denoted by # and defined by
= (+1)-)0,
where < is the left-projection, i.e., a < b = a, or, equivalently, < (a,b) = a.

Operator zip, denoted by T : (Ax x Ax) — (A x A)*, takes two equal-length lists, and
‘zips’ these lists together. For example, [1,2,3] T [4,5,6] = [(1,4),(2,5), (3,6)].

A theorem that is often used in the derivation of algorithms is the so-called Fusion on
snoc-list Theorem. This theorem describes the condition for ‘fusing’ the composition of a
function and a left-reduction into a left-reduction.

(2) Theorem (Fusion on snoc-list) Let & : Ax C — A, ®@: B x C — B. Suppose
[+ A — B satisfies for all a, and for all in the image of Ghe, f(z @ a) = (f2) ® a.
Then

[-(&fe) = @p(fe).

Function me; returns a singleton list containing the length of a snoc-list, that is me; z =
[# 2], or, equivalently, me; = 7 - #, where 7 = (O+). Using Fusion on snoc-list, observing

that [z+1] = (+1)* [z], we obtain
e = ((Hre <)H00].

A two-dimensional array is modelled by a list of lists. Intuitively, only a list of equal-
length lists is a proper two-dimensional array, but we forget about this restriction to
simplify the development of theory. We discuss this restriction in more detail later. Hence,
the elements of the data type two-dimensional array, denoted by Ax,, are the elements of
the data type Asx.

In general, the data type n-dimensional array (n > 1), denoted by Ax,, is defined as
the data type snoc-list of (n—1)-dimensional arrays.

(3) Definition The data type zero-dimensional array, denoted by Axq, is any simple
data type like bool and nat. The data type one-dimensional array, denoted by Ax, is
the data type snoc-list. Let Ax,_, be the data type (n—1)-dimensional array. Then
Ax, = Ax,_1* is the data type n-dimensional array.

Left-reductions on n-dimensional arrays are defined as follows.

(4) Definition (Hierarchical Left-reduction) The hierarchical left-reduction deno-
ted by (Gn,..., 51, 1)+ (€n,...,e1) 1 Ax, — B is defined as follows. If n = 0, then define
(Bny-eoy, B f)# (€n,...,e1) = [, and for n > 1 define

(Brs ey B)P (Enyeeser) = Sutrn - (Buctse s B, F) P (ncty ooy €))%

The following theorem is one of the most important results for the derivation of hierarchies
of algorithms on arrays: it characterises hierarchical left-reductions.

(5) Theorem (Characterisation of Hierarchical Left-reductions)
fn = (@n,...,®1,f0)7gn(€n,...,61)
if and only if for all m with n > m > 1,

fm O = €n

fm (‘T_H a) = (fm x) ®m (fm—l CL) 9

for some family of values e,, and some family of operators ®,,.

Function mey returns, when applied to a proper two-dimensional array (a proper array is
an array in the usual meaning of the word, and hence a proper two-dimensional array is
a list of equal-length lists), a list consisting of two elements: the height and the width of
the array. When applied to a non-proper two-dimensional array it returns some arbitrary
value. Function me, is a component of the family of functions me, : Ax, — natx, the
components of which return the measure of a proper n-dimensional array as a list and
some arbitrary value when applied to a non-proper array. The family of functions me,, is
an example of a hierarchical left-reduction. Define function meg by meq @ = 0. The family
of functions me,, is characterised by the equalities

me,, 0 = [0]
mey, (xR a) = (mey_ya)K((Itme,z)+1),

for all m with n > m > 1, where function [t returns the last element of a list. Hence, if
we define for m with n > m > 1, e, = [0], and

(6) 2®@na = aK((Itz)+1),
then, applying Characterisation of Hierarchical Left-reductions, me,, is defined by

(7)) me, = (Rn,...,01,0% % (€n,....€1),

where function a*® is defined by a® b = «a for all b.

For the definition of the family of functions propar,, : A%, — bool (for ‘proper array’) we
have to develop some more theory. The mth component of the family of functions propar,
determines, when applied to an element of Ax,,, whether or not the element is a proper
m-dimensional array. An example of a component of this family of functions is the function
propar,, which, given a lists of lists, determines whether or not it is a list of equal-length
lists. The family of functions propar, is defined by means of the family of functions me,.
The tuple of functions propar, » me, (function f a g is defined by (f 2 g)a = (fa,ga)) is
a hierarchical left-reduction. To prove this fact, we use the following notions and theorem.

We say that the family of functions f, is catamorphic modulo the family of functions g,
if there exists a family of operators &, such that for all m with n > m >1

fm (.Z‘—H CL) = (fm Ly Gm J,’) Dm (fm_l ay Gm—1 (L) .

If the family of functions ¢, is catamorphic modulo the family of functions f, too, we call
the families of functions f, and ¢, mutumorphisms. For mutumorphisms f, and g, it is
easy to prove the following theorem.

(8) Theorem (Hierarchical Mutumorphisms) Suppose the families of functions

fn» and g, are catamorphic modulo each other, that is, there exist families of operators &,
and ©,, such that for all m with n > m > 1

fm ($_|< a) = (fm Ty Gm $) Dm (fm—l a, Gm-1 a)
Im ($—|< CL) = (fm$7gm $) Om (fm_l A, Gm—1 CL) .

Then f, » g, is a hierarchical left-reduction:

fn Af, = (®n7'"7®17f0A90)7L>n(en7"'7el))
where for all m with n > m > 1, e,, = (f,» O, g» O), and operator ©,, is defined by

(*Ta y) Om (av b) = ((*Ta y) Dm (av b)? ($, y) Om ((L, b)) .

The families of functions propar, and me, are mutumorphisms. For all m with n > m > 1
we have
mey, (K a) = (meyz,propar,, ©) Sy (Mmen_1 a, propar,,_, a) ,
where operator &, is defined by
(z,9) Bm (a,0) = 2 @ma,
and
propar,, (x4 a) = (mey,x,propar,, &) Sy, (Mmen_1 a, propar,,_, a) ,
where operator &,, is defined by

false if y = false V b= false V ilx # a
true otherwise

(2,9) ©m (a,b)

3

where function it returns all but the last elements of a nonempty list, so it (z K a) =
z. (Function ¢/ returns all but the first elements of a list, so ¢/ ([a] 4K 2) = z, and
function hd returns the first element of a list, so hd ([a] 4) = a.) Applying Hierarchical
Mutumorphisms we obtain

me, & propar, = (On,...,©1,0%a true®)5 (en,....€e),
where operator © is defined by

(*Ta y) Om (av b) = ((*Ta y) Dm (av b)? (1‘, y) Om ((L, b)) .

Another example of a hierarchical left-reduction is the function size, denoted by #,,
which returns the number of elements in an n-dimensional array.

(9) #. = (+,...,+,1°4(0,...,0).

One would expect that the following equality holds on the domain of proper arrays. Let x
be multiplication of natural numbers.

(10) #, = x/-me,.

This equality can be proved with the following theorem, called Array Fusion, which lists
the conditions that have to be satisfied in order to fuse the composition of a family of
functions with a hierarchical left-reduction into a hierarchical left-reduction. It is often
applied in calculations, see Jeuring [8]. Its proof is an application of Characterisation of
Hierarchical Left-reductions, Theorem 5.

(11) Theorem (Array Fusion) Suppose that the family of functions f, and the fam-
ilies of operators ®, and &, satisfy for m withn > m > 1,

fr (2 @ma) = (fn) Om (fm-1),

for all x in the image of (Qp,...,®1,090)7 (€m,...,€1), and for all a in the image of
(®m—17---;@1;90)74n(em—17---7el)- Then

fn'(®n7"'7®1790)7t>n(6n7"'761) = (69717-"7@17][0'90)7@”(]%ena"'aflel)'

Since for all m with n > m > 1 we have

X/ (z @m a)
= definition of ®,, (6)
x/(a=+ ((ILx)+1))

= definition of reduction
(x/ a) x (It) +1)
= definition of x

((x/a) x (ltz))+(x/ a)

= a = it on the domain of proper arrays

((x/idta) x (ltx))+(x/a)
= definition of reduction
(x/z)+(x/a),

and since x/-0° = 1* because 1 is the unit of x, apply Array Fusion to obtain equal-
ity (10).

3 The specification

In this section we give a specification as a family of functions for pattern matching on
arrays.

A subarray of a two-dimensional array is a contiguous rectangle within the array. A sub-
array of an n-dimensional array is the straightforward extension of the notion of subarray
on two-dimensional array to the data type n-dimensional array. The family of functions
suba, returns all subarrays of an n-dimensional array as a snoc-list. Given two arrays,
the operator T4,: Ax, X Ax, — Ax, returns an array with maximal size. Given an N-
dimensional array P, the pattern-matching problem pmy requires finding an occurrence
of P in an N-dimensional array, or, if there are no such occurrences, the longest prefix
of P (function inits returns all prefixes of an array as a snoc-list, including the array itself)

occurring in the given array. Recall that array P is a list of (N —1)-dimensional arrays, so
function inits may be applied to P.

(12) pmy = T/ (€ inils P)a- subay .

The function pm, is the specification of pattern matching on snoc-list. Bird et al. [6] start
with this specification in their derivation of the pattern-matching algorithm of Knuth,
Morris and Pratt [12]. For the purpose of applying the theory developed in the previous
subsections, we want to specify the pattern-matching problem as a family of functions
instead of a function defined just on N-dimensional arrays, that is, we want the functions
Tuy/, (€ inils P), and subay to be dimension-dependent. Replace T4,/ by T4,/ and
subay by suba,. This leaves function (€ inits P) to be replaced by a dimension-dependent
equivalent. Define the family of functions list, by

list,, : Akyx — Aky_p*
(13) listy = id
list, = —K/-list,_y,

that is, list, = (4K,...,4K,id)-4 (0O,...,0). Note that listy_, : Axyx — Ax,x. The

family of functions pm,, is specified by
(14) pm, = T,/ (€ 4K/ initsklisty_, [P])<- suba, .

Function inits is defined on the data type n-dimensional array for n > 1; on the data type
zero-dimensional array we assume function inits to be the identity function. Function +</
is not defined on the data type Ax if A is not a data type of the form Bx for some B, and
in this case we extend its definition by defining it to be the identity function on snoc-list.
Consider the following example. Let P = [[2, 3], [5,4]] be a two-dimensional array pattern.
Then the family of functions pm, consists of three components:

pmy, = T#2/) (E [Da [[27 3]]7 [[27 3]7 [57 4]]])4 - subay
pmy = T#l/' (E [D7[2]7[273]7D7[5]7[574]])q'SUbal
pmy = Ta/ - (€1[2,3,4,5])< - subag .

Function pm, is a specification of the problem of pattern matching with probably more than
one pattern. Abbreviate the predicate € 4K/ initsk list y_,, [P] to ¢,. Note that ¢y = (€
inits P), and that ¢,(z K @) = ¢, A ¢,_1 a. Abbreviate the list </ inits* list y_,, [P]
to @,. A function 4, a satisfying ¢,(z K a) = ¢, & A d, a is defined by

(15) d,a = a€ (hd-(F#Fz —=))x(x € inils)aQ, .

Consider the function pm,. Let the two-dimensional pattern P have height h. Then
the elements of the set inits P all have height h, and each element of suba, with height
not equal to h does not match with any of the elements of inits P. Therefore, all elements
of suba, with height not equal to h can immediately be discarded. This argument can be

repeated for the higher-dimensional functions pm,, with height replaced by me,_;-value.
We define a family of functions subm,, the elements of which enumerate only subarrays of a
given measure, and we replace suba, by subm, in the specification of the pattern-matching
problem.

Let the family of functions subm, enumerate all subarrays of its argument with me,,_;-
value equal to me,_;-value of the pattern. For example, if the pattern is a two-dimensional
array of height 4, then subm, enumerates all subarrays of height 4. The family of func-
tions subm, can be defined elegantly using an auxiliary family of functions taim, which
enumerates the ‘tails’ with me,_;-value equal to me,_;-value of the pattern. Consider
for example two-dimensional arrays. The two-dimensional subarrays of height 4 of a two-
dimensional array =< a consist of the two-dimensional subarrays of height 4 of z, together
with all subarrays of height 4 of # < a containing four contiguous elements from the one-
dimensional array a. All contiguous elements of height 4 from a are obtained by applying
submy to a. All subarrays of height 4 of * X a containing a contiguous part of a are
obtained by appending the elements of subm, a to the ‘corresponding’ (of the same height
and occurring at the same position) tails of . The tails of # are obtained by means of the
function taimg. Informally, we define a subarray y of an array x to end in x if y, when
drawn in two dimensions, occurs at the right end of . The function taim, applied to an
array z returns a list of lists, in which each list consists of subarrays of equal height (4
in the example) of z, ending at the same position in z. Any two arrays occurring in one
of the lists of taimy are of equal height, but of different breadth. The lists in the list of
lists are enumerated in the same order of height as the subarrays in subm;. Let P be an
N-dimensional array with measure p, with (# 0)<p = p. Define the family of functions
stam,, by

(16) stam, = subm, » taim,

Apply Hierarchical Mutumorphisms to obtain a hierarchical left-reduction for stam,. De-
fine stamg by 7 a (7 - 7). Characterise the family of functions subm, by

subm,, i Ak, — Ax,x
(17) subm, O = 0O
subm, (K a) = (subm,x) 4K (4K/ taim, (z K a)) ,

and family of functions taim, by

taim, i Ax, — Ak ik
(18) taim, O = 0O
taim, (r K a) = (taim,z) 2 (((= (n—1) = p)- me,_1)asubm,_1 a) ,

where function n — takes the first n elements of a list, and is defined by

0—z = O
[hdz] < (n — (tz)) ifz#0O

O otherwise

(n+l) =z =

3

and operator @ is defined by

(r-m)xa ifz=0
tYTga otherwise

(19) z@a =

where operator © is defined by
(20) s a = (Ka)yxz—4K[[a]].

Abbreviate ((= n — p) - me,) to p,, and note that py = true®. From these equations
it follows that the families of functions subm, and taim, are mutumorphisms. Applying
Hierarchical Mutumorphisms we obtain

(21) stam, = (®n,...,@1,7a(7-7))F (€n,....€1),

where the family of values e, is defined by e, = (O0,0), and the family of operators ®, is
defined by

Om b Ak X Akphox) X (Akpo1x X Ak _1dkok) — Ak X Ak ok
(22) (2,¥) @m (a,b) = (24K (4K/2),2)
where z = y O (pn-1<a),

for all m with n > m > 1. Specification (14) is transformed into

(23) pm, = T,/ ¢.<- subm, .

4 The derivation

This section sketches the derivation of a hierarchy of efficient algorithms for pattern-
matching on arrays.

The derivation of a hierarchical left-reduction for the pattern-matching problem speci-
fied in (23) is structured as follows. First, we rewrite the specification to a form to which
Array Fusion can be applied. Then we try to apply Array Fusion, but the condition of this
theorem cannot be satisfied. However, the derivation suggests to tuple with an extra func-
tion. Applying Hierarchical Mutumorphisms we show that the resulting tuple of functions
is a hierarchical left-reduction that can be implemented as an efficient program.

Since subm, = < - stam,,, we derive for arbitrary family of functions ¢,:

pm,

= definition of pm,,
Ta, /- Gn< - subm,

= definition of stam,
T,/ aa- < stamy,

= law for x

- (Ta,/ - Gu<) X gn - stam, .

10

Abbreviate the product of functions (T4, /- ¢.<) X g, to j,. Array Fusion is now applied
to the expression j, - stam,. We obtain

Jn - stam, = (Sn,...,01,00 - stamg)4 (€q,...,€1),
provided
(24) e = Jn(0,0)

(25) Jm ((2,9) @m (a,0)) = (m (2, 9)) Om (m-1 (a, b)),

for all m with n > m > 1. In the synthesis of a family of operators &, satisfying the
above equation a suitable definition of a family of functions ¢, appears. An operator &,,
satisfying condition (25) is synthesised as follows.

Jm (($7 y) Sm (aa b))
= definition of j,, and @, z = y @ (pm-1< @)

((T#m/ " m <]) X gm) (x = (‘H</ Z),Z)
= definition of x

(T#m/ qu(x = (‘H</ Z))vgm Z)

= filter and reduction on snoc-list

((T#m/qqu) = (T#m/ Gm 9K/ Z)agm Z)

= Fusion on snoc-list

((T#m/qux) B (T#m/(T#m/ *Gm <1)*Z),gm Z) :

In this last expression we distinguish three subexpressions:

T#m/qqu
(Tstn/ - G)z
Im Z

where z = y @ (pm—1<a). In view of the form of the desired expression, equation (25),
the first subexpression T4, / ¢m <2, which equals < j,, (z,y), need not be developed any
further. The subexpressions (T4,,/* ¢n<)xz and g, z, where z = y @ (p,_14a), have to
be expressed in terms of ¢, y and T4, _,/ ¢m—1<a. Hence a reasonable choice for g,, seems
to be

Im = (T#m/'qmq)*'

We proceed the synthesis of an operator ©,, satisfying (25) with distinguishing the two
cases in the definition of operator @, which occurs in the expression (T4, /" Gm<)x(y @
(pm—1<a)). In this omitted derivation we use the fact that the family of predicates ¢,
satisfies for all m with n > m > 1, g (2 K a) = ¢unz A ¢n-1a. For a family of
predicates satisfying this implication there exists a hierarchical left-reduction such that

U1y, = (Dnreees 1, G071y,)/ (0,...,0)

11

where operator &, is defined by

tKa fr#w, N a#wn1 N ¢n(z=Ka)

rTDma =)
W otherwise

3

where w,, is the unit of operator T4, , for all m with n > m > 1. The case distinction in
the definition of operator © gives the following equation.

Jm (($7 y) Qm (a, b)) = (<<jm (*Ta y) = T#m/sas)
(O n)kkp-1a ify=0

where s = :
Y Y, kmo1 @ otherwise ,

where the the family of operators @, is given in the final description of the algorithm, and
the family of functions £, is defined by

k, = ‘Jm?T#m* C P 4 sSubm,, .

It follows that we cannot apply Array Fusion to j, - stam,,, but also that j, - stam,, is
catamorphic modulo %,,. We have

Jm stamy, (x K a) = (Jm stamy, &, kyn) O (Jmo1 stam,—1 a, kp_y a)

where the family of operators 6, is defined by

(26) ((z,9),2)0m ((a,b),¢) = (z4K1p,/s,5)
(OGn)xe ify=0

where s = .
yYg, ¢ otherwise |,

for all m with n > m > 1.
If we can also show that &, is catamorphic modulo j,, - stam,,, that is, if we can exhibit
a family of operators ©, satisfying

(27) kp(z K a) = (Jmstamy, z,kn) €5 (Jme1 Stam 1 a, kp_1 a) ,

for all m with n > m > 1, then we can apply the Hierarchical Mutumorphisms Theorem
to show that

(Jm - stamy,) a2k, = (On, ..., 1)+ (€ny.. ., €1)

where the family of operators ©, is defined by

(*Ta y) Om (av b) = ((*Ta y) Om (a7 b)v (xa y) ©m (av b)))

and the family of values ¢, is defined by

em = (U (0,0),k,0),

12

for all m with n > m > 1. A family of operators ©,, satisfying equation (27) is defined by
(28) (($’ y)’ Z) ©m (((L, b)7 C) = z+K _H</ t

where
(r-(O®n))xe ify=0 A lp,=1
Il = O%%c¢ ify£0 AN lp, #1
yYe, c otherwise ,

where Ip,, = It (m — p), for all m with n > m > 1. The definition of the family of
operators ©, is given in the final description of the algorithm.

The final result of the derivation of a hierarchy of efficient algorithms for pattern match-
ing looks as follows. This hierarchy of algorithms is given merely for completeness’ sake.
After the description of the hierarchy of algorithms we give a final optimisation of it. The
first two components of the following hierarchical left-reduction correspond to the func-
tion j,, - stam,,, the third component to the function k,,, and the fourth component to
the function #, which is also needed to construct a hierarchical left-reduction that can be
implemented as an efficient algorithm.

We have
(29) pm, = > < (Sn,...,00h)h (60, .., e1),

where h is defined by (go71,, 2 (7 qo71,,)) 2 (7 g7y,)2 1%, € is defined by ((wn,D0),0,0),
and operator &,, is defined by

(2,9,.2) Gm (a,b,¢) = ((z,y)0 (a,b),(z,y)© (a,b),z41)

where the families of operators 6, and ©,, are defined respectively in (26) and (28). The
families of operators @, and ©, are defined by

SOme = ($Omc) T, (OGnc),
where
sKec if c 2wn_1 A ds¢
sOme = (Ipt, ts)One fec#wny AN 2dsec N s#0
Wi otherwise ,

where Ipt,, is defined by

Ipt,, = T#/- qn<- tails,

where function tails returns the tail segments of a list in descending order of length, for
example tails [1,2,3] = [[1,2,3],[2,3],[3], 0], and operator &,, is defined by s &,, ¢ = O if
z<lp, —1,and if z > lp,, — 1, then

[Win] if#s<lp, —1
58mc = [s@n, (] if#s=1p, —1
(Ipt tls)ye,c if#s=1Ip,,

13

for all m with n > m > 1.

The two remaining problems that have to be addressed are the computation of §, ¢ and
the computation of Ipt t s.

Concerning the computation of these values we have the following. Function ¢ takes
as arguments an m-dimensional array s and an (m—1)-dimensional array ¢, and checks
whether s & ¢ is an element of @,,, that is, whether ¢, (s - ¢) holds. Matching an m-
dimensional array is expensive and superfluous, since it can be avoided. We explain the
situation for two-dimensional arrays. Consider the set of two-dimensional array patterns),
defined by 4K/ inits# list y_o { P}. The two-dimensional pattern-matching algorithm with
the set of patterns (), uses the one-dimensional pattern-matching algorithm with the set
of patterns ;. The columns of the two-dimensional arrays in (), are one-dimensional
arrays in ;. Assign a unique identifier, a natural number say, to each element in).
Let the one-dimensional pattern-matching algorithm return the unique identifier instead
of the one-dimensional array in case of a match, and replace the columns in the set of
patterns () by the unique identifiers of the columns. Thus the two-dimensional pattern-
matching problem has been reduced to a one-dimensional pattern-matching algorithm.
This idea is easily generalised to n-dimensional arrays. We do not give the definitions of
the functions involved in working out this idea. We have reduced the problem of computing
d, ¢ for an m-dimensional aray s and an (m—1)-dimensional array ¢ to computing §, ¢ for
a one-dimensional array s and an element ¢. The efficient computation of this value, and
of the value Ipt tl s, in the context of pattern-matching on lists with probably more than
one pattern, is discussed in my forthcoming thesis [10].

The hierarchical left-reduction (29) we have derived can be implemented in some lan-
guage. The straightforward implementation is essentially a hierarchical version of the
pattern-matching algorithm of Aho and Corasick [1]. It requires time O(#, P 4+ #,S5) on
an array 5. The n-dimensional component of the hierarchical left-reduction applies the
(n—1)-dimensional component of the hierarchical left-reduction to the (n—1)-dimensional
arrays in the n-dimensional array, and applies the pattern-matching algorithm of Aho and
Corasick to the resulting list.

References

[1] A.V. Aho and M.J. Corasick. Efficient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333-340, 1975.

[2] T.P. Baker. A technique for extending rapid exact-match string matching to arrays
of more than one dimension. SIAM .J. Computing, 7(4):533-541, 1978.

[3] R.S. Bird. Two dimensional pattern matching. Information Processing Letters,

6(5):168-170, 1977.

14

[4]

R.S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of Pro-
gramming and Calculi of Discrete Design, volume F36 of NATO ASI Series, pages
5—42. Springer—Verlag, 1987.

R.S. Bird. Lectures on constructive functional programming. In M. Broy, editor,
Constructive Methods in Computing Science, volume F55 of NATO ASI Series, pages
151-216. Springer—Verlag, 1989.

R.S. Bird, J. Gibbons, and G. Jones. Formal derivation of a pattern matching algo-
rithm. Science of Computer Programming, 12:93-104, 1989.

M. Crochemore and W. Rytter. Parallel computations on strings and arrays. In
C. Choffrut and T. Lengauer, editors, 7th Annual Symposium on Theoretical Aspects
of Computer Science, LNCS 415, pages 109-125, 1990.

J. Jeuring. The derivation of hierarchies of algorithms on matrices. In B. Moller,
editor, Constructing Programs from Specifications, pages 9-32. North-Holland, 1991.

J. Jeuring. The derivation of on-line algorithms, with an application to finding palin-
dromes. To appear in Algorithmica, 1992.

J. Jeuring. Theories for Algorithm Calculation. PhD thesis, Utrecht University, 1993.
To appear.

R. Karp, R.E. Miller, and A. Rosenberg. Rapid identification of repeated patterns in
strings, trees and arrays. In Proceedings 4* Annual ACM Symposium on Theory of
Computing, pages 125-136, 1972.

D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM .J.
Comput., 6:323-350, 1978.

G. Malcolm. Data structures and program transformation. Science of Computer

Programming, 14:255-279, 1990.

L.. Meertens. Algorithmics—towards programming as a mathematical activity. In
J.W. de Bakker, M. Hazewinkel, and J.K. Lenstra, editors, Proceedings of the CWI
Symposium on Mathematics and Computer Science, volume 1 of CWI Monographs,
pages 289-334. North—Holland, 1986.

L.. Meertens. Paramorphisms. Technical Report CS-R9005, CWI, 1990. To appear in
Formal Aspects of Computing.

L.M.R. Mullin. A Mathematics of Arrays. PhD thesis, Syracuse University, Syracuse,
New York, 1988.

15

