
UUXML: A Type-Preserving
XML Schema–Haskell Data Binding

Frank Atanassow, Dave Clarke? and Johan Jeuring

Institute of Information & Computing Sciences
Utrecht University
The Netherlands

{franka,dave,johanj}@cs.uu.nl

Abstract. An XML data binding is a translation of XML documents
into values of some programming language. This paper discusses a type-
preserving XML–Haskell data binding that handles documents typed by
the W3C XML Schema standard. Our translation is based on a formal
semantics of Schema, and has been proved sound with respect to the
semantics. We also show a program in Generic Haskell that constructs
parsers specialized to a particular Schema type.

1 Introduction

XML [23] is the core technology of modern data exchange. An XML document
is essentially a tree-based data structure, usually, but not necessarily, structured
according to a type declaration such as a schema. A number of alternative meth-
ods of processing XML documents are available:

– XML API’s. A conventional API such as SAX or the W3C’s DOM can be
used, together with a programming language such as Java or VBScript, to
access the components of a document after it has been parsed.

– XML programming languages. A specialized programming language
such as W3C’s XSLT [24], XDuce [12], Yatl [5], XMλ [17, 20], SXSLT [14],
XStatic [8] etc. can be used to transform XML documents.

– XML data bindings. XML values can be ‘embedded’ in an existing pro-
gramming language by finding a suitable mapping between XML types and
types of the programming language [18].

Using a specialized programming language or a data binding has significant
advantages over the SAX or DOM approach. For example, parsing comes for free
and can be optimized for a specific schema. Also, it is easier to implement, test
and maintain software in the target language. A data binding has the further
advantages that existing programming language technology can be leveraged,
and that a programmer need account for XML idiosyncracies (though this may
be a disadvantage for some applications). Programming languages for which

? Now at: CWI, Amsterdam, Netherlands, dave@cwi.nl

XML data bindings have been developed include Java [16] and Python, as well
as declarative programming languages such as Prolog [6] and Haskell [22, 29].
Using Haskell as the target for an XML data binding offers the advantages of a
typed higher-order programming language with a powerful type system.

Since W3C released XML, thousands of XML tools have been developed,
including editors, databases, converters, parsers, validators, search engines, en-
cryptors and compressors [7, 9, 10]. Many XML applications depend on a schema;
we call such tools schema-aware XML tools [29]. Examples are a validator, which
checks that an XML document exhibits the type structure described by a schema,
and an XML editor that suggests admissible elements or attributes at the cursor
position. Similarly, the performance of search algorithms and compressors im-
proves when the structure of the document is known in advance. Another feature
shared by such programs is that they do essentially the same thing for different
schemas. In this sense these tools are very similar to generic algorithms such as
the equality function, and the map, fold and zip functions. We claim that many
XML tools are generic programs, or would benefit from being viewed as such.

In this paper we present UUXML, a translation of XML documents into
Haskell, and more specifically a translation tailored to permit writing programs
in Generic Haskell [11], a superset of Haskell that allows to define such generic
programs. The documents conform to the type system described in the W3C
XML Schema [26–28] standard, and the translation preserves typing in a sense
we formalize by a type soundness theorem. More details of the translation and
a proof of the soundness result are available in a technical report [1].

This paper is organised as follows. Section 2 describes a tool for translating
an XML Schema to a set of Haskell data types. Section 3 describes a parser,
implemented as a Generic Haskell program, for parsing an XML document into
a Haskell value. Section 4 summarizes and discusses related and future work.

2 From Schema to Haskell

XML was introduced with a type formalism called Document Type Declarations
(DTDs). Though XML has achieved widespread popularity, DTDs themselves
have been deemed too restrictive in practice, and this has motivated the devel-
opment of alternative type systems for XML documents. The two most popular
systems are the RELAX NG standard promulgated by OASIS [19], and the
W3C’s own XML Schema Recommendation [26–28]. Both systems include a set
of primitive datatypes such as numbers and dates, a way of combining and nam-
ing them, and ways of specifying context-sensitive constraints on documents.

We focus on XML Schema (or simply “Schema” for short—we use lowercase
“schema” to refer to the actual type definitions themselves). To write Haskell
programs over documents conforming to schemas we require a translation of
schemas to Haskell analagous to the HaXml translation of DTDs to Haskell.

We begin this section with a very brief overview of Schema syntax which
highlights some of the differences between Schema and DTDs. Next, we give a
more formal description of the syntax with an informal sketch of its semantics.

With this in hand, we describe a translation of schemas to Haskell data types,
and of schema-conforming documents to Haskell values.

Our translation and the syntax used here are based closely on the Schema
formal semantics of Brown et al., called the Model Schema Language (MSL) [4];
that treatment also forms the basis of the W3C’s own, more ambitious but as yet
unfinished, formal semantics [25]. We do not treat all features of Schema, but only
the subset covered by MSL (except wildcards). This subset, however, arguably
forms a representative subset and suffices for many Schema applications.

2.1 An overview of XML Schema

A schema describes a set of type declarations which may not only constrain the
form of, but also affect the processing of, XML documents (values). Typically,
an XML document is supplied along with a Schema file to a Schema processor,
which parses and type-checks the document according to the declarations. This
process is called validation and the result is a Schema value.

Syntax. Schemas are written in XML. For instance, the following declarations
define an element and a compound type for storing bibliographical information:

<element name="doc" type="document"/>
<complexType name="document">
<sequence>
<element ref="author" minOccurs="0" maxOccurs="unbounded"/>
<element ref="title"/>
<element ref="year" minOccurs="0"/>

</sequence>
</complexType>

This declares an element doc whose content is of type document, and a type
document which consists of a sequence of zero or more author elements, followed
by a mandatory title element and then an optional year element. (We omit
the declarations for author, etc.) A document which validates against doc is:

<doc>
<author>James Joyce</author>
<title>Ulysses</title>
<year>1922</year>

</doc>

While they may have their advantages in large-scale applications, for our
purposes XML and Schema syntax are rather too long-winded and irregular. We
use an alternative syntax close to that of MSL [4], which is more orthogonal and
suited to formal manipulation. In our syntax, the declarations above are written:

def doc[document] ; def document = author∗, title, year? ;

and the example document above is written:

doc[author["James Joyce"],title["Ulysses"],year["1922"]]

Differences with DTDs. Schemas are more expressive than DTDs in several ways.
The main differences we treat here are summarized below.

1. Schema defines more primitive types, organized into a subtype hierarchy.
2. Schema allows the declaration of user-defined types, which may be used

multiple times in the contents of elements.
3. Schema’s notion of mixed content is more general than that of DTDs.
4. Schema includes a notion of “interleaving” like SGML’s & operator. This

allows specifying that a set of elements (or attributes) must appear, but
may appear in any order.

5. Schema has a more general notation for repetitions.
6. Schema includes two notions of subtype derivation.

We will treat these points more fully below, but first let us give a very brief
overview of the Schema type system.

Overview. A document is typed by a (model) group; we also refer to a model
group as a type. An overview of the syntax of groups is given by the grammar g.

g ::= group
ε empty sequence

| g, g sequence
| ∅ empty choice
| g | g choice
| g & g interleaving
| g{m,n} repetition
| mix(g) mixed content
| x component name

m ::= 〈natural〉 minimum

x ::=
| @a attribute name
| e element name
| t type name
| anyType
| anyElem
| anySimpleType
| p primitive

n ::= maximum
m bounded

| ∞ unbounded

This grammar is only a rough approximation of the actual syntax of Schema
types. For example, in an actual schema, all attribute names appearing in an
element’s content must precede the subelements.

The sequence and choice forms are familiar from DTDs and regular expres-
sions. Forms @a, e and t are variables referencing, respectively, attributes, ele-
ments and types in the schema. We consider the remaining features in turn.

Primitives. Schema defines some familiar primitives types such as string , boolean
and integer , but also more exotic ones (which we do not treat here) such as date,
language and duration. In most programming languages, the syntax of primitive
constants such as string and integer literals is distinct, but in Schema they are
rather distinguished by their types. For example, the data "35" may be validated
against either string or integer , producing respectively distinct Schema values
"35" ∈ string and 35 ∈ integer . Thus, validation against a schema produces an
“internal” value which depends on the schema involved.

The primitive types are organized into a hierarchy, via restriction subtyping
(see below), rooted at anySimpleType.

User-defined types. An example of a user-defined type (or “group”), document ,
was given above. DTDs allow the definition of new elements and attributes, but
the only mechanism for defining a new type (something which can be referenced
in the content of several elements and/or attributes) is the so-called parameter
entities, which behave more like macros than a semantic feature.

Mixed content. Mixed content allows interspersing elements with text. More
precisely, a document d matches mix(g) if unmix(d) matches g, where unmix(d)
is obtained from d by deleting all character text at the top level. An example
of mixed content is an XHTML paragraph element with emphasized phrases; in
MSL its content would be declared as mix(em∗). The opposite of ‘mixed content’
is ‘element-only content.’

DTDs support a similar, but subtly different, notion of mixed content, spec-
ified by a declaration such as:

< !ELEMENT text (#PCDATA | em)* >

This allows em elements to be interspersed with character data when appearing
as the children of text (but not as descendants of children). Groups involving
#PCDATA can only appear in two forms, either by itself, or in a repeated disjunc-
tion involving only element names:

(#PCDATA | e1 | e2 | · · · en)* .

To see how Schema’s notion of mixed content differs from DTDs’, observe
that a reasonable translation of the DTD content type above is [String :+: JemKG]
where JemKG is the translation of em. This might lead one to think that we can
translate a schema type such as mix(g) similarly as [String :+: JgKG]. However,
this translation would not respect the semantics of MSL for at least two reasons.
First, it is too generous, because it allows repeated occurrences, yet:

"hello", e[], "world" ∈mix(e) but "hello", e[], e[], "world" 6∈mix(e) .

Second, it cannot account for more complex types such as mix(e1, e2). A doc-
ument matching the latter type consists of two elements e1 and e2, possibly
interspersed with text, but the elements must occur in the given order. This
might be useful, for example, if one wants to intersperse a program grammar
given as a type

def module = header, imports, fixityDecl∗, valueDecl∗ ;

with comments: mix(module). An analogous model group is not expressible in
the DTD formalism.

Interleaving. Interleaving is rendered in our syntax by the operator &, which
behaves like the operator , but allows values of its arguments to appear in either
order, i.e., & is commutative. This example schema describes email messages.

def email = (subject & from & to) , body ;

Although interleaving does not really increase the expressiveness of Schema over
DTDs, they are a welcome convenience. Interleavings can be expanded to a
choice of sequences, but these rapidly become unwieldy. For example, Ja & bK =
a, b | b, a but Ja & b & cK = a, (b, c | c, b) | b, (a, c | c, a) | c, (a, b | b, a).
(Note that Ja & b & cK 6= Ja & Jb & cKK!)

Repetition. In DTDs, one can express repetition of elements using the standard
operators for regular patterns: ∗, + and ?. Schema has a more general notation:
if g is a type, then g{m,n} validates against a sequence of between m and n
occurrences of documents validating against g, where m is a natural and n is
a natural or ∞. Again, this does not really make Schema more expressive than
DTDs, since we can expand repetitions in terms of sequence and choice, but the
expansions are generally much larger than their unexpanded forms.

Derivation. XML Schema also supports two kinds of derivation (which we some-
times also call refinement) by which new types can be obtained from old. The
first kind, called extension, is quite similar to the notion of inheritance in object-
oriented languages. The second kind, called restriction, is an ‘additive’ sort of
subtyping, roughly dual to extension, which is multiplicative in character. As an
example of extension, we declare a type publication obtained from document by
adding fields at the end:

def publication extends document = journal | publisher ;

A publication is a document followed by either a journal or publisher field.
Extension is slightly complicated by the fact that attributes are extended

‘out of order’. For example, if types t1 and t2 are defined:

def t1 = @a1, e1 ; def t2 extends t1 = @a2, e2 ; (1)

then the content of t2 is (@a1 & @a2), e1, e2.
To illustrate restriction, we declare a type article obtained from publication

by fixing some of the variability. If an article is always from a journal, we write:

def article restricts publication = author∗, title, year, journal ;

So a value of type article always ends with a journal, never a publisher, and the
year is now mandatory. Note that, when we derive by extension we only mention
the new fields, but when we derive by restriction we must mention all the old
fields which are to be retained.

In both cases, when a type t ′ is derived from a type t , values of type t ′ may
be used anywhere a value of type t is called for. For example, the document:

author["Patrik Jansson"], author["Johan Jeuring"],
title["Polytypic Unification"], year["1998"], journal["JFP"]

validates not only against article but also against both publication and document .
Every type that is not explicitly declared as an extension of another is treated

implicitly as restricting a distinguished type called anyType, which can be
regarded as the union of all types. Additionally, there is a distinguished type
anyElem which restricts anyType, and from which all elements are derived.

2.2 An overview of the translation

The objective of the translation is to be able to write Haskell programs on data
corresponding to schema-conforming documents. At minimum, we expect the
translation to satisfy a type-soundness result which ensures that, if a document
validates against a particular schema type, then the translated value is typeable
in Haskell by the translated type.

Theorem 1. Let J−KG and J−Kg,u
V be respectively the type and value translations

generated by a schema. Then, for all documents d, groups g and mixities u, if d
validates against g in mixity context u, then JdKg,u

V :: JgKG JuKmix.

Let us outline the difficulties posed by features of Schema. As a starting
point, consider how we might translate regular patterns into Haskell.

JεKG = () J∅KG = Void

Jg1, g2KG = (Jg1KG, Jg2KG) Jg1 | g2KG = Either Jg1KGJg2KG

Jg∗KG = [Jg1KG] Jg+KG = (JgKG, Jg∗KG)
Jg?KG = Maybe JgKG

This is the sort of translation employed by HaXml [29], and indeed we follow
the same tack. In contrast, WASH [22] takes a decidedly different approach,
encoding the state automaton corresponding to a regular pattern at the type
level, and makes extensive use of type classes to express the transition relation.

As an example for the reader to refer back to, we present (part of) the
translation of the document type:

data T document u = T document
(Seq Empty (Seq (Rep LE E author ZI)

(Seq LE E title (Rep LE E year (ZS ZZ)))) u) .

Here the leading T indicates that this declaration refers to the type document ,
rather than an element (or attribute) of the same name, which would be indicated
by a prefix E (A , respectively). We explain the remaining features in turn.

Primitives. Primitives are translated to the corresponding Haskell types, wrapped
by a constructor. For example (the argument u relates to mixed content, dis-
cussed below):

data T string u = T string String .

User-defined types. Types are translated along the lines of HaXml, using prod-
ucts to model sequences and sums to model choices.

data Empty u = Empty
data Seq g1 g2 u = Seq (g1 u) (g2 u)
data None u {- no constructors -}
data Or g1 g2 u = Or1 (g1 u) | Or2 (g2 u) .

The translation takes each group to a Haskell type of kind ?→ ?:

JεKG = Empty Jg1, g2KG = Seq Jg1KG Jg2KG

J∅KG = None Jg1 | g2KG = Or Jg1KG Jg2KG .

Mixed content. The reason each group g is translated to a first-order type
t :: ? → ? rather than a ground type is that the argument, which we call the
‘mixity’, indicates whether a document occurs in a mixed or element-only con-
text.1 Accordingly, u is restricted to be either String or (). For example, e[t]
translates as Elem JeKG JtKG () when it occurs in element-only content, and
Elem JeKG JtKG String when it occurs in mixed content. The definition of Elem:

data Elem e g u = Elem u (g ())

stores with each element a value of type u corresponding to the text which
immediately precedes a document item in a mixed context. (The type argument
e is a so-called ‘phantom type’ [15], serving only to distinguish elements with
the same content g but different names.) Any trailing text in a mixed context is
stored in the second argument of the Mix data constructor.

data Mix g u = Mix (g String) String

For example, the document

"one", e1[], "two", e2[], "three" ∈mix(e1, e2)

is translated as

Mix (Seq (Elem "one" (Empty ())) (Elem "two" (Empty ()))) "three"

Each of the group operators is defined to translate to a type operator which
propagates mixity down to its children, for example:

data Seq g1 g2 u = Seq (g1 u) (g2 u) .

There are three exceptions to this ‘inheritance’. First, mix(g) ignores the con-
text’s mixity and always passes down a String type. Second, e[g] ignores the
context’s mixity and always passes down a () type, because mixity is not inher-
ited across element boundaries. Finally, primitive content p always ignores its
context’s mixity because it is atomic.

Interleaving. Interleaving is modeled in essentially the same way as sequencing,
except with a different abstract datatype.

data Inter g1 g2 u = Inter (g1 u) (g2 u)

An unfortunate consequence of this is that we lose the ordering of the document
values. For example, suppose we have a schema which describes a conference
1 We use the convention u for mixity because m is used for bounds minima.

schedule where it is known that exactly three speakers of different types will
appear. A part of such a schema may look like:

def schedule[speaker & invitedSpeaker & keynoteSpeaker] ; .

A schema processor must know the order in which speakers appeared, but
since we do not record the permutation we cannot recover the document or-
dering. More commonly, since attribute groups are modeled as interleavings of
attributes, this means in particular that schema processors using our translation
cannot know the order in which attributes are specified in an XML document.

Repetition. Repetitions g{m,n} are modeled using a datatype Rep JgKG Jm,nKB u
and a set of datatypes modeling bounds:

J0, 0KB = ZZ J0,m + 1KB = ZS J0,mKB

J0,∞KB = ZI Jm + 1, n + 1KB = SS Jm,nKB

defined by:

data Rep g b u = Rep (b g u)
data ZZ g u = ZZ
data ZI g u = ZI [g u]
data ZS b g u = ZS (Maybe (g u)) (Rep g b u)
data SS b g u = SS (g u) (Rep g b u) .

The names of datatypes modeling bounds are meant to suggest the familiar
unary encoding of naturals, ‘Z’ for zero and ‘S’ for successor, while ‘I’ stands for
‘infinity’. Some sample translations are:

Je{2, 4}KG = Rep JeKG (SS (SS (ZS (ZS ZZ))))
Je{0,∞}KG = Rep JeKG ZI
Je{2,∞}KG = Rep JeKG (SS (SS ZI)) .

Derivation. Derivation poses one of the greatest challenges for the translation,
since Haskell has no native notion of subtyping, though type classes are a com-
parable feature. We avoid type classes here, though, because one objective of
our data representation is to support writing schema-aware programs in Generic
Haskell. Such programs operate by recursing over the structure of a type, so
encoding the subtyping relation in a non-structural manner such as via the type
class relation would be counterproductive.

The type anyType behaves as the union of all types, which suggests an
implementation in terms of Haskell datatypes: encode anyType as a datatype
with one constructor for each type that directly restricts it, the direct subtypes,
and one for values that are ‘exactly’ of type anyType.

In the case of our bibliographical example, we have:

data T anyType u = T anyType
data LE T anyType u = EQ T anyType (T anyType u)

| LE T anySimpleType (LE T anySimpleType u)
| LE T anyElem (LE T anyElem u)
| LE T document (LE T document u) .

The alternatives LE indicate the direct subtypes while the EQ alternative is
‘exactly’ anyType. The document type and its subtypes are translated similarly:

data LE T document u = EQ T document (T document u)
| LE T publication (LE T publication u)

data LE T publication u = EQ T publication (T publication u)
| LE T article (LE T article u)

data LE T article u = EQ T article (T article u) .

When we use a Schema type in Haskell, we can choose to use either the ‘exact’
version, say T document, or the version which also includes all its subtypes, say
LE T document. Since Schema allows using a subtype of t anywhere t is expected,
we translate all variables as references to an LE type. This explains why, for
example, T document refers to LE E author rather than E author in its body.

What about extension? To handle the ‘out-of-order’ behavior of extension on
attributes we define a function split which splits a type into a (longest) leading
attribute group (ε if there is none) and the remainder. For example, if t1 and t2
are defined as in (1) then split(t1) = (@a1, e1) and, if t ′2 is the ‘extended part’ of
t2, then split(t ′2) = (@a2, e2). We then define the translation of t2 to be:

fst(split(t1)) & fst(split(t ′2)), (snd(split(t1)) , snd(split(t ′2))) .

In fact, to accomodate extension, every type is translated this way. Hence
T document above begins with ‘Seq Empty . . .’, since it has no attributes, and
the translation of publication:

data T publication u = T publication
(Seq (Inter Empty Empty)

(Seq (Seq (Rep LE E author ZI) (Seq LE E title (Rep LE E year (ZS ZZ))))
(Or LE E journal LE E publisher)) u)

begins with ‘Seq (Inter Empty Empty) . . .’, which is the concatenation of the
attributes of document (namely none) with the attributes of publication (again
none). So attributes are accumulated at the beginning of the type declaration.

In contrast, the translation of article, which derives from publication via re-
striction, corresponds more directly with its declaration as written in the schema.

data T article u = T article
(Seq Empty (Seq (Rep LE E author ZI)

(Seq LE E title (Seq LE E year LE E journal))) u)

This is because, unlike with extensions where the user only specifies the new
fields, the body of a restricted type is essentially repeated as a whole.

3 From XML documents to Haskell data

In this section we describe an implementation of the translation outlined in the
previous section as a generic parser for XML documents, written in Generic
Haskell. To abstract away from details of XML concrete syntax, rather than
parse strings, we use a universal data representation Document which presents
a document as a tree (or rather a forest):

type Doc = [DocItem]
data DocItem = DText String | DAttr String Doc | DElem String Doc

We use standard techniques [13] to define a set of monadic parsing combinators
operating over Doc. P a is the type of parsers that parse a value of type a.
We omit the definitions here because they are straightfoward generalizations of
string parsers. The type of generic parsers is the kind-indexed type GParse{[κ]} t
and gParse{|t|} denotes a parser which tries to read a document into a value of
type t. We now describe its behavior on the various components of Schema.

type GParse{[?]} t = P t

gParse{|t :: κ|} :: GParse{[κ]} t
gParse{|String|} = pMixed
gParse{|Unit|} = pElementOnly

The first two cases handle mixities: pMixed optionally matches DText chunk(s),
while parser pElementOnly always succeeds without consuming input. Note that
no schema type actually translates to Unit or String (by themselves), but these
cases are used indirectly by the other cases.

gParse{|Empty u|} = return Empty
gParse{|Seq g1 g2 u|} = do doc1 ← gParse{|g1 u|}

doc2 ← gParse{|g2 u|}
return (Seq doc1 doc2)

gParse{|None u|} = mzero
gParse{|Or g1 g2 u|} = fmap Or1 gParse{|g1 u|}

<|> fmap Or2 gParse{|g2 u|}

Sequences and choices map closely onto the corresponding monad operators.
p <|> q tries parser p on the input first, and if p fails attempts again with q ,
and mzero is the identity element for <|>.

gParse{|Rep g b u|} = fmap Rep gParse{|b g u|}
gParse{|ZZ g u|} = return ZZ
gParse{|ZI g u|} = fmap ZI $ many gParse{|g u|}
gParse{|ZS g b u|} = do x ← option gParse{|g u|}

y ← gParse{|b g u|}
return (ZS x (Rep y))

gParse{|SS g b u|} = do x ← gParse{|g u|}
y ← gParse{|b g u|}
return (SS x (Rep y))

Repetitions are handled using the familiar combinators many p and option p,
which parse, resp., a sequence of documents matching p and an optional p.

gParse{|T string|} = fmap T string pText
gParse{|T integer|} = fmap T integer pReadableText

String primitives are handled by a parser pText , which matches any DText
chunk(s). Function pReadableText parses integers (also doubles and booleans—
here omitted) using the standard Haskell read function, since we defined our
alternative schema syntax to use Haskell syntax for the primitives.

gParse{|Elem e g u|} = do mixity ← gParse{|u|}
let p = gParse{|g|} pElementOnly
elemt gName{|e|} (fmap (Elem mixity) p)

An element is parsed by first using the mixity parser corresponding to u to
read any preceding mixity content, then by using the parser function elemt to
read in the actual element. elemt s p checks for a document item DElem s d ,
where the parser p is used to (recursively) parse the subdocument d . We always
pass in gParse{|g|} pElementOnly for p because mixed content is ‘canceled’ when
we descend down to the children of an element. Parsing of attributes is similar.

This code uses an auxiliary type-indexed function gName{|e|} to acquire the
name of an element; it has only one interesting case:

gName{|Con c a|} = drop 5 (conName c)

This case makes use of the special Generic Haskell syntax Con c a, which binds
c to a record containing syntactic information about a datatype. The right-hand
side just returns the name of the constructor, minus the first five characters (say,
LE T), thus giving the attribute or element name as a string.

gParse{|Mix g u|} = do doc ← gParse{|g|} pMixed
mixity ← pMixed
return (Mix doc mixity)

When descending through a Mix type constructor, we perform the opposite of
the procedure for elements above: we ignore the mixity parser corresponding to
u and substitute pMixed instead. pMixed is then called again to pick up the
trailing mixity content.

Most of the code handling interleaving is part of another auxiliary function,
gInter{|t|}, which has kind-indexed type:

type GInter{[?]} = ∀a .PermP (t→ a)→ PermP a .

Interleaving is handled using these permutation phrase combinators [3]:

(<‖>) :: ∀a b .PermP (a → b)→ P a → PermP b
(<|?>) :: ∀a b .PermP (a → b)→ (a,P a)→ PermP b
mapPerms :: ∀a b . (a → b)→ PermP a → PermP b
permute :: ∀a .PermP a → P a
newperm :: ∀a b . (a → b)→ PermP (a → b) .

Briefly, a permutation parser q ::PermP a reads a sequence of (possibly optional)
documents in any order, returning a semantic value a. Permutation parsers are
created using newperm and chained together using <‖> and <|?> (if optional).
mapPerms is the standard map function for the PermP type. permute q converts
a permutation parser q into a normal parser.

gParse{|Inter g1 g2 u|} = permute $ (gInter{|g2 u|} . gInter{|g1 u|}) (newperm Inter)

To see how the above code works, observe that:

f1 = gInter{|g1 u|} :: ∀g1 u b .PermP (g1 u→ b)→ PermP b
f2 = gInter{|g2 u|} :: ∀g2 u c .PermP (g2 u→ c)→ PermP c -- hence
f2 . f1 :: ∀g1 g2 u c .PermP (g1 u→ g2 u→ c)→ PermP c .

Note that if c is instantiated to Inter g1 g2 u, then the function type appearing
in the domain becomes the type of the data constructor Inter , so we need only
apply it to newperm Inter to get a permutation parser of the right type.

(f1 . f2) (newperm Inter) :: ∀g1 g2 u .PermP (Inter g1 g2 u)

Many cases of function gInter need not be defined because the syntax of inter-
leavings in Schema is so restricted.

gInter{|t :: κ|} :: GInter{[κ]} t
gInter{|Con c a|} = (<‖> fmap Con gParse{|a|})
gInter{|Inter g1 g2 u|} = gInter{|g1 u|} . gInter{|g2 u|}

.mapPerms (λf x y → f (Inter x y))
gInter{|Rep g (ZS ZZ) u|} = (<|?> (Rep gDefault{|(ZS ZZ) g u|}

, fmap Rep gParse{|(ZS ZZ) g u|}))

In the Con case, we see that an atomic type (an element or attribute name)
produces a permutation parser transformer of the form (<‖> q). The Inter case
composes such parsers, so more generally we obtain parser transformers of the
form (<|> q1 <|> q2 <|> q3 <|> ...). The Rep case is only ever called when g
is atomic and the bounds are of the form ZS ZZ: this corresponds to a Schema
type like e{0, 1}, that is, an optional element (or attribute).2

4 Conclusions

XML Schema has several features not available natively in Haskell, includ-
ing mixed content, two forms of subtyping and a generalized form of repeti-
tion. Nevertheless, we have shown that these features can be accomodated by
Haskell’s datatype mechanism alone. The existence of a simple formal semantics
2 The GH compiler does not accept the syntax gInter{|Rep g (ZS ZZ) u|}. We define

this case using gInter{|Rep g b u|}, where b is used consistently instead of ZS ZZ,
but the function is only ever called when b = ZS ZZ.

for Schema such as MSL’s was a great help to both the design and implementa-
tion of our work, and essential for the proof of type soundness.

Though the translation is cumbersome for Haskell programs which process
documents of a single schema, for schema-aware programs such as the parser
of Section 3 this defect is not so noticeable because Generic Haskell programs
usually do not need to pattern-match deeply into values of a datatype. In a
companion paper [2] we show how to use Generic Haskell to automatically infer
type isomorphisms to effectively customize our translation and make writing
non-schema-aware XML software far simpler.

Besides its verbosity, there are some downsides to the translation. Although
the handling of subtyping is straightforward and relatively usable, it does not
take advantage of the 1-unambiguity constraint on Schema groups to factor
out common prefixes. This has a negative impact on the efficiency of generic
applications such as our parser. Another issue is the use of unary encoding
in repetition bounds, though this could be addressed by using a larger radix.
Finally, schema types, which obey equational laws, are always translated as
abstract datatypes, which satisfy analagous laws only up to isomorphism; this
lack of coherence means that users must know some operational details of our
translator. Our work on isomorphism inference can help address this problem.

We have so far developed a prototype implementation of the translation and
checked its correctness with a few simple examples and some slightly larger
ones, such as the generic parser presented here and a generic pretty-printer. Fu-
ture work may involve extending the translation to cover more Schema features
such as facets and wildcards, adopting the semantics described in more recent
work [21], which more accurately models Schema’s named typing, and exploiting
the 1-unambiguity constraint to obtain a more economical translation.

References

1. Frank Atanassow, Dave Clarke, and Johan Jeuring. Scripting XML with Generic
Haskell. Technical Report UU-CS-2003, Utrecht University, 2003.

2. Frank Atanassow and Johan Jeuring. Inferring type isomorphisms generically. To
appear in Proc. MPC ’04.

3. A.I. Baars, A. Löh, and S.D. Swierstra. Parsing permutation phrases. In R. Hinze,
editor, Proceedings of the 2001 ACM SIGPLAN Haskell Workshop, pages 171–182.
Elsevier, 2001.

4. Allen Brown, Matthew Fuchs, Jonathan Robie, and Philip Wadler. MSL: A model
for W3C XML Schema. In Proc. WWW10, May 2001.

5. Sophie Cluet and Jérôme Siméon. YATL: a functional and declarative language
for XML, 2000.

6. Jorge Coelho and Mário Florido. Type-based XML processing in logic program-
ming. In PADL 2003, pages 273–285, 2003.

7. Peter Flynn. Understanding SGML and XML Tools. Kluwer Academic Publishers,
1998.

8. Vladimir Gapeyev and Benjamin C. Pierce. Regular object types. In European
Conference on Object-oriented Programming (ECOOP 2003), 2003.

9. Lars M. Garshol. Free XML tools and software. Available from http://www.

garshol.priv.no/download/xmltools/.
10. Google. Web Directory on XML tools. http://www.google.com/.
11. Ralf Hinze and Johan Jeuring. Generic Haskell: practice and theory, 2003. To

appear.
12. Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed XML processing language.

In Third International Workshop on the Web and Databases (WebDB), volume
1997 of Lecture Notes in Computer Science, pages 226–244, 2000.

13. Graham Hutton and Erik Meijer. Monadic parser combinators. Journal of Func-
tional Programming, 8(4):437–444, 1996.

14. Oleg Kiselyov and Shriram Krishnamurti. SXSLT: manipulation language for
XML. In PADL 2003, pages 226–272, 2003.

15. Daan Leijen and Erik Meijer. Domain specific embedded compilers. In Second
USENIX Conference on Domain Specific Languages (DSL’99), pages 109–122,
Austin, Texas, October 1999. USENIX Association. Also appeared in ACM SIG-
PLAN Notices 35, 1, (Jan. 2000).

16. Brett McLaughlin. Java & XML data binding. O’Reilly, 2003.
17. Erik Meijer and Mark Shields. XMLambda: A functional language for constructing

and manipulating XML documents. Available from http://www.cse.ogi.edu/

~mbs/, 1999.
18. Eldon Metz and Allen Brookes. XML data binding. Dr. Dobb’s Journal, pages

26–36, March 2003.
19. OASIS. RELAX NG. http://www.relaxng.org, 2001.
20. Mark Shields and Erik Meijer. Type-indexed rows. In The 28th Annual ACM

SIGPLAN - SIGACT Symposium on Principles of Programming Languages, pages
261–275, 2001. Also available from http://www.cse.ogi.edu/~mbs/.

21. Jérôme Siméon and Philip Wadler. The essence of XML. In Proc. POPL 2003,
2003.

22. Peter Thiemann. A typed representation for HTML and XML documents in
Haskell. Journal of Functional Programming, 12(4&5):435–468, July 2002.

23. W3C. XML 1.0. http://www.w3.org/XML/, 1998.
24. W3C. XSL Transformations 1.0. http://www.w3.org/TR/xslt, 1999.
25. W3C. XML Schema: Formal description. http://www.w3.org/TR/

xmlschema-formal, 2001.
26. W3C. XML Schema part 0: Primer. http://www.w3.org/TR/xmlschema-0, 2001.
27. W3C. XML Schema part 1: Structures. http://www.w3.org/TR/xmlschema-1,

2001.
28. W3C. XML Schema part 2: Datatypes. http://www.w3.org/TR/xmlschema-2,

2001.
29. Malcolm Wallace and Colin Runciman. Haskell and XML: Generic combinators or

type-based translation? In International Conference on Functional Programming,
pages 148–159, 1999.

