
Pull-Ups, Push-Downs, and Passing It Around

Exercises in Functional Incrementalization

Sean Leather1, Andres Löh1, and Johan Jeuring1,2

1 Utrecht University, Utrecht, The Netherlands
2 Open Universiteit Nederland

{leather,andres,johanj}@cs.uu.nl

Abstract. Programs in languages such as Haskell are often datatype-
centric and make extensive use of folds on that datatype. Incremen-
talization of such a program can significantly improve its performance
by transforming monolithic atomic folds into incremental computations.
Functional incrementalization separates the recursion from the applica-
tion of the algebra in order to reduce redundant computations and reuse
intermediate results. In this paper, we motivate incrementalization with
a simple example and present a library for transforming programs using
upwards, downwards, and circular incrementalization. Our benchmarks
show that incrementalized computations using the library are nearly as
fast as handwritten atomic functions.

1 Introduction

In functional programming languages with algebraic datatypes, many programs
and libraries “revolve” around a collection of datatypes. Functions in such pro-
grams form the spokes connecting the datatypes in the center to a convenient
application programming interface (API) or embedded domain-specific language
(EDSL) at the circumference, facilitating the development cycle. These datatype-
centric programs can take the form of games, web applications, GUIs, compilers,
databases, etc. We can find examples in many common libraries: finite maps,
sets, queues, parser combinators, and zippers. Datatype-generic libraries with a
structure representation are also datatype-centric.

Programmers developing datatype-centric programs often define recursive
functions that can be defined with primitive recursion. A popular form of re-
cursion, the fold (a.k.a. catamorphism or reduce), is (categorically) the unique
homomorphism (structure-preserving map) for an initial algebra. That is, an
algebraic datatype T provides the starting point (the initial algebra) for a fold
to map a value of T to a type S using an algebra F S → S, all the while pre-
serving the structure of the type T. Folds can be defined using an endofunctor F
(another homomorphism), and an F-algebra. Given a transformation that takes
a recursive datatype T to its base functor F T, we can define a fold that works

for any type T. Before we get too far outside the scope of this paper, however,
let us put some concrete notation down in Haskell1.

The base functor for a type t can be represented by a datatype family[1]:

data family F t :: ∗ → ∗

A datatype family is a type-indexed datatype[2] that gives us a unique structure
for each type t. The types t and F t should have the same structure (i.e. same
alternatives and products) with the exception that the recursive points in t are
replaced by type parameters in F (this being the reason for the kind ∗ → ∗).
The isomorphism between t and F t is captured by the InOut type class.

class (Functor (F t))⇒ InOut t where
inF :: F t t→ t
outF :: t→ F t t

An algebra for a functor f is defined as a function f s → s for some result type
s. In the case of a fold, f is the base functor F t. We use the following type
synonyms to identify algebras:

type Alg f s = f s→ s
type AlgF t s = Alg (F t) s

As mentioned above, the fold function is a structure-preserving map from a
datatype to some value determined by an algebra. Using the above definitions
and fmap from the Functor class, we implement fold as follows.

fold :: (InOut t)⇒ AlgF t s→ t→ s
fold alg = alg ◦ fmap (fold alg) ◦ outF

A fold for a particular datatype T requires three instances: F T, InOut T, and
Functor (F T). Here is the code for a binary tree.

data Tree a = Tip | Bin a (Tree a) (Tree a)

data instance F (Tree a) r = TipF | BinF a r r

instance Functor (F (Tree a)) where
fmap TipF = TipF

fmap f (BinF x rL rR) = BinF x (f rL) (f rR)

instance InOut (Tree a) where
inF TipF = Tip
inF (BinF x tL tR) = Bin x tL tR

outF Tip = TipF

outF (Bin x tL tR) = BinF x tL tR

One F-algebra for Tree is calculating the number of binary nodes in a value.

1 We use Haskell 2010 along with the following necessary extensions:
MultiParamTypeClasses, TypeFamilies, FlexibleContexts, KindSignatures, and
Rank2Types.

sizeAlg :: AlgF (Tree a) Int
sizeAlg TipF = 0
sizeAlg (BinF sL sR) = 1 + sL + sR

The simplicity of the above code2 belies the power it provides: a programmer
can define numerous recursive functions for Tree values using fold and an algebra
instead of direct recursion. With that understanding, let us return to our story.

Folds are occasionally used in repetition, and this can negatively impact a
program’s performance. If we analyze the evaluation of such code, we might
see the pattern in Fig. 1. The variables xi are values of some foldable datatype
and the results yi are used elsewhere. If the functions fi change their values in
a “small” way relative to the size of the value, then the second fold performs a
large number of redundant computations. A fold is an atomic computation: it
computes the results “all in one go.” Even in a lazily evaluated language such
as Haskell, there is no sharing between the computations of fold in this pattern.

x1 L99 f0 x0

y1 L99 fold alg x1

x2 L99 f1 x1

y2 L99 fold alg x2

...

Fig. 1. Evaluation of re-
peated folds. The sym-
bol L99 indicates that the
right evaluates to the left.

In this article, we propose to solve the problem
of repetitive folds by transforming repeated atomic
computations into a single incremental computa-
tion. Incremental computations take advantage of
small changes to an input to compute a new out-
put. The key is to subdivide a computation into
smaller parts and reuse previous results to compute
the final output.

Our focus is the incrementalization[4] of purely
functional programs with folds and fold-like func-
tions. To incrementalize a program with folds, we
separate the application of the algebra from the re-
cursion. We first merge the components of the F-
algebra with the initial algebra (the constructors). We may optionally define
smart constructors to simplify use of the transformed constructors. The recur-
sion of the fold is then implicit, blending with the recursion of other functions.

We motivate our work in Section 2 by taking a well-known library, incremen-
talizing it, and looking at the improvement over the atomic version. In Section 3,
we generalize this form of incrementalization—which we call “upwards”—into li-
brary form. Sections 4 and 5 develop two alternative forms of incrementalization,
“downwards” and “circular.” In Section 6, we discuss other aspects of incremen-
talization. We discuss related work in Section 7 and conclude in Section 8. All
of the code presented in this paper is available online3.

2 As simple as they are, the F, Functor , and InOut instances may be time-consuming
to write for large datatypes. Fortunately, this code can be generated with tools such
as Template Haskell[3].

3 http://people.cs.uu.nl/andres/Incrementalization/

http://people.cs.uu.nl/andres/Incrementalization/

2 Incrementalization in Action

We introduce the Set library as a basis for understanding incrementalization.
Starting from a simple, naive implementation, we systematically transform it to
a more efficient, incrementalized version.

The Set library has the following API.

empty :: Set a
singleton :: a→ Set a
size :: Set a→ Int

insert :: (Ord a)⇒ a→ Set a→ Set a
fromList :: (Ord a)⇒ [a]→ Set a

The interface is comparable to the Data.Set library provided by the Haskell
Platform.

One can think of a value of Set a as a container of a-type elements such
that each element is unique. For the implementation, we use an ordered, binary
search tree[5] with the datatype introduced in Section 1.

type Set = Tree

We have several options for constructing sets. Simple construction is performed
with empty and singleton, which are trivially defined using Tree constructors.
Sets can also be built from lists of elements.

fromList = foldl (flip insert) empty

The function fromList uses insert which builds a new set given an old set and an
additional element. This is where the ordering aspect from the type class Ord is
used.

insert x Tip = singleton x
insert x (Bin y tL tR) = case compare x y of

LT → balance y (insert x tL) tR

GT→ balance y tL (insert x tR)
EQ→ Bin x tL tR

We use the balance function to maintain the invariant that a look-up operation
has logarithmic access time to any element.

balance :: a→ Set a→ Set a→ Set a
balance x tL tR | sL + sR 6 1 = Bin x tL tR

| sR > 4 ∗ sL = rotateL x tL tR (size tRL) (size tRR)
| sL > 4 ∗ sR = rotateR x tL tR (size tLL) (size tLR)
| otherwise = Bin x tL tR

where (sL, sR) = (size tL, size tR)
Bin tRL tRR = tR

Bin tLL tLR = tL

Here, we use the size of each subtree to determine how to rotate nodes between
subtrees. We omit the details4 of balance but call attention to how often the
4 It is not important for our purposes to understand how to balance a binary search

tree. The details are available in the code of Data.Set and other resources[5].

size function is called. We implement size using fold with the algebra defined in
Section 1.

size = fold sizeAlg

The astute reader will notice that the repeated use of the size in balance leads
to the pattern of folds described in Fig. 1. In this example, we are computing
a fold over subtrees immediately after computing a fold over the parent. These
are redundant computations, and the subresults should be reused. In fact, size
is an atomic function that is ideal for incrementalization.

The key point to highlight is that we want to store results of computations
with Tree values. We start by allocating space for storage.

data Treei a = Tipi Int | Bini Int a (Treei a) (Treei a)

We need to preserve the result of a fold, and the logical location is each recursive
point of the datatype. In other words, we annotate each constructor with an
additional field to contain the size of that Treei value. This can be visualized as
a Tree value with superscript annotations.

Bin4 2 (Bin1 1 Tip0 Tip0) (Bin2 3 Tip0 (Bin1 4 Tip0 Tip0))

We then define the function sizei to extract the annotation without any recursion.

sizei (Tipi i) = i

sizei (Bini i) = i

The next step is to implement the part of the fold that applies the algebra
to a value. To avoid obfuscation, we create an API for Tree values by lifting the
structural aspects (introduction and elimination) to a type class.

class TreeS t where
type Elem t
tip :: t
bin :: Elem t→ t→ t→ t
caseTree :: r→ (Elem t→ t→ t→ r)→ t→ r

An instance of TreeS permits us to use the smart constructors tip and bin for
introducing t values and the method caseTree (instead of case) for eliminating
them. Since the element type depends on the instance type, we use the associated
type Elem t to identify the values of the bin nodes. Applying this step to Treei,
we arrive at the following instance.

instance TreeS (Treei a) where

type Elem (Treei a) = a

tip = Tipi 0

bin x tL tR = Bini (1 + sizei tL + sizei tR) x tL tR

caseTree t b n = case n of {Tipi → t ; Bini x tL tR → b x tL tR}

We have separated the components of sizeAlg and merged them with the con-
structors, in effect creating an initial algebra that computes the size.

For the finishing touches, we adapt the library to use the new datatype and
TreeS instance. The refactoring is not difficult, and the types of all functions
should be the same (of course, using Treei instead of Tree). Refer to the associated
code for the refactored functions. We have one last check to verify that we
achieved our objective: speed-up of the Set library.

To benchmark5 our work, we compare two implementations of the fromList
function. The first is given by the definition above. The second is from the
aforementioned refactored Set library using the Treei type. For each run, we
build a set from the words of a wordlist text file. The word counts increase with
each input to give an idea how well fromList scales.

Fig. 2 lists the results. To collect these times, we evaluate the values strictly
to head normal form. Since Haskell is by default a lazily evaluated language,
these times are not necessarily indicative of real-world use; however, they do
give the worst case time, in which the entire set is needed.

It is clear (and no surprise) from the results that incrementalization has a
significant effect. We have changed the time complexity of the size calculation
from linear to constant, thus reducing the time of fromList by nearly 100% for
all inputs.

In this section, we developed a library from a naive implementation with
atomic folds into an incrementalized implementation. This particular work is
by no means novel, and no one would use the naive approach; however, it does
identify a design pattern that may improve the efficiency of other programs. In
the remainder of this article, we capture that design pattern in a library and
explore other variations on the theme.

3 Upwards Incrementalization

We take the design pattern from the previous section and create reusable compo-
nents and techniques that can be applied to incrementalize another program. We
call the approach used in this section upwards incrementalization, because we
pull the results upward through the tree-like structure of an algebraic datatype.

The first step we took in Section 2 was to allocate space for storing inter-
mediate results. As mentioned, the logical locations for storage are the recursive
points of a datatype. That leads us to identify the fixed-point view as a natural
representation.

newtype Fix f = In{out :: f (Fix f)}

The type Fix encapsulates the recursion of some functor type f and allows us
access to each recursive point. We use another datatype to extend a functor
with a new field.

data Ann s f r = Ann s (f r)

5 All benchmarks were compiled with GHC 6.10.1 using the -O2 flag and run on a
MacBook with Mac OS X 10.5.8, a 2 GHz Intel Core 2 Duo, and 4 GB of RAM.

5,911 16,523 26,234 words

Atomic 3.876 19.561 61.151 seconds
Incrementalized 0.010 0.028 0.056

Fig. 2. Performance of the atomic and incrementalized fromList.

The type Ann pairs an annotation with a functor. Combined, Fix and Ann give
us an annotated fixed-point representation.

type Fixa s f = Fix (Ann s f)

We supplement this type with its base functor (along with instances of Functor
and InOut) and functions to introduce (ina), eliminate (outa), and extract the
annotation (ann) from Fixa values.

data instance F (Fixa s f) r = Ina
F s (f r)

ina :: s→ f (Fixa s f)→ Fixa s f
outa :: Fixa s f→ f (Fixa s f)
ann :: Fixa s f→ s

Another function that will be useful later is foldMapa.

foldMapa :: (Functor f)⇒ (r→ s)→ Fixa r f→ Fixa s f
foldMapa f = fold (λ(Ina

F s x)→ ina (f s) x)

To continue with the example used in the Set library, we now represent the
binary search tree using the base functor of Tree introduced in Section 1. We
can define an alternative representation for Treei as TreeU.

type Typea s t = Fixa s (F t)

type TreeU a = Typea Int (Tree a)

We can use this type with an instance of TreeS in the same way as before;
however, we must first define a general form of upwards incrementalization.

Recall that our objective is to separate a fold into its elements: the application
of the algebra and the recursion. First, let us determine how to get an annotated
fixed-point type from a Haskell type; then, we can dissect the fold. Upwards
incrementalization is specified by upwards.

upwards :: (InOut t)⇒ AlgF t s→ t→ Typea s t
upwards = fold ◦ pullUp

pullUp :: (Functor f)⇒ Alg f s→ Alg f (Fixa s f)
pullUp alg fs = ina (alg (fmap ann fs)) fs

The function upwards is naturally defined with fold. The pullUp function trans-
forms an algebra on a functor f with the result s to an algebra that results in
the annotated fixed point Fixa s f. It does this by mapping each annotated fixed
point to its annotation in f. The ina function (also an algebra) pairs the annota-
tion with x. This value is built atomically (since upwards is a fold). To construct
the same value incrementally, we define introduction and elimination operations
under the TreeS instance.

instance TreeS (TreeU a) where

type Elem (TreeU a) = a
tip = pullUp sizeAlg TipF

bin x tL tR = pullUp sizeAlg (BinF x tL tR)
caseTree t b n = case outa n of {TipF → t ; BinF x tL tR → b x tL tR}

The primary differences from the Treei instance are that we use the base functor
constructors and that we wrap them with the algebra pullUp sizeAlg and unwrap
them with the coalgebra outa.

The library defined in this section allows programmers to write programs
with upwards incrementalization. Given a datatype, the programmer defines
an algebra that they want incrementalized. Using pullUp and the base functor
of that datatype, the programmer can easily build incremental results. Smart
constructors or a structure type class such as TreeS are not required, but they
can simplify the programming by hiding the complexities of incrementalization.

We now compare the performance of our generalized upwards incrementaliza-
tion against the specialized incrementalization presented in Section 2. Since the
incrementalized Set library was refactored to use the TreeS class, we can use the
same code for the generalized implementation but with the type TreeU instead
of Treei. We used the same benchmarking methodology as before to collect the
results in Fig. 3.

Surprisingly, the generalized fromList performs better, running 15 to 17%
faster than the specialized version. It is not clear precisely why this is, though we
speculate that it is due to the structure of the explicit fixed point and annotation
datatypes.

An alternative benchmark is the time taken to build large values of each
datatype. This is independent of any library and reflects clearly the impact of
the incrementalization on construction. We compare the evaluation of building
three isomorphic tree values: construction of the Tree datatype with “built-in”
Haskell syntax, construction of the incrementalized TreeU type, and TreeU values
transformed from constructed Tree values.

We arrive at the results shown in Fig. 4 using QuickCheck[6] to reproducibly
generate each arbitrary value with the approximate size shown. Each time is
the average over three different random seeds. As with previous comparisons,
we evaluate to head normal form. To be consistent with later comparisons, the
element type of the trees is Float.

The times of the comparison are virtually indistinguishable. This provides
good indication that upwards incrementalization does not impact the perfor-
mance of constructing values. Again, note that due to lazy evaluation, this only
predicts the worst case time, not the expected time for incremental updates.

In the next two sections, we look at other variations of incrementalization. It
could be said that upwards is the most “obvious” adaptation of folds; however,
it is also limiting in the functions that can be written. Algebraic datatypes
are tree-structured and constructed inductively; therefore, it is naturally that
information flows upward from the leaves to the root. It is also possible to pass
information downward from the root to the leaves as well as both up and down
simultaneously. We venture into this territory next.

5,911 16,523 26,234 words

Specialized 10.0 28.4 56.1 milliseconds
Generalized 8.3 24.1 46.8

Fig. 3. Performance of the specialized and generalized fromList.

1,000 10,000 100,000 nodes

Tree 7.4 39.7 137.3 milliseconds
Incrementalized with pullUp 7.4 39.5 136.5
Transformed with upwards 7.4 39.6 137.4

Fig. 4. Performance of constructing trees with upwards incrementalization using
the size algebra.

4 Downwards Incrementalization

There are other directions that incrementalization can take. We have demon-
strated upwards incrementalization, and in this section, we discuss its dual:
downwards incrementalization. In this direction, we accumulate the result of
calculations using information from the ancestors of a node. As with its up-
wards sibling, the result of downwards computations is stored as an annotation
on a fixed-point value. To distinguish between the two, we borrow vocabulary
from attribute grammars[7]: a downwards annotation is inherited by the children
while an upwards annotation is synthesized for the parent.

Let us establish a specification of a fixed-point value with inherited annota-
tions. To do this, we start with Gibbons’ accumulations[8], in particular down-
wards accumulations. Accumulation is similar to incrementalization in the sense
that information flows up or down the structure of the datatype. Accumulations
collect this information in the polymorphic elements (e.g. the a in Tree a) while
incrementalization collects it at the recursive points. Gibbons modeled down-
wards accumulation using paths, and we borrow this concept for downwards
incrementalization.

A path is a route from a constructor in a value to the root of that value (i.e.
the sequence of ancestors). The type of a path is characteristic of the datatype
whose path we want, so we define Path as a type-indexed datatype. The Path
instance for the Tree type helps clarify the structure a path.

data family Path t

data instance Path (Tree a)
= PRoot | PBinL a (Path (Tree a)) | PBinR a (Path (Tree a))

data instance F (Path (Tree a)) r = PRootF | PBinLF a r | PBinRF a r

In downward accumulations, every element is replaced with the path from that
constructor. Then, a fold is applied to each path to determine the result that
is stored in the element. In downwards incrementalization, we annotate every
constructor with its path. The primitives for this operation are defined by the
Paths class and exemplified by the Tree instance.

class (InOut t, InOut (Path t),ZipWith (F t))⇒ Paths t where
proot :: Path t
pnode :: F t r→ F t (Path t→ Path t)

instance Paths (Tree t) where
proot = PRoot
pnode TipF = TipF

pnode (BinF x) = BinF x (PBinL x) (PBinR x)

The methods proot and pnode are used to link the constructors of Path t to the
constructors of the type t. The mapping is quite straightforward: there is always
one root constructor, and the remaining constructors match recursive nodes. The
function paths uses the methods of Paths to annotate every recursive point with
its path.

paths :: (Paths t)⇒ t→ Typea (Path t) t
paths = appa proot ◦ fold (ina id ◦ zipApp compa pnode)

appa x = foldMapa ($x)
compa f = foldMapa (◦f)
zipApp f g x = zipWith f (g x) x

In paths, we are folding over the type t with an algebra that again folds over the
annotated value to push the latest known constructor to the bottom of each child
path using function composition. We follow up with a second fold to apply the
composed functions to proot. We use an instance of the class ZipWith to merge
the recursive path nodes (that contain functions applying the constructor) with
the original base function.

class ZipWith f where
zipWith :: (a→ b→ c)→ f a→ f b→ f c

The instances of ZipWith are trivial. Alternatively, we might have used a datatype-
generic programming library to zip functors together. To get an intuition of how
paths works, refer to the following example.

BinPRoot 2 TipPBinL 2 PRoot

(BinPBinR 2 PRoot 1 TipPBinL 1 (PBinR 2 PRoot) TipPBinR 1 (PBinR 2 PRoot))

Each constructor is initially annotated with the with id. As the outer fold works
upwards, the inner fold compose the current path constructor (e.g. PBinL or
PBinR) with the results. Finally, the function annotation for every node is applied
to the root PRoot.

We can now give a specification for inherited annotations.

downwards :: (Paths t)⇒ AlgF (Path t) s→ t→ Typea s t
downwards alg = foldMapa (fold alg) ◦ paths

We use paths to annotate all recursive points with their paths, and we fold
over the annotated result with an algebra that contains a fold over a path. The
path algebra is provided by the programmer. For example, suppose we want to
calculate the depth of a constructor:

depthAlgD p = case p of {PRootF → 1 ; PBinLF i→ succ i ; PBinRF i→ succ i}

Applying the depth algebra with a fold draws the information up from the bot-
tom, but in the case of a path, the “bottom” is the root of the tree. In this way,
inheritance is flipped head-over-heels.

Given the number of folds and redundant traversals of the fixed-point value
and paths, the definition of downwards is clearly inefficient. We may, of course,
improve its performance with manual optimizations, but in the end, it will still
be a fold. Instead, we deviate from this in our approach for downwards incre-
mentalization. The primary difference lies with the algebraic structure.

type AlgD f i = forall s.i→ f s→ f i

type AlgD
F t i = AlgD (F t) i

This algebra gives us the point of view of a constructor in a recursive datatype.
We no longer fold over a path, but rather inherit an i-type annotation, which
would have been the result of a fold on the path, from the parent. The type
f s → f i indicates that this algebra changes the elements of a functor f using
the inherited value, and the explicit quantification over s (producing rank-2
polymorphism below) preserves the downward direction of data flow. We used a
similar device in the type of pnode. Also similar to pnode, an AlgD algebra must
preserve the structure of the input.

We perform downwards incrementalization with an algebra transformation
similar to pullUp. The function pushDown demonstrates some similarities with
paths.

pushDown :: (ZipWith f)⇒ i→ AlgD f i→ Alg f (Fixa i f)
pushDown init alg = ina init ◦ zipApp push (alg init)

where push i = pushDown i alg ◦ outa

We use zipApp to merge altered and unaltered functor values. The altered values
come by applying the initialized algebra. (In paths, we alter with pnode.) We have
removed most folds in pushDown, but we cannot remove recursion completely.
Finite values are constructed inductively (i.e. upward), yet we are pushing in-
herited annotations down to the children. If we construct a new Bin 1 x y value
from two Bin values x and y, we must (in a sense) ensure that x and y receive
their inheritance from their new parent.

The function pushDown takes a different algebra from downwards, but the
difference between the algebra on paths and AlgD requires manageable changes.
The PRootF case is replaced by an initial inherited value, and the left and right
Bin paths are replaced by a single BinF case. We rewrite depthAlgD as the fol-
lowing:

depthInit = 1
depthAlg i t = case t of {TipF → TipF ; BinF x → BinF x (succ i) (succ i)}

We can then use pushDown depthInit depthAlg to define the smart constructors—
in an instance of TreeS , perhaps—for downwards incrementalization.

Evaluating downwards incrementalization would ideally be done with a pro-
gram that made use of it. We have observed, however, that it is not clear how use-
ful downwards incrementalization is. We reuse the depth algebra from Gibbons[8]
in our example, but we have found very few interesting algebras. As a matter
of opinion, the incrementalization found in the next section appears much more
useful. Indeed, perhaps downwards incrementalization serves better to introduce
some concepts, in a simpler setting, that reappear in the next section. At the
very least, this section serves to make the discussion of incrementalization more
complete.

To evaluate the performance of downwards incrementalization, we bench-
mark the construction of tree values annotated with depth. We look at the same
comparison for downwards as we did for upwards. The details are given in Fig. 5.

Downwards incrementalization is clearly less efficient than upwards incre-
mentalization and constructing Tree values: 12 to 21% slower. The recursive
downward push accounts for the extra time. On the other hand, it is encourag-
ing to see that, at the worst case, downwards depth incrementalization is not too
much slower. In general, the evaluation time of downwards incrementalization
can vary greatly depending on the depth of the values and especially the algebra
used. As an algebra, depth is perhaps detrimental to efficiency since every new
node on top of the tree results in updates to every node down to the leaves.
Lastly, note that the downwards transformation is 8 to 11% slower in evaluation.
This difference indicates the time spent folding over the paths and the repetitive
folds over the tree.

The downwards direction puts an interesting twist on purely functional incre-
mentalization. The development of a Path and its use in downwards allows us to
understand inherited annotations while the incrementalizing function pushDown
provides a more efficient approach. In the next section, we look at the merger of
upwards and downwards incrementalization.

5 Circular Incrementalization

Combining upwards and downwards incrementalization leads us to another form:
circular incrementalization. Circular incrementalization merges the functionality
of both to allow for much more interesting algebras. Information flows both
from the descendants to the ancestors and vice versa. Circularity is achieved
by introducing feedback at the leaves and the root such that the result of one
direction of flow may influence the other. Fittingly, we annotate recursive points
with both synthesized and inherited annotations. The following functions serve
to access the annotations:

inh :: Fixa (i, s) f→ i
syn :: Fixa (i, s) f→ s

We illustrate circular annotations with a specification similar to upwards and
downwards. Every annotation combines both synthesized data from the subtree
(whose root is the annotated node) and inherited data from the context (the

1,000 10,000 100,000 nodes

Tree 7.4 39.7 137.3 milliseconds
Incrementalized with pushDown 8.3 46.6 167.1
Transformed with downwards 9.0 51.7 185.4

Fig. 5. Performance of constructing trees with downwards incrementalization
using the depth algebra.

entire tree-like value inverted, with a path from the current node to the root:
the same concept used in zippers[9]). At each node, we can use the algebra to
pass results either up or down or both. In our model, we build both subtrees
and contexts for each node and compute each annotation with a fold. In order
to create circularity, we use algebras whose results are functions that take the
other annotation as an argument. We first describe contexts, and then we extend
an annotated value with subtrees.

A context is an expansion of a path, and it can be defined in much the same
way. We use the type-indexed datatype Context and the type class Contexts to
give the structure of a datatype’s context and the primitives for building it,
respectively.

data family Context t

data instance Context (Tree a)
= CRoot | CBinL a (Context (Tree a)) (Tree a) | CBinR a (Tree a) (Context (Tree a))

data instance F (Context (Tree a)) r
= CRootF | CBinLF a r (Tree a) | CBinRF a (Tree a) r

class (InOut t, InOut (Context t),ZipWith (F t))⇒ Contexts t where
croot :: Context t
cnode :: F t t→ F t (Context t→ Context t)

instance Contexts (Tree a) where
croot = CRoot
cnode TipF = TipF

cnode (BinF x tL tR) = BinF x (λc→ CBinL x c tR) (CBinR x tL)

Note the differences from paths. A context traces a path to the root, but a
Context value, unlike a Path, contains a node’s sibling recursive values. To an-
notate all nodes with contexts, we use the following function:

contexts :: (Contexts t)⇒ t→ Typea (Context t) t
contexts = appa croot ◦ fold (ina id ◦ zipApp compa (cnode ◦ fmap rma))

rma :: (InOut t)⇒ Typea s t→ t
rma = fold (inF ◦ outa

F)

The only difference from paths is the need to fold the fixed point into its built-in
representation for context nodes. This is in accordance with the fact that the
only difference Context has from Path is the inclusion of sibling values represented
with the Haskell type. Here is an example of a context-annotated value.

BinCRoot 2 TipCBinL 2 CRoot (Bin 1 Tip Tip)

(BinCBinR 2 Tip CRoot 1 TipCBinL 1 (CBinR 2 Tip CRoot) Tip TipCBinR 1 Tip (CBinR 2 Tip CRoot))

Given a value with contexts, we pair each annotation with its subtree via a
fold over a fixed-point value.

subtrees :: (InOut t)⇒ Typea c t→ Typea (c, t) t
subtrees = fold (λ(Ina

F c x)→ ina (c, inF (fmap rma x)) x)

With subtree and context annotations, we can define circular annotations.
Circular annotations can be constructed with the following function:

circular :: (Contexts t)
⇒ AlgF (Context t) (s→ i)→ AlgF t (i→ s)→ t→ Typea (i, s) t

circular algD algU = foldMapa cycle ◦ subtrees ◦ contexts

where cycle (ct, st) = let (i, s) = (fold algD ct s, fold algU st i) in (i, s)

Two algebras are necessary: one for each context and one for each subtree. The
result of each algebra is a function that is the inverse of the other. Subsequently,
each fold is applied to the result of the other, using a technique called circular
programming [10]. A circular program uses lazy evaluation to avoid multiple ex-
plicit traversals, and this is key to circular incrementalization. It allows us to
define algebras that rely on as-yet-unknown inputs. Feedback occurs when the
upwards algebra algU takes input from the downwards algebra algD, and vice
versa. It is possible to create multiple passes by defining multiple such depen-
dencies. Of course, it is also possible to create non-terminating cycles, but we
accept that chance in order to support expressive algebras.

Examples of problems that can be solved by circular incrementalization in-
clude the “repmin” problem from Bird[10] and the “diff” problem from Swier-
stra[11]. The latter is used to show why attribute grammars matter. Circular
incrementalization shares some similarities with attribute grammar systems, so
it is worth exploring this in more detail.

The naive implementation of Swierstra’s problem is a function that, given a
list of numbers, calculates the difference of each number from the average of the
whole list and returns the results in a list.

diff :: [Float]→ [Float]
diff xs = let avg = sum xs / genericLength xs in map (subtract avg) xs

Swierstra demonstrates two more efficient implementations: one is manually de-
veloped and significantly more complex, and the other is generated from a sim-
pler attribute grammar specification using the UUAG system. We add to this an
implementation using circular incrementalization, though our definition works
on Tree values instead of lists.

The following types serve as specification for the annotations.

newtype Diffi = DI {avgi :: Float}
data Diffs = DS{sums :: Float, sizes :: Float, diffs :: Float}

In the inherited annotation Diffi, we have the only inherited value, the average.
In the synthesized annotation Diffs, we have the sum of all element values, the
size or count of elements (genericLength for lists), and the resulting difference.

The algebra for subtrees establishes the synthesized annotation.

diffAlgU :: AlgF (Tree Float) (Diffi → Diffs)

diffAlgU TipF = DS{sums = 0, sizes = 0, diffs = 0}
diffAlgU (BinF x sL sR) i = dbins x (sL i) (sR i) i

dbins :: Float→ Diffs → Diffs → Diffi → Diffs

dbins x sL sR i = DS{sums = x + sums sL + sums sR

, sizes = 1 + sizes sL + sizes sR

, diffs = x− avgi i}

In the Tip component, the values are initialized to zero. In the Bin component, we
perform the operations: summing the elements, counting the number of elements,
and computing the difference from the average. Since the elements of the algebra
are functions, we apply sL and sR to the inherited value i, ultimately used in diffs.

The algebra for contexts establishes the inherited annotation.

diffAlgD :: AlgF (Context (Tree Float)) (Diffs → Diffi)

diffAlgD CRootF s = DI{avgi = sums s / sizes s}
diffAlgD (CBinLF x i tR) sL = let j = i $ dbins x sL (fold diffAlgU tR j) j in j

diffAlgD (CBinRF x tL i) sR = let j = i $ dbins x (fold diffAlgU tL j) sR j in j

The CRootF case holds the calculation of the average because the sum and size
have been determined for the entire tree. The CBinLF and CBinRF cases determine
the synthesized annotations with folds of the trees not included in the subtree.
In these cases, we must also apply the upwards algebra effectively in reverse: the
result is used by the algebra’s function element i and passed onwards. Note that
we must be sure to always use the final inherited annotation (j in these cases)
in, for instance, fold diffAlgU tR j. Otherwise, the average value does not arrive
correctly at every node. Using j instead of i leads to more circular programming,
but it does not lead to cycles since there is no other feedback route from diffAlgD

into diffAlgU.
Here is an example of a value annotated with the diff algebra.

BinDI 1.5,DS 3 2 0.5 2 TipDI 1.5,DS 0 0 0

(BinDI 1.5,DS 1 1 (−0.5) 1 TipDI 1.5,DS 0 0 0 TipDI 1.5,DS 0 0 0)

The same average value has been inherited by every node. In the synthesized
annotations, the Bin constructors have the appropriate sum, size, and difference
annotations, and the Tip constructors have zeroes.

The specification of circular incrementalization above is clear but (of course)
not efficient. To define an efficient version, as with the downwards approach, we
use a different algebraic structure.

type AlgC f i s = i→ f s→ (s, f i)

type AlgC
F t i s = AlgC (F t) i s

The AlgC type expands upon AlgD such that the synthesized annotations are
available for use as well as passed on to the parent. Put another way, we marry

the Alg and AlgD types and bear AlgC. The circular algebra is used in the following
algebra transformation.

passAround :: (Functor f,ZipWith f)⇒ (s→ i)→ AlgC f i s→ Alg f (Fixa (i, s) f)
passAround fun alg fis = ina (i, s) (zipWith pass fi fis)

where i = fun s
(s, fi) = alg i (fmap syn fis)
pass j = passAround (const j) alg ◦ outa

The function passAround borrows some aspects from pullUp and pushDown. From
the former, we take the upwards algebra applied to the mapped synthesized
results. As with the latter, we push the inherited annotations downward by
zipping the structures together and recursing. But unlike either previous form,
passAround also has circular dependencies on the annotations. The circularity of
i and s works in the same way as circular: by enabling the algebra to implicitly
traverse the structure and pass around annotations.

The attentive reader will notice that passAround supports restricted capabili-
ties compared to circular. In passAround, we only have feedback from synthesized
to inherited annotations at the top level, using the fun parameter. In the internal
nodes, the fun argument is const j, meaning we simply pass the inherited value
downwards. Since the definition of circular uses algebras with function results,
feedback can happen at any node. This means that circular is more expressive;
however, it also means that algebras for passAround are simpler to define. At this
point, we do not see the need for the increased expressiveness of circular, but we
do appreciate the simplified algebra of passAround.

We can solve the diff problem using the parameters of passAround. First, we
define the top-level feedback function.

diffFunC :: Diffs → Diffi

diffFunC s = DI{avgi = sums s / sizes s}

This is nothing more than the calculation of the inherited annotation. The cir-
cular algebra is also quite simple.

diffAlgC :: AlgC
F (Tree Float) Diffi Diffs

diffAlgC TipF = (DS{sums = 0, sizes = 0, diffs = 0},TipF)

diffAlgC i (BinF x sL sR) = (dbins x sL sR i,BinF x i i)

Unlike with diffAlgD, we are not concerned with deciding which inherited an-
notation to pass on, and we do not need any (additional) circularity. We may
complete the circular incrementalization for Tree by defining a straightforward
TreeS instance using passAround diffFunC diffAlgC for the smart constructors.

We benchmark circular incrementalization in the same way as downwards
with one addition. We manually define a fast, accumulating diff function (type
Tree Float→ Tree Float) that replaces each element with its difference. This func-
tion provides a basis for comparison with more typical atomic implementation.
See Fig. 6 for results.

Circular incrementalization is 12 to 26% slower than downwards incremen-
talization. It also is 20 to 47% slower than the accumulation. The accumulation

1,000 10,000 100,000 nodes

Tree 7.4 39.7 137.3 milliseconds
Accumulating diff 7.7 41.3 142.9
Incrementalized with passAround 9.2 53.4 210.5
Transformed with circular 30.6 737.1 17,233.4

Fig. 6. Performance of constructing trees with circular incrementalization using
the diff algebra.

is, of course, an atomic function and would incur costs when used again while
the time for incrementalization would be amortized over repeated computations.
The circular transformation is radically less efficient and would not be useful in
practice.

This concludes our look at the various forms of incrementalization. In the
following sections, we discuss aspects of incrementalization and related work.

6 Discussion

Several aspects of incrementalization deserve further discussion.

6.1 Combining Algebras

To simplify the presentation of incrementalization, we have ignored a potential
issue. Suppose we have the function union for incrementalized trees. If we define
the function for the Set library, the solution is the same as without incremen-
talization. On the other hand, we may define it more generally with the type
Typea s t → Typea s t → Typea s t. But with the approach described in this
paper, there is no guarantee that the annotation types in each parameter match
the same algebra. For example, we might have a type Int for size and a type Int
for sum. How do we merge these when we combine values from each parameter?

One option is to allow for different algebras and to use an additional algebra
for pairing the annotations together. At every node, we compute the annotations
for the algebras of each input. For union, this would result in a type Typea r t→
Typea s t → Typea (r, s) t. However, for some applications (such as the Set
library) this may not be desirable, since it changes the annotation types.

An alternative option is to ensure that an algebra is unique for the entire
program. We can do this by creating a multiparameter type class for annotations
that attach a type s to a type t: Annot s t. We then define union to have the type
(Annot s t)⇒ Typea s t→ Typea s t→ Typea s t. There can be only one instance
of Annot for this pair of types, so the type system prevents an inconsistency
between the parameters.

6.2 Optimization

One possibility for speeding up incrementalization is the use of memoization or
storing the results of a function application in order to reuse them if the function
is applied to the same argument. Typically, this technique involves a table map-
ping arguments to results. In both downwards and circular incrementalization,

pushing the inherited annotation down leads to recursion through the subtree
structure, and this is a large time factor in the these techniques. To memoize
the downwards function (push in pushDown and pass in passAround), we must
create a memo table for the inherited annotation.

There are several options for memoization from which we might choose. GHC
supports a rough form of global memoization using stable name primitives[12].
Generic tries may be used for purely functional memo tables[13] in lazy lan-
guages.

In general, the best choice for memoization is strongly determined by the
algebra used, but the options above present potential problems when used with
incrementalization. Creating a memo table for every node in a tree can lead to
an undesirable space explosion. For example, suppose the memo table at every
node in the downwards depth example contains two entries. The size of the
incrementalized value is already triple the size of an unincrementalized one.

To avoid space issues, we use a memo table size of one with an equality check.
The function push is easily modified (as is pass, using inh instead of ann)

push i x | i ann x = x
| otherwise = pushDown i alg (outa x)

In our experiments, unfortunately, memoization did not have a significant effect.
The memoized pushDown was up to 1% slower with the depth algebra, and the
memoized passAround was up to 1% faster with the diff algebra.

We leave it to future work to explore other forms of optimization.

6.3 Going Datatype-Generic

We have described incrementalization as a library with type classes for a pro-
grammer to instantiate. It can also serve as part of a datatype-generic program-
ming library.

For example, for datatypes that are represented using pattern functors or
structural functor types with explicit recursive points, we can define generic
functions such as folds and zips to use with all such types. Such a library is
described for rewriting[14] and mutually recursive datatypes[15]. Both Functor
and ZipWith can be instantiated with such a library, so by extension, we can use
the above definitions for pullUp, pushDown, and passAround. More details are
available in a technical report[16].

6.4 Applications of Incrementalization

We continue to search for particular uses of incrementalization outside of the Set
library, but one particular application appears very attractive: a generic incre-
mental zipper. The zipper[9] is a technique for navigating and editing values of
algebraic datatypes. By incrementalizing a zipper, annotations may be computed
incrementally as we navigate and change a value. Examples where this would be
useful include (partial) evaluation of an abstract syntax tree and online format-
ting of structured documents or code. We have outlined an implementation of a
generic incremental zipper elsewhere[16].

7 Related Work

As we have mentioned, incrementalization is quite similar to attribute gram-
mars[7]. In addition, Fokkinga, et al[17] prove that attribute grammars can be
translated to folds. An annotation on a node in incrementalization is the result
of computing an attribute on a production.

Saraiva, et al[18] demonstrate incremental attribute evaluation for a purely
functional implementation of attribute grammars. They transform syntax trees
to improve the performance of incremental computation. Our approach is con-
siderably more “lightweight” since we write our programs directly in the target
language (i.e. Haskell) instead of using a grammar or code generation. On the
other hand, we cannot easily boost performance by rewriting.

Viera, et al[19] describe first-class attribute grammars in Haskell. Their ap-
proach ensures the well-formedness of the grammar and allows for combining
attributes in a type-safe fashion. Our approach to combining annotations is more
ad-hoc and we do not ensure well-formedness; however, we believe our approach
is simpler to understand and implement. We also show that our technique can
improve the performance of a library.

Our initial interest in incremental computing was inspired by Jeuring’s work
on incremental algorithms for lists[20]. This work shows that incremental algo-
rithms can also be defined not just on lists but on algebraic datatypes in general.

Carlsson[21] translates an imperative ML library supporting high-level incre-
mental computations[22] into a monadic library for Haskell. His approach relies
on references to store intermediate results and requires explicit specification of
the incremental components. In contrast, our approach is purely functional and
uses the structure of the datatype to determine where annotations are placed.
We can also hide the incrementalization using type classes such as TreeS . Incre-
mentalization, however, is limited to computations that can be defined as folds,
while Carlsson’s work is more free-form.

Bernardy[23] defines a lazy, incremental, zipper-based parser for the text
editor Yi. His implementation is rather specific to its purpose and lacks an ap-
parent generalization to other datatypes. Further study is required to determine
whether Yi can take advantage of incrementalization.

8 Conclusion

We have presented a number of exercises in purely functional incrementalization.
Incrementalizing programs decouples recursion from computation and storing
intermediate results. Thus, we remove redundant computation and improve the
performance of some programs. By utilizing the fixed-point structure of algebraic
datatypes, we demonstrate a library that captures all the elements of incremen-
talization for folds.

Acknowledgments We thank Edward Kmett for an insightful blog entry and
Stefan Holdermans and the anonymous reviewers for suggestions that contributed

to significant improvements. This work has been partially funded by the Nether-
lands Organization for Scientific Research through the project on “Real-Life
Datatype-Generic Programming” (612.063.613).

References

1. Chakravarty, M.M.T., Keller, G., Peyton Jones, S.L., Marlow, S.: Associated Types
with Class. In: POPL. (2005) 1–13

2. Hinze, R., Jeuring, J., Löh, A.: Type-indexed data types. Science of Computer
Programming 51(1-2) (2004) 117–151

3. Sheard, T., Peyton Jones, S.L.: Template Meta-programming for Haskell. In:
Haskell. (2002) 1–16

4. Liu, Y.A.: Efficiency by Incrementalization: An Introduction. Higher-Order and
Symbolic Computation 13(4) (2000) 289–313

5. Adams, S.: Functional Pearls: Efficient sets – a balancing act. J. of Functional
Programming 3(04) (1993) 553–561

6. Claessen, K., Hughes, J.: QuickCheck: A Lightweight Tool for Random Testing of
Haskell Programs. In: ICFP. (2000) 268–279

7. Knuth, D.E.: Semantics of context-free languages. Theory of Computing Systems
2(2) (1968) 127–145

8. Gibbons, J.: Upwards and downwards accumulations on trees. In: MPC. (1993)
122–138

9. Huet, G.: The Zipper. J. of Functional Programming 7(05) (1997) 549–554
10. Bird, R.S.: Using Circular Programs to Eliminate Multiple Traversals of Data.

Acta Informatica 21(3) (October 1984) 239–250
11. Swierstra, W.: Why Attribute Grammars Matter. The Monad.Reader 4 (2005)
12. Peyton Jones, S.L., Marlow, S., Elliott, C.: Stretching the storage manager: weak

pointers and stable names in Haskell. In: IFL. (2000) 37–58
13. Hinze, R.: Memo functions, polytypically! In Jeuring, J., ed.: WGP. (2000)
14. van Noort, T., Rodriguez Yakushev, A., Holdermans, S., Jeuring, J., Heeren, B.:

A lightweight approach to datatype-generic rewriting. In: WGP. (2008) 13–24
15. Rodriguez Yakushev, A., Holdermans, S., Löh, A., Jeuring, J.: Generic Program-

ming with Fixed Points for Mutually Recursive Datatypes. In: ICFP. (2009) 233–
244

16. Leather, S., Löh, A., Jeuring, J.: Pull-Ups, Push-Downs, and Passing It Around:
Exercises in Functional Incrementalization. Technical Report UU-CS-2009-024,
Dept. of Information and Computing Sciences, Utrecht University (November 2009)

17. Fokkinga, M.M., Jeuring, J., Meertens, L., Meijer, E.: A Translation from Attribute
Grammars to Catamorphisms. The Squiggolist 2(1) (1991) 20–26

18. Saraiva, J.a., Swierstra, S.D., Kuiper, M.: Functional Incremental Attribute Eval-
uation. In: CC. (2000) 279–294

19. Viera, M., Swierstra, S.D., Swierstra, W.: Attribute Grammars Fly First-Class:
How to do Aspect Oriented Programming in Haskell. In: ICFP. (2009) 245–256

20. Jeuring, J.: Incremental algorithms on lists. In van Leeuwen, J., ed.: SION Con-
ference on Computer Science in the Netherlands. (1991) 315–335

21. Carlsson, M.: Monads for incremental computing. In: ICFP. (2002) 26–35
22. Acar, U.A., Blelloch, G.E., Harper, R.: Adaptive functional programming. In:

POPL. (2002) 247–259
23. Bernardy, J.P.: Lazy Functional Incremental Parsing. In: Haskell. (2009) 49–60

	Introduction
	Incrementalization in Action
	Upwards Incrementalization
	Downwards Incrementalization
	Circular Incrementalization
	Discussion
	Combining Algebras
	Optimization
	Going Datatype-Generic
	Applications of Incrementalization

	Related Work
	Conclusion
	Acknowledgments

